Skip to main content
Top
Published in: Computing and Visualization in Science 4-5/2017

06-10-2017 | Original Article

Multigrid methods with space–time concurrency

Authors: R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, J. B. Schroder, S. Vandewalle

Published in: Computing and Visualization in Science | Issue 4-5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider the comparison of multigrid methods for parabolic partial differential equations that allow space–time concurrency. With current trends in computer architectures leading towards systems with more, but not faster, processors, space–time concurrency is crucial for speeding up time-integration simulations. In contrast, traditional time-integration techniques impose serious limitations on parallel performance due to the sequential nature of the time-stepping approach, allowing spatial concurrency only. This paper considers the three basic options of multigrid algorithms on space–time grids that allow parallelism in space and time: coarsening in space and time, semicoarsening in the spatial dimensions, and semicoarsening in the temporal dimension. We develop parallel software and performance models to study the three methods at scales of up to 16K cores and introduce an extension of one of them for handling multistep time integration. We then discuss advantages and disadvantages of the different approaches and their benefit compared to traditional space-parallel algorithms with sequential time stepping on modern architectures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
One possibility to save on memory in the waveform relaxation approach is to subdivide the time interval into a sequence of “windows” that are treated sequentially [43]. However, there is an apparent parallel performance tradeoff with this reduction in storage requirement.
 
Literature
1.
go back to reference Ashby, S.F., Falgout, R.D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl. Sci. Eng. 124(1), 145–159 (1996). UCRL-JC-122359CrossRef Ashby, S.F., Falgout, R.D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl. Sci. Eng. 124(1), 145–159 (1996). UCRL-JC-122359CrossRef
2.
go back to reference Bastian, P., Burmeister, J., Horton, G.: Implementation of a parallel multigrid method for parabolic partial differential equations. In: W. Hackbusch (ed.) Parallel Algorithms for PDEs, Proc. 6th GAMM Seminar Kiel, January 19–21, 1990, pp. 18–27. Vieweg, Braunschweig (1990) Bastian, P., Burmeister, J., Horton, G.: Implementation of a parallel multigrid method for parabolic partial differential equations. In: W. Hackbusch (ed.) Parallel Algorithms for PDEs, Proc. 6th GAMM Seminar Kiel, January 19–21, 1990, pp. 18–27. Vieweg, Braunschweig (1990)
3.
go back to reference Bjørhus, M.: On domain decomposition, subdomain iteration and waveform relaxation. Ph.D. thesis, Department of Mathematical Sciences, Norwegian Institute of Technology, University of Trondheim, Trondheim, Norway (1995) Bjørhus, M.: On domain decomposition, subdomain iteration and waveform relaxation. Ph.D. thesis, Department of Mathematical Sciences, Norwegian Institute of Technology, University of Trondheim, Trondheim, Norway (1995)
4.
go back to reference Bolten, M., Moser, D., Speck, R.: A multigrid perspective on the parallel full approximation scheme in space and time. Numerical Linear Algebra with Applications pp. e2110–n/a (2017). E2110 nla.2110 Bolten, M., Moser, D., Speck, R.: A multigrid perspective on the parallel full approximation scheme in space and time. Numerical Linear Algebra with Applications pp. e2110–n/a (2017). E2110 nla.2110
6.
go back to reference Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)CrossRefMATHMathSciNet Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)CrossRefMATHMathSciNet
7.
8.
9.
go back to reference De Sterck, H., Manteuffel, T.A., McCormick, S.F., Olson, L.: Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs. SIAM J. Sci. Comput. 26(1), 31–54 (2004)CrossRefMATHMathSciNet De Sterck, H., Manteuffel, T.A., McCormick, S.F., Olson, L.: Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs. SIAM J. Sci. Comput. 26(1), 31–54 (2004)CrossRefMATHMathSciNet
10.
go back to reference Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7(1), 105–132 (2012)CrossRefMATHMathSciNet Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7(1), 105–132 (2012)CrossRefMATHMathSciNet
11.
go back to reference Falgout, R.D., Jones, J.E.: Multigrid on massively parallel architectures. In: E. Dick, K. Riemslagh, J. Vierendeels (eds.) Multigrid Methods VI, Lecture Notes in Computational Science and Engineering, vol. 14, pp. 101–107. Springer (2000). Proceedings of the Sixth European Multigrid Conference held in Gent, Belgium, September 27–30, 1999. UCRL-JC-133948 Falgout, R.D., Jones, J.E.: Multigrid on massively parallel architectures. In: E. Dick, K. Riemslagh, J. Vierendeels (eds.) Multigrid Methods VI, Lecture Notes in Computational Science and Engineering, vol. 14, pp. 101–107. Springer (2000). Proceedings of the Sixth European Multigrid Conference held in Gent, Belgium, September 27–30, 1999. UCRL-JC-133948
12.
go back to reference Falgout, R.D., Katz, A., Kolev, Tz.V., Schroder, J.B., Wissink, A., Yang, U.M.: Parallel time integration with multigrid reduction for a compressible fluid dynamics application. Lawrence Livermore National Laboratory (2014) Falgout, R.D., Katz, A., Kolev, Tz.V., Schroder, J.B., Wissink, A., Yang, U.M.: Parallel time integration with multigrid reduction for a compressible fluid dynamics application. Lawrence Livermore National Laboratory (2014)
13.
go back to reference Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: Parallel time integration with multigrid. SIAM J. Sci. Comput. 36(6), C635–C661 (2014)CrossRefMATHMathSciNet Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: Parallel time integration with multigrid. SIAM J. Sci. Comput. 36(6), C635–C661 (2014)CrossRefMATHMathSciNet
14.
go back to reference Friedhoff, S., MacLachlan, S.: A generalized predictive analysis tool for multigrid methods. Numer. Linear Algebr. Appl. 22(4), 618–647 (2015)CrossRefMATHMathSciNet Friedhoff, S., MacLachlan, S.: A generalized predictive analysis tool for multigrid methods. Numer. Linear Algebr. Appl. 22(4), 618–647 (2015)CrossRefMATHMathSciNet
15.
go back to reference Gahvari, H., Baker, A., Schulz, M., Yang, U.M., Jordan, K., Gropp, W.: Modeling the performance of an algebraic multigrid cycle on HPC platforms. In: 25th ACM International Conference on Supercomputing, Tucson, AZ (2011) Gahvari, H., Baker, A., Schulz, M., Yang, U.M., Jordan, K., Gropp, W.: Modeling the performance of an algebraic multigrid cycle on HPC platforms. In: 25th ACM International Conference on Supercomputing, Tucson, AZ (2011)
16.
go back to reference Gander, M.J.: 50 years of time parallel time integration. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition, pp. 69–113. Springer, Cham (2015) Gander, M.J.: 50 years of time parallel time integration. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition, pp. 69–113. Springer, Cham (2015)
17.
go back to reference Gander, M.J., Neumüller, M.: Analysis of a new space–time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38(4), A2173–A2208 (2016)CrossRefMATHMathSciNet Gander, M.J., Neumüller, M.: Analysis of a new space–time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38(4), A2173–A2208 (2016)CrossRefMATHMathSciNet
18.
go back to reference Gander, M.J., Stuart, A.M.: Space–time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998)CrossRefMATHMathSciNet Gander, M.J., Stuart, A.M.: Space–time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998)CrossRefMATHMathSciNet
19.
go back to reference Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)CrossRefMATHMathSciNet Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)CrossRefMATHMathSciNet
20.
go back to reference Güttel, S.: A parallel overlapping time-domain decomposition method for ODEs. Domain decomposition methods in science and engineering XX. Lect. Notes Comput. Sci. Eng, vol. 91, pp. 459–466. Springer, Heidelberg (2013) Güttel, S.: A parallel overlapping time-domain decomposition method for ODEs. Domain decomposition methods in science and engineering XX. Lect. Notes Comput. Sci. Eng, vol. 91, pp. 459–466. Springer, Heidelberg (2013)
21.
go back to reference Hackbusch, W.: Parabolic Multigrid Methods. Computing Methods in Applied Sciences and Engineering. VI (Versailles, 1983), pp. 189–197. North-Holland, Amsterdam (1984) Hackbusch, W.: Parabolic Multigrid Methods. Computing Methods in Applied Sciences and Engineering. VI (Versailles, 1983), pp. 189–197. North-Holland, Amsterdam (1984)
22.
23.
go back to reference Hockney, R.W., Jesshope, C.R.: Parallel Computers: Architecture. Programming and Algorithms. Adam Hilger, Bristol (1981)MATH Hockney, R.W., Jesshope, C.R.: Parallel Computers: Architecture. Programming and Algorithms. Adam Hilger, Bristol (1981)MATH
25.
go back to reference Horton, G., Knirsch, R.: A time-parallel multigrid-extrapolation method for parabolic partial differential equations. Parallel Comput. 18(1), 21–29 (1992)CrossRefMATHMathSciNet Horton, G., Knirsch, R.: A time-parallel multigrid-extrapolation method for parabolic partial differential equations. Parallel Comput. 18(1), 21–29 (1992)CrossRefMATHMathSciNet
26.
go back to reference Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16(4), 848–864 (1995)CrossRefMATHMathSciNet Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16(4), 848–864 (1995)CrossRefMATHMathSciNet
27.
go back to reference Horton, G., Vandewalle, S., Worley, P.: An algorithm with polylog parallel complexity for solving parabolic partial differential equations. SIAM J. Sci. Comput. 16(3), 531–541 (1995)CrossRefMATHMathSciNet Horton, G., Vandewalle, S., Worley, P.: An algorithm with polylog parallel complexity for solving parabolic partial differential equations. SIAM J. Sci. Comput. 16(3), 531–541 (1995)CrossRefMATHMathSciNet
29.
go back to reference Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Blaisdell Publishing Co. Ginn and Co., Waltham (1968) Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Blaisdell Publishing Co. Ginn and Co., Waltham (1968)
30.
go back to reference Kogge, P.M.: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Comput. C 22(8), 786–793 (1973) Kogge, P.M.: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Comput. C 22(8), 786–793 (1973)
31.
go back to reference Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE CAD 1(3), 131–145 (1982)CrossRef Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE CAD 1(3), 131–145 (1982)CrossRef
32.
go back to reference Lions, J.L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps “pararéel”. C. R. Acad. Sci. Paris Sér. I Math. 332(7), 661–668 (2001)CrossRefMATHMathSciNet Lions, J.L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps “pararéel”. C. R. Acad. Sci. Paris Sér. I Math. 332(7), 661–668 (2001)CrossRefMATHMathSciNet
34.
go back to reference Maday, Y., Rønquist, E.M.: Parallelization in time through tensor-product space–time solvers. C. R. Math. Acad. Sci. Paris 346(1–2), 113–118 (2008)CrossRefMATHMathSciNet Maday, Y., Rønquist, E.M.: Parallelization in time through tensor-product space–time solvers. C. R. Math. Acad. Sci. Paris 346(1–2), 113–118 (2008)CrossRefMATHMathSciNet
35.
go back to reference Minion, M.L., Williams, S.A.: Parareal and spectral deferred corrections. In: T.E. Simos (ed.) Numerical Analysis and Applied Mathematics, No. 1048 in AIP Conference Proceedings, pp. 388–391. AIP (2008) Minion, M.L., Williams, S.A.: Parareal and spectral deferred corrections. In: T.E. Simos (ed.) Numerical Analysis and Applied Mathematics, No. 1048 in AIP Conference Proceedings, pp. 388–391. AIP (2008)
36.
go back to reference Minion, M.L., Speck, R., Bolten, M., Emmett, M., Ruprecht, D.: Interweaving PFASST and parallel multigrid. SIAM J. Sci. Comput. 37(5), S244–S263 (2015)CrossRefMATHMathSciNet Minion, M.L., Speck, R., Bolten, M., Emmett, M., Ruprecht, D.: Interweaving PFASST and parallel multigrid. SIAM J. Sci. Comput. 37(5), S244–S263 (2015)CrossRefMATHMathSciNet
37.
go back to reference Miranker, W.L., Liniger, W.: Parallel methods for the numerical integration of ordinary differential equations. Math. Comput. 21, 303–320 (1967)CrossRefMATHMathSciNet Miranker, W.L., Liniger, W.: Parallel methods for the numerical integration of ordinary differential equations. Math. Comput. 21, 303–320 (1967)CrossRefMATHMathSciNet
39.
go back to reference Ries, M., Trottenberg, U.: MGR-ein blitzschneller elliptischer Löser. Tech. Rep. Preprint 277 SFB 72, Universität Bonn (1979) Ries, M., Trottenberg, U.: MGR-ein blitzschneller elliptischer Löser. Tech. Rep. Preprint 277 SFB 72, Universität Bonn (1979)
41.
go back to reference Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23(2), 269–299 (2003)CrossRefMATHMathSciNet Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23(2), 269–299 (2003)CrossRefMATHMathSciNet
42.
go back to reference Speck, R., Ruprecht, D., Emmett, M., Bolten, M., Krause, R.: A space-time parallel solver for the three-dimensional heat equation. In: Bader, M., Bode, A., Bungartz, H.-J., Gerndt, M., Joubert, G.R., Peter, F. (eds.) Parallel Computing: Accelerating Computational Science and Engineering (CSE), Advances in Parallel Computing, vol. 25, pp. 263–272. IOS Press (2014) Speck, R., Ruprecht, D., Emmett, M., Bolten, M., Krause, R.: A space-time parallel solver for the three-dimensional heat equation. In: Bader, M., Bode, A., Bungartz, H.-J., Gerndt, M., Joubert, G.R., Peter, F. (eds.) Parallel Computing: Accelerating Computational Science and Engineering (CSE), Advances in Parallel Computing, vol. 25, pp. 263–272. IOS Press (2014)
43.
go back to reference Vandewalle, S.G., Van de Velde, E.F.: Space-time concurrent multigrid waveform relaxation. Ann. Numer. Math. 1(1–4), 347–360 (1994). Scientific computation and differential equations (Auckland, 1993) Vandewalle, S.G., Van de Velde, E.F.: Space-time concurrent multigrid waveform relaxation. Ann. Numer. Math. 1(1–4), 347–360 (1994). Scientific computation and differential equations (Auckland, 1993)
44.
go back to reference Vandewalle, S., Horton, G.: Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods. Computing 54(4), 317–330 (1995)CrossRefMATHMathSciNet Vandewalle, S., Horton, G.: Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods. Computing 54(4), 317–330 (1995)CrossRefMATHMathSciNet
45.
go back to reference Vandewalle, S., Piessens, R.: Efficient parallel algorithms for solving initial-boundary value and time-periodic parabolic partial differential equations. SIAM J. Sci. Stat. Comput. 13(6), 1330–1346 (1992)CrossRefMATHMathSciNet Vandewalle, S., Piessens, R.: Efficient parallel algorithms for solving initial-boundary value and time-periodic parabolic partial differential equations. SIAM J. Sci. Stat. Comput. 13(6), 1330–1346 (1992)CrossRefMATHMathSciNet
46.
go back to reference Weinzierl, T., Köppl, T.: A geometric space-time multigrid algorithm for the heat equation. Numer. Math. Theory Methods Appl. 5(1), 110–130 (2012)MATHMathSciNet Weinzierl, T., Köppl, T.: A geometric space-time multigrid algorithm for the heat equation. Numer. Math. Theory Methods Appl. 5(1), 110–130 (2012)MATHMathSciNet
Metadata
Title
Multigrid methods with space–time concurrency
Authors
R. D. Falgout
S. Friedhoff
Tz. V. Kolev
S. P. MacLachlan
J. B. Schroder
S. Vandewalle
Publication date
06-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Computing and Visualization in Science / Issue 4-5/2017
Print ISSN: 1432-9360
Electronic ISSN: 1433-0369
DOI
https://doi.org/10.1007/s00791-017-0283-9

Other articles of this Issue 4-5/2017

Computing and Visualization in Science 4-5/2017 Go to the issue

Premium Partner