Skip to main content
Top

2012 | OriginalPaper | Chapter

7. Multijunction Approaches to Photoelectrochemical Water Splitting

Authors : Eric L. Miller, Alex DeAngelis, Stewart Mallory

Published in: Photoelectrochemical Hydrogen Production

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The key to successful deployment of photoelectrochemical (PEC) water-splitting for commercial renewable hydrogen production will be in the identification and development of innovative semiconductor materials systems and devices, likely involving multijunction configurations. Multijunction approaches offer some of the best hope for achieving practical PEC hydrogen production in the near term, but complex materials and interface issues still need to be addressed by the scientific community. This chapter explores the challenges and benefits of large-scale solar water splitting for renewable hydrogen production, with specific focus on the multijunction PEC production pathways. The technical motivation and approach in the R&D of multijunction PEC devices and systems are considered, and examples of progress in laboratory scale prototypes are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khaselev, O., Bansal, A., Turner, J.A.: High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26, 127–132 (2001) Khaselev, O., Bansal, A., Turner, J.A.: High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26, 127–132 (2001)
2.
go back to reference Khaselev, O., Turner, J.A.: A monolithic photovoltaic photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998) Khaselev, O., Turner, J.A.: A monolithic photovoltaic photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)
3.
go back to reference Andreev, V.M.: GaAs and high-efficiency space cells. In: Markvart, T., Castañer, L. (eds.) Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier, New York (2003) Andreev, V.M.: GaAs and high-efficiency space cells. In: Markvart, T., Castañer, L. (eds.) Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier, New York (2003)
4.
go back to reference Deutsch, T.G., Koval, C.A., Turner, J.A.: III − V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN. J. Phys. Chem. B 110, 25297–25307 (2006) Deutsch, T.G., Koval, C.A., Turner, J.A.: III − V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN. J. Phys. Chem. B 110, 25297–25307 (2006)
5.
go back to reference Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001) Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001)
6.
go back to reference Marsen, B., Miller, E.L., Paluselli, D., Rocheleau, R.E.: Progress in sputtered tungsten trioxide for photoelectrode applications. Int. J. Hydrogen Energy 32, 3110–3115 (2007) Marsen, B., Miller, E.L., Paluselli, D., Rocheleau, R.E.: Progress in sputtered tungsten trioxide for photoelectrode applications. Int. J. Hydrogen Energy 32, 3110–3115 (2007)
7.
go back to reference Gaillard, N., Chang, Y., Kaneshiro, J., Deangelis, A., Miller, E.L.: Status of research on tungsten oxide-based photoelectrochemical devices at the University of Hawai’i. Proc. SPIE 7770, 77700V–77701V (2010) Gaillard, N., Chang, Y., Kaneshiro, J., Deangelis, A., Miller, E.L.: Status of research on tungsten oxide-based photoelectrochemical devices at the University of Hawai’i. Proc. SPIE 7770, 77700V–77701V (2010)
8.
go back to reference Rocheleau, R.E., Miller, E.L., Misra, A.: High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12, 3–10 (1998) Rocheleau, R.E., Miller, E.L., Misra, A.: High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12, 3–10 (1998)
9.
go back to reference Miller, E.L., Gaillard, N., Kaneshiro, J., DeAngelis, A., Garland, R.: Progress in new semiconductor materials classes for solar photoelectrolysis. Int. J. Energy Res 34, 1215–1222 (2010) Miller, E.L., Gaillard, N., Kaneshiro, J., DeAngelis, A., Garland, R.: Progress in new semiconductor materials classes for solar photoelectrolysis. Int. J. Energy Res 34, 1215–1222 (2010)
11.
go back to reference Li, Y., Zhang, J.Z.: Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev. 4, 517–528 (2010)MATH Li, Y., Zhang, J.Z.: Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev. 4, 517–528 (2010)MATH
12.
go back to reference Bush, G.W.: State of the Union. Presented in Washington, DC, USA, 28 January 2003 Bush, G.W.: State of the Union. Presented in Washington, DC, USA, 28 January 2003
13.
go back to reference Rifkin, J.: The Hydrogen Economy. Tarcher (2003) Rifkin, J.: The Hydrogen Economy. Tarcher (2003)
14.
go back to reference Romm, J.J.: The Hype About Hydrogen. Island, New York (2004) Romm, J.J.: The Hype About Hydrogen. Island, New York (2004)
15.
go back to reference Bromaghim, G., Gibeault, K., Serfass, J., Serfass, P., Wagner, E.: Hydrogen and Fuel Cells: The U.S. Market Report. National Hydrogen Association, 22 March 2010 Bromaghim, G., Gibeault, K., Serfass, J., Serfass, P., Wagner, E.: Hydrogen and Fuel Cells: The U.S. Market Report. National Hydrogen Association, 22 March 2010
18.
go back to reference Ball, M., Wietschel, M.: The Hydrogen Economy: Opportunities and Challenges. Cambridge Press, New York (2009) Ball, M., Wietschel, M.: The Hydrogen Economy: Opportunities and Challenges. Cambridge Press, New York (2009)
19.
go back to reference Yürüm, Y.: Hydrogen energy system: production and utilization of hydrogen and future aspects. Kluwer Academic Publishers, Dordrecht (1995) Yürüm, Y.: Hydrogen energy system: production and utilization of hydrogen and future aspects. Kluwer Academic Publishers, Dordrecht (1995)
20.
go back to reference Turner, J.A.: A realizable renewable energy future. Science 285, 687–689 (1999) Turner, J.A.: A realizable renewable energy future. Science 285, 687–689 (1999)
24.
go back to reference Safina, C.: Testimony to the House Subcommittee on Energy and Environment. 21 May 2010 Safina, C.: Testimony to the House Subcommittee on Energy and Environment. 21 May 2010
25.
go back to reference U. S. Department of Energy, Office of Science: Basic Research Needs for Solar Energy Utilization. Washington (2005) U. S. Department of Energy, Office of Science: Basic Research Needs for Solar Energy Utilization. Washington (2005)
26.
go back to reference Green, M.A.: Solar cells: Operating Principles, Technology, and System Applications. Prentice-Hall, Inc, Kensington, NSW (1982) Green, M.A.: Solar cells: Operating Principles, Technology, and System Applications. Prentice-Hall, Inc, Kensington, NSW (1982)
27.
go back to reference U. S. Department of Energy, Energy Information Administration: International Energy Outlook 2008 (DOE/EIA-0484). Washington (2008) U. S. Department of Energy, Energy Information Administration: International Energy Outlook 2008 (DOE/EIA-0484). Washington (2008)
28.
go back to reference Greentech Media and the Prometheus Institute: PV Technology, Production and Cost, 2009 Forecast: The Anatomy of a Shakeout. Cambridge (2008) Greentech Media and the Prometheus Institute: PV Technology, Production and Cost, 2009 Forecast: The Anatomy of a Shakeout. Cambridge (2008)
29.
go back to reference Solarbuzz: Marketbuzz 2009: Annual World Solar PV Market Report. San Francisco (2009) Solarbuzz: Marketbuzz 2009: Annual World Solar PV Market Report. San Francisco (2009)
30.
go back to reference Bauman, R.P.: Modern Thermodynamics with Statistical Mechanics. Macmillan Publishing Company, New York (2003) Bauman, R.P.: Modern Thermodynamics with Statistical Mechanics. Macmillan Publishing Company, New York (2003)
31.
go back to reference Akkerman, I., Janssen, M., Rocha, J., Wijffels, R.H.: Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int. J. Hydrogen Energy 27, 1195–1208 (2002) Akkerman, I., Janssen, M., Rocha, J., Wijffels, R.H.: Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int. J. Hydrogen Energy 27, 1195–1208 (2002)
32.
go back to reference Zaborsky, O.R.: Biohydrogen. Plenum, New York (1998) Zaborsky, O.R.: Biohydrogen. Plenum, New York (1998)
33.
go back to reference Funk, J.E., Reinstrom, R.M.: Energy requirements in production of hydrogen from water. Ind. Eng. Chem. Process Des. Dev. 5, 336–342 (1966) Funk, J.E., Reinstrom, R.M.: Energy requirements in production of hydrogen from water. Ind. Eng. Chem. Process Des. Dev. 5, 336–342 (1966)
34.
go back to reference Minggu, L.J., Daud, W.R.W., Kassim, M.B.: An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrogen Energy 35, 5233–5244 (2010) Minggu, L.J., Daud, W.R.W., Kassim, M.B.: An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrogen Energy 35, 5233–5244 (2010)
36.
go back to reference Ruth, M., Laffen, M., and Timbario, T.A.: NREL technical report (NREL/BK-6A1-46676). Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios. September 2009 Ruth, M., Laffen, M., and Timbario, T.A.: NREL technical report (NREL/BK-6A1-46676). Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios. September 2009
37.
go back to reference NREL Technical Report (NREL/TP-6A1-46612): Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis. September 2009 NREL Technical Report (NREL/TP-6A1-46612): Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis. September 2009
39.
go back to reference Kelly, N.A., Gibson, T.L.: Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting. Int. J. Hydrogen Energy 33, 6420–6643 (2008) Kelly, N.A., Gibson, T.L.: Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting. Int. J. Hydrogen Energy 33, 6420–6643 (2008)
40.
go back to reference Mavroides, J.G., Kafalas, J.A., Kolesar, D.F.: Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241–243 (1976) Mavroides, J.G., Kafalas, J.A., Kolesar, D.F.: Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241–243 (1976)
41.
go back to reference Bard, A.J., Faulknerk, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2000) Bard, A.J., Faulknerk, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2000)
42.
go back to reference Bockris, J.O.M., Reddy, A.K.N., Gamboa-Aldeco, M.E.: Modern Electrochemistry: Fundamentals of Electrodics, vol. 2a. Springer, New York (2001) Bockris, J.O.M., Reddy, A.K.N., Gamboa-Aldeco, M.E.: Modern Electrochemistry: Fundamentals of Electrodics, vol. 2a. Springer, New York (2001)
43.
go back to reference Memming, R.: Semiconductor Electrochemistry. Wiley-VCH, Weinheim (2001) Memming, R.: Semiconductor Electrochemistry. Wiley-VCH, Weinheim (2001)
44.
go back to reference Lipkowski, J., Ross, P.N.: Electrochemistry of Novel Materials. VCH Publishers, New York (1994) Lipkowski, J., Ross, P.N.: Electrochemistry of Novel Materials. VCH Publishers, New York (1994)
45.
go back to reference Gellings, P.J., Bouwmeester, H.J.M.: The CRC Handbook of Solid State Electrochemistry. CRC, Boca Raton (1997) Gellings, P.J., Bouwmeester, H.J.M.: The CRC Handbook of Solid State Electrochemistry. CRC, Boca Raton (1997)
46.
go back to reference Nozik, A.J., Memming, R.: Physical chemistry of the semiconductor–liquid interface. J. Phys. Chem. 100, 13061–13078 (1996) Nozik, A.J., Memming, R.: Physical chemistry of the semiconductor–liquid interface. J. Phys. Chem. 100, 13061–13078 (1996)
47.
go back to reference Gerischer, H.: Solar photoelectrolysis with semiconductor electrodes. In: Seraphin, B.O. (ed.) Solar Energy Conversion, Solid-State Physics Aspects, pp. 115–172. Springer-Verlag, New York (1979) Gerischer, H.: Solar photoelectrolysis with semiconductor electrodes. In: Seraphin, B.O. (ed.) Solar Energy Conversion, Solid-State Physics Aspects, pp. 115–172. Springer-Verlag, New York (1979)
48.
go back to reference Gerischer, H.: Physical Chemistry: An Advanced Treatise, vol. 9A. Academic, New York (1970) Gerischer, H.: Physical Chemistry: An Advanced Treatise, vol. 9A. Academic, New York (1970)
49.
go back to reference Gerischer, H.: The impact of semiconductors on the concept of electrochemistry. Electrochim. Acta 35, 1677–1690 (1990) Gerischer, H.: The impact of semiconductors on the concept of electrochemistry. Electrochim. Acta 35, 1677–1690 (1990)
50.
go back to reference Miller, E.L.: Solar hydrogen production by photoelectrochemical water splitting: the promise and challenge. In: Vayssieres, L. (ed.) On Solar Hydrogen and Nanotechnology, pp. 3–35. Wiley, Asia (2009) Miller, E.L.: Solar hydrogen production by photoelectrochemical water splitting: the promise and challenge. In: Vayssieres, L. (ed.) On Solar Hydrogen and Nanotechnology, pp. 3–35. Wiley, Asia (2009)
51.
go back to reference Lee, K., Nam, W.S., Han, G.Y.: Photocatalytic water-splitting in alkaline solution using redox mediator. 1: Parameter study. Int. J. Hydrogen Energy 29, 1343–1347 (2004) Lee, K., Nam, W.S., Han, G.Y.: Photocatalytic water-splitting in alkaline solution using redox mediator. 1: Parameter study. Int. J. Hydrogen Energy 29, 1343–1347 (2004)
52.
go back to reference Marcus, R.J.: Chemical conversion of solar energy. Science 123, 399–405 (1965) Marcus, R.J.: Chemical conversion of solar energy. Science 123, 399–405 (1965)
53.
go back to reference Bockris, J.O.M.: Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 24, 817–827 (1956) Bockris, J.O.M.: Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 24, 817–827 (1956)
54.
go back to reference Kanan, M.W., Nocera, D.G.: In Situ Formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008) Kanan, M.W., Nocera, D.G.: In Situ Formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008)
55.
go back to reference Dutta, S.: Technology assessment of advanced electrolytic hydrogen production. Int. J. Hydrogen Energy 15, 379–386 (1990) Dutta, S.: Technology assessment of advanced electrolytic hydrogen production. Int. J. Hydrogen Energy 15, 379–386 (1990)
56.
go back to reference LeRoy, R.L.: Industrial water electrolysis: present and future. Int. J. Hydrogen Energy 8, 401–417 (1983) LeRoy, R.L.: Industrial water electrolysis: present and future. Int. J. Hydrogen Energy 8, 401–417 (1983)
57.
go back to reference Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical (PEC) hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010) Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical (PEC) hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010)
58.
go back to reference Parkinson, B.: On the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984) Parkinson, B.: On the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984)
59.
go back to reference Dohrmann, J.K., Schaaf, N.S.: Energy conversion by photoelectrolysis of water: determination of efficiency by in situ photocalorimetry. J. Phys. Chem. 96, 4558–4563 (1992) Dohrmann, J.K., Schaaf, N.S.: Energy conversion by photoelectrolysis of water: determination of efficiency by in situ photocalorimetry. J. Phys. Chem. 96, 4558–4563 (1992)
60.
go back to reference Heller, A.: Electrochemical solar cells. Solar Energy 29, 153–162 (1982) Heller, A.: Electrochemical solar cells. Solar Energy 29, 153–162 (1982)
61.
go back to reference Khan, S.U.M., Al-shahry, M., Ingler Jr., W.B.: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002) Khan, S.U.M., Al-shahry, M., Ingler Jr., W.B.: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002)
62.
go back to reference Emery, K.: Measurements and characterization of solar cell modules. In: Luque, A., Hegedus, S. (eds.) Handbook of Photovoltaic Science and Engineering, pp. 701–752. Wiley, New York (2003) Emery, K.: Measurements and characterization of solar cell modules. In: Luque, A., Hegedus, S. (eds.) Handbook of Photovoltaic Science and Engineering, pp. 701–752. Wiley, New York (2003)
64.
go back to reference Luther, J.: Motivation for photovoltaic application and development. In: Luque, A., Hegedus, S. (eds.) Handbook of Photovoltaic Science and Engineering, pp. 45–60. Wiley, New York (2003) Luther, J.: Motivation for photovoltaic application and development. In: Luque, A., Hegedus, S. (eds.) Handbook of Photovoltaic Science and Engineering, pp. 45–60. Wiley, New York (2003)
65.
go back to reference Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Tage, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001) Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Tage, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)
66.
go back to reference Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (2006) Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (2006)
67.
go back to reference Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, New York (2002) Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, New York (2002)
68.
go back to reference Balandin, A.A., Wang, K.L.: Handbook of Semiconductor Nanostructures and Nanodevices (5-Volume Set). American Scientific Publishers, Stevenson Ranch (2006) Balandin, A.A., Wang, K.L.: Handbook of Semiconductor Nanostructures and Nanodevices (5-Volume Set). American Scientific Publishers, Stevenson Ranch (2006)
69.
go back to reference Muller, R.S., Kamins, T.I.: Device Electronics for Integrated Circuits. Wiley, New York (2002) Muller, R.S., Kamins, T.I.: Device Electronics for Integrated Circuits. Wiley, New York (2002)
70.
go back to reference Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors: Physics and Materials Properties. Springer, New York (2004) Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors: Physics and Materials Properties. Springer, New York (2004)
71.
go back to reference Mussini, T., Longhi, P.: Chlorine. In: Bard, A.J., Parsons, R., Jordan, J. (eds.) Standard Potentials in Aqueous Solution, pp. 70–77. IUPAC, New York (1985) Mussini, T., Longhi, P.: Chlorine. In: Bard, A.J., Parsons, R., Jordan, J. (eds.) Standard Potentials in Aqueous Solution, pp. 70–77. IUPAC, New York (1985)
72.
go back to reference Tan, M.X., Kenyon, C.N., Krulger, O., Lewis, N.S.: Behavior of Si photoelectrodes under high level injection conditions. 1. Steady-state current–voltage properties and quasi-fermi level positions under illumination. J. Phys. Chem. B 101, 2830–2839 (1997) Tan, M.X., Kenyon, C.N., Krulger, O., Lewis, N.S.: Behavior of Si photoelectrodes under high level injection conditions. 1. Steady-state current–voltage properties and quasi-fermi level positions under illumination. J. Phys. Chem. B 101, 2830–2839 (1997)
73.
go back to reference Miller, E.L., Paluselli, D., Marsen, B., Rocheleau, R.: Optimization of hybrid photoelectrodes for solar water splitting. Electrochem. Solid-State Lett. 8, A247–A249 (2005) Miller, E.L., Paluselli, D., Marsen, B., Rocheleau, R.: Optimization of hybrid photoelectrodes for solar water splitting. Electrochem. Solid-State Lett. 8, A247–A249 (2005)
74.
go back to reference Hanna, M.C., Nozik, A.J.: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. App. Phys. 100, 074510 (2006) Hanna, M.C., Nozik, A.J.: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. App. Phys. 100, 074510 (2006)
75.
go back to reference Ross, R.T., Hsiao, T.L.: Limits on the yield of photochemical solar energy conversion. J. Appl. Phys. 48, 4783–4785 (1977) Ross, R.T., Hsiao, T.L.: Limits on the yield of photochemical solar energy conversion. J. Appl. Phys. 48, 4783–4785 (1977)
76.
go back to reference Bolton, J.R., Haught, A.F., Ross, R.T.: Photochemical energy storage: an analysis of limits. In: Connolly, J.S. (ed.) Photochemical Conversion and Storage of Solar Energy, pp. 297–330. Academic, New York (1981) Bolton, J.R., Haught, A.F., Ross, R.T.: Photochemical energy storage: an analysis of limits. In: Connolly, J.S. (ed.) Photochemical Conversion and Storage of Solar Energy, pp. 297–330. Academic, New York (1981)
77.
go back to reference Bolton, J.R., Strickler, S.J., Connolly, J.S.: Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985) Bolton, J.R., Strickler, S.J., Connolly, J.S.: Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985)
78.
go back to reference Weber, M.F., Dignam, M.J.: Splitting water with semiconducting photoelectrodes – efficiency considerations. Int. J. Hydrogen Energy 11, 225 (1986) Weber, M.F., Dignam, M.J.: Splitting water with semiconducting photoelectrodes – efficiency considerations. Int. J. Hydrogen Energy 11, 225 (1986)
79.
go back to reference Archer, M.D., Bolton, J.R.: Requirements for ideal performance of photochemical and photovoltaic solar energy converters. J. Phys. Chem. 94, 8028–8036 (1990) Archer, M.D., Bolton, J.R.: Requirements for ideal performance of photochemical and photovoltaic solar energy converters. J. Phys. Chem. 94, 8028–8036 (1990)
80.
go back to reference Bolton, J.R.: Solar photoproduction of hydrogen: a review. Solar Energy 57, 37 (1996) Bolton, J.R.: Solar photoproduction of hydrogen: a review. Solar Energy 57, 37 (1996)
81.
go back to reference Licht, S.: Multiple band gap semiconductor/electrolyte solar energy conversion. Phys. Chem. B 105, 6281–6294 (2001) Licht, S.: Multiple band gap semiconductor/electrolyte solar energy conversion. Phys. Chem. B 105, 6281–6294 (2001)
82.
go back to reference Rocheleau, R.E., Miller, E.L.: Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrogen Energy 22, 771–782 (1997) Rocheleau, R.E., Miller, E.L.: Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrogen Energy 22, 771–782 (1997)
83.
go back to reference Ellis, A.B., Kaiser, S.W., Wrighton, M.S.: Semiconducting potassium tantalate electrodes. J. Phys. Chem. 80, 1325–1328 (1976) Ellis, A.B., Kaiser, S.W., Wrighton, M.S.: Semiconducting potassium tantalate electrodes. J. Phys. Chem. 80, 1325–1328 (1976)
84.
go back to reference Green, M.A.: Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer-Verlag, Heidelberg (2003) Green, M.A.: Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer-Verlag, Heidelberg (2003)
85.
go back to reference Yamaguchi, M.: Super-high-efficiency multi-junction solar cells. Prog. Photovolt. Res. Appl. 13, 125 (2005) Yamaguchi, M.: Super-high-efficiency multi-junction solar cells. Prog. Photovolt. Res. Appl. 13, 125 (2005)
86.
go back to reference King, R.R. et al: Advances in High-Efficiency III-V Multijunction Solar Cells. Adv. Opto-Electr. Article ID 29523, 8 pages (2007) King, R.R. et al: Advances in High-Efficiency III-V Multijunction Solar Cells. Adv. Opto-Electr. Article ID 29523, 8 pages (2007)
88.
go back to reference Guter, W., et al.: Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 223504 (2009) Guter, W., et al.: Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 223504 (2009)
89.
go back to reference Swinehart, D.F.: The Beer–Lambert law. J. Chem. Educ. 39, 333 (1962) Swinehart, D.F.: The Beer–Lambert law. J. Chem. Educ. 39, 333 (1962)
90.
go back to reference López, N., Reichertz, L.A., Yu, K.M., Campman, K., Walukiewicz, W.: Engineering the electronic band structure for multiband solar cells. Phys. Rev. Lett. 106, 028701 (2011) López, N., Reichertz, L.A., Yu, K.M., Campman, K., Walukiewicz, W.: Engineering the electronic band structure for multiband solar cells. Phys. Rev. Lett. 106, 028701 (2011)
91.
go back to reference Baruch, P., De Vos, A., Landsberg, P.T., Parrott, J.E.: On some thermodynamic aspects of photovoltaic solar energy conversion. Solar Energy Mater. Solar Cells 36, 201–222 (1995) Baruch, P., De Vos, A., Landsberg, P.T., Parrott, J.E.: On some thermodynamic aspects of photovoltaic solar energy conversion. Solar Energy Mater. Solar Cells 36, 201–222 (1995)
92.
go back to reference Fonash, S.: Solar Cell Device Physics. Academic, New York (1982) Fonash, S.: Solar Cell Device Physics. Academic, New York (1982)
93.
go back to reference Smestad, G.P.: Optoelectronics of Solar Cells. SPIE, Bellingham (2002) Smestad, G.P.: Optoelectronics of Solar Cells. SPIE, Bellingham (2002)
94.
go back to reference Yang, J., Yan, B., Guha, S.: Amorphous and nanocrystalline silicon-based multi-junction solar cells. Thin Solid Films 487, 162–169 (2005) Yang, J., Yan, B., Guha, S.: Amorphous and nanocrystalline silicon-based multi-junction solar cells. Thin Solid Films 487, 162–169 (2005)
95.
go back to reference Nishiwaki, S., Siebentritt, S., Walk, P., Lux-Steiner, M.C.: A stacked chalcopyrite thin-film tandem solar cell with 1.2 V open-circuit voltage. Prog. Photovolt. Res. Appl. 11, 243–248 (2003) Nishiwaki, S., Siebentritt, S., Walk, P., Lux-Steiner, M.C.: A stacked chalcopyrite thin-film tandem solar cell with 1.2 V open-circuit voltage. Prog. Photovolt. Res. Appl. 11, 243–248 (2003)
96.
go back to reference Arai, T., Konishi, Y., Iwasaki, Y., Sugihara, H., Sayama, K.: High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J. Comb. Chem. 9, 574–581 (2007) Arai, T., Konishi, Y., Iwasaki, Y., Sugihara, H., Sayama, K.: High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J. Comb. Chem. 9, 574–581 (2007)
97.
go back to reference Kusama, H., Wang, N., Miseki, Y., Sayama, K.: Combinatorial search for iron/titanium-based ternary oxides with a visible-light response. J. Comb. Chem. 12, 356–362 (2010) Kusama, H., Wang, N., Miseki, Y., Sayama, K.: Combinatorial search for iron/titanium-based ternary oxides with a visible-light response. J. Comb. Chem. 12, 356–362 (2010)
98.
go back to reference Jianghua, H., Parkinson, B.A.: A combinatorial investigation of the effects of the incorporation of Ti, Si, and Al on the performance of α-Fe2O3 photoanodes. J. Comb. Chem. 13(4), 399–404 (2011) Jianghua, H., Parkinson, B.A.: A combinatorial investigation of the effects of the incorporation of Ti, Si, and Al on the performance of α-Fe2O3 photoanodes. J. Comb. Chem. 13(4), 399–404 (2011)
99.
go back to reference Woodhouse, M., Parkinson, B.A.: Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 38, 197–210 (2009) Woodhouse, M., Parkinson, B.A.: Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 38, 197–210 (2009)
100.
go back to reference Burnett, B.: The Basic Physics and Design of III-V Multijunction Solar Cells. NREL, Golden (2002) Burnett, B.: The Basic Physics and Design of III-V Multijunction Solar Cells. NREL, Golden (2002)
101.
go back to reference Yamaguchi, M.: III–V compound multi-junction solar cells: present and future. Solar Energy Mater. Solar Cells 75, 261–269 (2003) Yamaguchi, M.: III–V compound multi-junction solar cells: present and future. Solar Energy Mater. Solar Cells 75, 261–269 (2003)
102.
go back to reference Wolf, M.: Limitations and possibilities for improvement of photovoltaic solar energy converters. Proc. Inst. Radio Eng. 48, 1246–1263 (1960) Wolf, M.: Limitations and possibilities for improvement of photovoltaic solar energy converters. Proc. Inst. Radio Eng. 48, 1246–1263 (1960)
103.
go back to reference Poortmans, J., Arkhipov, V.: Thin film solar cells: fabrication, characterization and applications. Wiley, Hoboken, NJ (2006) Poortmans, J., Arkhipov, V.: Thin film solar cells: fabrication, characterization and applications. Wiley, Hoboken, NJ (2006)
105.
go back to reference Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A., Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010) Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A., Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)
106.
go back to reference Gibson, T.L., Kelly, N.A.: Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices. Int. J. Hydrogen Energy 35, 900–911 (2010) Gibson, T.L., Kelly, N.A.: Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices. Int. J. Hydrogen Energy 35, 900–911 (2010)
107.
go back to reference Ingler, W.B., Khan, S.U.M.: A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting. Electrochem. Solid State Lett. 9, G144–G146 (2006) Ingler, W.B., Khan, S.U.M.: A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting. Electrochem. Solid State Lett. 9, G144–G146 (2006)
108.
go back to reference Miller, E.L., Rocheleau, R.E., Deng, X.M.: Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production. Int. J. Hydrogen Energy 28, 615–623 (2003) Miller, E.L., Rocheleau, R.E., Deng, X.M.: Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production. Int. J. Hydrogen Energy 28, 615–623 (2003)
109.
go back to reference Zhu, F., Hu, J., Kunrath, A., Matulionis, I., Marsen, B., Cole, B., Miller, E.L., Madan, A.: a-SiC:H films used as photoelectrodes in a hybrid, thin-film silicon photoelectrochemical (PEC) Cell for progress toward 10% solar-to hydrogen efficiency. Sol. Hydrogen Nanotechnol. Proc. SPIE 6650, 66500S (2007) Zhu, F., Hu, J., Kunrath, A., Matulionis, I., Marsen, B., Cole, B., Miller, E.L., Madan, A.: a-SiC:H films used as photoelectrodes in a hybrid, thin-film silicon photoelectrochemical (PEC) Cell for progress toward 10% solar-to hydrogen efficiency. Sol. Hydrogen Nanotechnol. Proc. SPIE 6650, 66500S (2007)
110.
go back to reference Santato, C., Ulmann, M., Augustynski, J.: Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105, 936–940 (2001) Santato, C., Ulmann, M., Augustynski, J.: Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105, 936–940 (2001)
111.
go back to reference Arakawa, H., Shiraishi, C., Tatemoto, M., Kishida, H., Usui, D., Suma, A., Takamisawa, A., Yamaguchi, T.: Solar hydrogen production by tandem cell system composed of metal oxide semiconductor film photoelectrode and dye-sensitized solar cell. Proc. SPIE 6650, 665003 (2007). doi:10.1117/12.773366 Arakawa, H., Shiraishi, C., Tatemoto, M., Kishida, H., Usui, D., Suma, A., Takamisawa, A., Yamaguchi, T.: Solar hydrogen production by tandem cell system composed of metal oxide semiconductor film photoelectrode and dye-sensitized solar cell. Proc. SPIE 6650, 665003 (2007). doi:10.​1117/​12.​773366
112.
go back to reference Hu, J., Zhu, F., Matulionis, I., Kunrath, A., Deutsch, T., Kuritzky, L., Miller, E.L., Madan, A.: Solar-to-hydrogen photovoltaic/photoelectrochemical devices using amorphous silicon carbide as the photoelectrode. 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1–5 September 2008 Hu, J., Zhu, F., Matulionis, I., Kunrath, A., Deutsch, T., Kuritzky, L., Miller, E.L., Madan, A.: Solar-to-hydrogen photovoltaic/photoelectrochemical devices using amorphous silicon carbide as the photoelectrode. 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1–5 September 2008
113.
go back to reference Matulionis, I., Zhu, F., Hu, J., Gallon, J., Kunrath, A., Miller, E.L., Marsen, B., Madan, A.: Development of a corrosion-resistant amorphous silicon carbide photoelectrode for solar-to-hydrogen photovoltaic/photoelectrochemical devices. SPIE Solar Energy and Hydrogen Conference, San Diego, USA, 10–14 August 2008 Matulionis, I., Zhu, F., Hu, J., Gallon, J., Kunrath, A., Miller, E.L., Marsen, B., Madan, A.: Development of a corrosion-resistant amorphous silicon carbide photoelectrode for solar-to-hydrogen photovoltaic/photoelectrochemical devices. SPIE Solar Energy and Hydrogen Conference, San Diego, USA, 10–14 August 2008
114.
go back to reference Stavrides, A., Kunrath, A., Hu, J., Treglio, R., Feldman, A., Marsen, B., Cole, B., Miller, E.L., Madan, A.: Use of amorphous silicon tandem junction solar cells for hydrogen production in a photoelectrochemical cell. SPIE Optics & Photonics Conference, San Diego, USA, 13–17 August 2006 Stavrides, A., Kunrath, A., Hu, J., Treglio, R., Feldman, A., Marsen, B., Cole, B., Miller, E.L., Madan, A.: Use of amorphous silicon tandem junction solar cells for hydrogen production in a photoelectrochemical cell. SPIE Optics & Photonics Conference, San Diego, USA, 13–17 August 2006
115.
go back to reference Higashi, M., Abe, R., Ishikawa, A., Takata, T., Ohtani, B., Domen, K.: Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ < 500 nm). Chem. Lett. 37, 138–139 (2008) Higashi, M., Abe, R., Ishikawa, A., Takata, T., Ohtani, B., Domen, K.: Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ < 500 nm). Chem. Lett. 37, 138–139 (2008)
116.
go back to reference Arakawa, H., Zou, Z., Sayama, K., Abe, R.: Direct water splitting by new oxide semiconductor photocatalysts under visible light irradiation. Pure Appl. Chem. 79, 1917–1927 (2007) Arakawa, H., Zou, Z., Sayama, K., Abe, R.: Direct water splitting by new oxide semiconductor photocatalysts under visible light irradiation. Pure Appl. Chem. 79, 1917–1927 (2007)
117.
go back to reference Miller, E.L., Marsen, B., Cole, B., Lum, M.: Low-temperature reactively sputtered tungsten oxide films for solar-powered water splitting applications. Electrochem. Solid State Lett. 9, G248–G250 (2006) Miller, E.L., Marsen, B., Cole, B., Lum, M.: Low-temperature reactively sputtered tungsten oxide films for solar-powered water splitting applications. Electrochem. Solid State Lett. 9, G248–G250 (2006)
118.
go back to reference Yan, Y., Wei, S.-H.: Doping asymmetry in wide-bandgap semiconductors: origins and solutions. Phys. Stat. Sol. B 245, 641 (2008) Yan, Y., Wei, S.-H.: Doping asymmetry in wide-bandgap semiconductors: origins and solutions. Phys. Stat. Sol. B 245, 641 (2008)
119.
go back to reference Alexander, B.D., Kulesza, P.J., Rutkowska, I., Solarska, R., Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298–2303 (2008) Alexander, B.D., Kulesza, P.J., Rutkowska, I., Solarska, R., Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298–2303 (2008)
120.
go back to reference Cole, B., Marsen, B., Miller, E.L., Yan, Y., To, B., Jones, K., Al-Jassim, M.M.: Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting. J. Phys. Chem. C 112, 5213–5220 (2008) Cole, B., Marsen, B., Miller, E.L., Yan, Y., To, B., Jones, K., Al-Jassim, M.M.: Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting. J. Phys. Chem. C 112, 5213–5220 (2008)
121.
go back to reference Honga, S.J., Juna, H., Borsea, P.H., Lee, J.S.: Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int. J. Hydrogen Energy 34, 3234–3242 (2009) Honga, S.J., Juna, H., Borsea, P.H., Lee, J.S.: Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int. J. Hydrogen Energy 34, 3234–3242 (2009)
122.
go back to reference Miller, E.L., Paluselli, D., Marsen, B., Rocheleau, R.E.: Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films 466, 307–313 (2004) Miller, E.L., Paluselli, D., Marsen, B., Rocheleau, R.E.: Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films 466, 307–313 (2004)
123.
go back to reference Duret, A., Grätzel, M.: Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184–17191 (2005) Duret, A., Grätzel, M.: Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184–17191 (2005)
124.
go back to reference Hu, Y.-S., Kleiman-Shwarsctein, A., Forman Hazen, A.J., Park, J.N., McFarland, E.W.: Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20, 3803–3805 (2008) Hu, Y.-S., Kleiman-Shwarsctein, A., Forman Hazen, A.J., Park, J.N., McFarland, E.W.: Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20, 3803–3805 (2008)
125.
go back to reference Kleiman-Shwarsctein, A., Hu, Y.-S., Forman, A.J., Stucky, G.D., McFarland, E.W.: Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting. J. Phys. Chem. C 112, 15900–15907 (2008) Kleiman-Shwarsctein, A., Hu, Y.-S., Forman, A.J., Stucky, G.D., McFarland, E.W.: Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting. J. Phys. Chem. C 112, 15900–15907 (2008)
126.
go back to reference Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006) Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)
127.
go back to reference Berglund, S.P., Flaherty, D.W., Hahn, N.T., Bard, A.J., Mullins, C.B.: Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J. Phys. Chem. C 115, 3794–3802 (2011) Berglund, S.P., Flaherty, D.W., Hahn, N.T., Bard, A.J., Mullins, C.B.: Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J. Phys. Chem. C 115, 3794–3802 (2011)
128.
go back to reference Liang, Y., Kleijn, S.J., Mooij, L.P.A., Van de Krol, R.: Defect properties and photoelectrochemical performance of BiVO4 photoanodes. 216th ECS Meeting, Abstract #1172 (2009) Liang, Y., Kleijn, S.J., Mooij, L.P.A., Van de Krol, R.: Defect properties and photoelectrochemical performance of BiVO4 photoanodes. 216th ECS Meeting, Abstract #1172 (2009)
129.
go back to reference Enache, C.S., Lloyd, D., Damen, M.R., Schoonman, J., Van de Krol, R.: Photo-electrochemical properties of thin-film InVO4 photoanodes: the role of deep donor state. J. Phys. Chem. C 113, 19351–19360 (2009) Enache, C.S., Lloyd, D., Damen, M.R., Schoonman, J., Van de Krol, R.: Photo-electrochemical properties of thin-film InVO4 photoanodes: the role of deep donor state. J. Phys. Chem. C 113, 19351–19360 (2009)
130.
go back to reference Chen, X., Liu, L., Yu, P.Y., Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011) Chen, X., Liu, L., Yu, P.Y., Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011)
131.
go back to reference Yae, S., Kobayashi, T., Abe, M., Nasu, N., Fukumuro, N., Ogawa, S., Yoshida, N., Nonomura, S., Nakato, Y., Matsuda, H.: Solar to chemical conversion using metal nanoparticle modified microcrystalline silicon thin film photoelectrode. Solar Energy Mater. Solar Cells 91, 224–229 (2007) Yae, S., Kobayashi, T., Abe, M., Nasu, N., Fukumuro, N., Ogawa, S., Yoshida, N., Nonomura, S., Nakato, Y., Matsuda, H.: Solar to chemical conversion using metal nanoparticle modified microcrystalline silicon thin film photoelectrode. Solar Energy Mater. Solar Cells 91, 224–229 (2007)
132.
go back to reference Sebastian, P.J., Mathews, N.R., Mathew, X., Pattabi, M., Turner, J.: Photoelectrochemical characterization of SiC. Int J. Hydrogen Energy 26, 123–125 (2001) Sebastian, P.J., Mathews, N.R., Mathew, X., Pattabi, M., Turner, J.: Photoelectrochemical characterization of SiC. Int J. Hydrogen Energy 26, 123–125 (2001)
133.
go back to reference Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. 16, 235 (2008) Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. 16, 235 (2008)
134.
go back to reference Bär, M., Weinhardt, L., Pookpanratana, S., Heske, C., Nishiwaki, S., Shafarman, W., Fuchs, O., Blum, M., Yang, W., Denlinger, J.D.: Depth-dependent band gap energies in Cu(In, Ga)(S, Se)2 thin films. Appl. Phys. Lett. 93, 244103 (2008) Bär, M., Weinhardt, L., Pookpanratana, S., Heske, C., Nishiwaki, S., Shafarman, W., Fuchs, O., Blum, M., Yang, W., Denlinger, J.D.: Depth-dependent band gap energies in Cu(In, Ga)(S, Se)2 thin films. Appl. Phys. Lett. 93, 244103 (2008)
135.
go back to reference Bär, M., Bohne, W., Röhrich, J., Strub, E., Lindner, S., Lux-Steiner, M.C., Fischer, Ch-H: Determination of the band gap depth profile of the penternary Cu(In(1-X)GaX)(SYSe(1-Y))2 chalcopyrite from its composition gradient. J. Appl. Phys. 96, 3857 (2004) Bär, M., Bohne, W., Röhrich, J., Strub, E., Lindner, S., Lux-Steiner, M.C., Fischer, Ch-H: Determination of the band gap depth profile of the penternary Cu(In(1-X)GaX)(SYSe(1-Y))2 chalcopyrite from its composition gradient. J. Appl. Phys. 96, 3857 (2004)
136.
go back to reference Bär, M., Weinhardt, L., Heske, C., Nishiwaki, S., Shafarman, W.: Chemical structures of the Cu(In, Ga)Se2/Mo and Cu(In, Ga)(S, Se)2/Mo interfaces. Phys. Rev. B 78, 075404 (2008) Bär, M., Weinhardt, L., Heske, C., Nishiwaki, S., Shafarman, W.: Chemical structures of the Cu(In, Ga)Se2/Mo and Cu(In, Ga)(S, Se)2/Mo interfaces. Phys. Rev. B 78, 075404 (2008)
137.
go back to reference Marsen, B., Cole, B., Miller, E.L.: Photoelectrolysis of water using thin copper gallium diselenide electrodes. Solar Energy Mater. Solar Cells 92, 1054–1058 (2008) Marsen, B., Cole, B., Miller, E.L.: Photoelectrolysis of water using thin copper gallium diselenide electrodes. Solar Energy Mater. Solar Cells 92, 1054–1058 (2008)
138.
go back to reference Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I.: Identifying the active site: atomic-scale imaging and ambient reactivity of MoS2 nanocatalysts. Science 317, 100–102 (2007) Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I.: Identifying the active site: atomic-scale imaging and ambient reactivity of MoS2 nanocatalysts. Science 317, 100–102 (2007)
139.
go back to reference Maiolo, J.R.I.I.I., Atwater, H.A., Lewis, N.S.: Macroporous silicon as a model for silicon wire array solar cells. J. Phys. Chem. C 112, 6194–6201 (2008) Maiolo, J.R.I.I.I., Atwater, H.A., Lewis, N.S.: Macroporous silicon as a model for silicon wire array solar cells. J. Phys. Chem. C 112, 6194–6201 (2008)
Metadata
Title
Multijunction Approaches to Photoelectrochemical Water Splitting
Authors
Eric L. Miller
Alex DeAngelis
Stewart Mallory
Copyright Year
2012
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1380-6_7