Skip to main content
Top
Published in: Quantum Information Processing 10/2013

01-10-2013

Multiparty-controlled joint remote state preparation

Authors: Dong Wang, Liu Ye

Published in: Quantum Information Processing | Issue 10/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we present a novel and efficient information-processing way, multiparty-controlled joint remote state preparation (MCJRSP), to transmit quantum information from many senders to one distant receiver via the control of many agents in a network. We firstly put forward a scheme regarding MCJRSP for an arbitrary single-particle state via Greenberg–Horne–Zeilinger entangled states, and then extend to generalize an arbitrary two-particle state scenario. Notably, different from conventional joint remote state preparation, the desired states cannot be recovered but all of agents collaborate together. Besides, both successful probability and classical information cost are worked out, the relations between success probability and the employed entanglement are revealed, the case of many-particle states is generalized briefly, and the experimental feasibility of our schemes is analysed via an all-optical framework at last. And we argue that our proposal might be of importance to long-distance communication in prospective quantum networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum communication complexity. Phys. Rev. A 62(1), 012313 (2000)ADSCrossRef Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum communication complexity. Phys. Rev. A 62(1), 012313 (2000)ADSCrossRef
2.
go back to reference Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 015302 (2000)CrossRef Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 015302 (2000)CrossRef
3.
go back to reference Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)ADSCrossRef Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)ADSCrossRef
4.
go back to reference Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)ADSCrossRef Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)ADSCrossRef
5.
go back to reference Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)ADSCrossRef Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)ADSCrossRef
6.
go back to reference Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)ADSCrossRef Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)ADSCrossRef
7.
go back to reference Kurucz, Z., Adam, P., Janszky, J.: General criterion for oblivious remote state preparation. Phys. Rev. A 73(6), 062301 (2006)ADSCrossRef Kurucz, Z., Adam, P., Janszky, J.: General criterion for oblivious remote state preparation. Phys. Rev. A 73(6), 062301 (2006)ADSCrossRef
8.
go back to reference Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)ADSCrossRef Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)ADSCrossRef
9.
go back to reference An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRef An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRef
10.
go back to reference Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. EPL 87(3), 30006 (2009)ADSCrossRef Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. EPL 87(3), 30006 (2009)ADSCrossRef
12.
go back to reference Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285–288 (2006)ADSCrossRef Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285–288 (2006)ADSCrossRef
13.
go back to reference Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17(1), 27–33 (2008)ADSCrossRef Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17(1), 27–33 (2008)ADSCrossRef
14.
go back to reference Yan, F.L., Zhang, G.H.: Remote preparation of the two-particle state. Int. J. Quant. Inf. 6(3), 485–491 (2008)CrossRefMATH Yan, F.L., Zhang, G.H.: Remote preparation of the two-particle state. Int. J. Quant. Inf. 6(3), 485–491 (2008)CrossRefMATH
15.
go back to reference Wang, D., Liu, Y.M., Zhang, Z.J.: Remote preparation of a class of three-qubit states. Opt. Commun. 281(4), 871–875 (2008)ADSCrossRef Wang, D., Liu, Y.M., Zhang, Z.J.: Remote preparation of a class of three-qubit states. Opt. Commun. 281(4), 871–875 (2008)ADSCrossRef
16.
go back to reference Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50(9), 2748–2757 (2011)CrossRefMathSciNetMATH Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50(9), 2748–2757 (2011)CrossRefMathSciNetMATH
17.
go back to reference Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)ADSCrossRef Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)ADSCrossRef
18.
go back to reference Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72(1), 012315 (2005)ADSCrossRef Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72(1), 012315 (2005)ADSCrossRef
19.
go back to reference Peters, N.A., et al.: Remote State Preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94(14), 150502 (2005)ADSCrossRef Peters, N.A., et al.: Remote State Preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94(14), 150502 (2005)ADSCrossRef
20.
go back to reference Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76(2), 022308 (2007)ADSCrossRef Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76(2), 022308 (2007)ADSCrossRef
21.
go back to reference Wu, W., Liu, W.T., Ou, B.Q., Chen, P.X., Li, C.Z.: Remote state preparation with classically correlated state. Opt. Commun. 281(6), 1751–1754 (2008)ADSCrossRef Wu, W., Liu, W.T., Ou, B.Q., Chen, P.X., Li, C.Z.: Remote state preparation with classically correlated state. Opt. Commun. 281(6), 1751–1754 (2008)ADSCrossRef
22.
go back to reference Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81(4), 042301 (2010)ADSCrossRef Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81(4), 042301 (2010)ADSCrossRef
23.
go back to reference Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)ADSCrossRef Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)ADSCrossRef
24.
go back to reference An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRef An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRef
25.
go back to reference Bich, C.T., Don, N.V., An, N.B.: Deterministic joint remote preparation of an arbitrary qubit via Einstein–Podolsky–Rosen pairs. Int. J. Theor. Phys. 51(7), 2272–2281 (2012)CrossRefMATH Bich, C.T., Don, N.V., An, N.B.: Deterministic joint remote preparation of an arbitrary qubit via Einstein–Podolsky–Rosen pairs. Int. J. Theor. Phys. 51(7), 2272–2281 (2012)CrossRefMATH
26.
go back to reference An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113–4117 (2010)ADSCrossRef An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113–4117 (2010)ADSCrossRef
27.
go back to reference Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Experimental architecture of joint remote state preparation. Quantum Inf. Process. 11(3), 751–767 (2012)MathSciNetCrossRefMATH Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Experimental architecture of joint remote state preparation. Quantum Inf. Process. 11(3), 751–767 (2012)MathSciNetCrossRefMATH
28.
go back to reference An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42(12), 125501 (2009)ADSCrossRef An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42(12), 125501 (2009)ADSCrossRef
29.
go back to reference Zha, X.W., Song, H.Y.: Remote preparation of a two-particle state using a four-qubit cluster state. Opt. Commun. 284(5), 1472–1474 (2011)MathSciNetADSCrossRef Zha, X.W., Song, H.Y.: Remote preparation of a two-particle state using a four-qubit cluster state. Opt. Commun. 284(5), 1472–1474 (2011)MathSciNetADSCrossRef
30.
go back to reference Hou, K., Li, Y.B., Liu, G.H., Sheng, S.Q.: Joint remote preparation of an arbitrary two-qubit state via GHZ-type states. J. Phys. A: Math. Theor. 44(25), 255304 (2011)MathSciNetADSCrossRef Hou, K., Li, Y.B., Liu, G.H., Sheng, S.Q.: Joint remote preparation of an arbitrary two-qubit state via GHZ-type states. J. Phys. A: Math. Theor. 44(25), 255304 (2011)MathSciNetADSCrossRef
31.
go back to reference Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51(11), 3575–3586 (2012)MathSciNetCrossRefMATH Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51(11), 3575–3586 (2012)MathSciNetCrossRefMATH
32.
33.
go back to reference Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44(7), 075501 (2011)ADSCrossRef Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44(7), 075501 (2011)ADSCrossRef
34.
go back to reference Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12(2), 997–1009 (2013)ADSCrossRefMATH Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12(2), 997–1009 (2013)ADSCrossRefMATH
35.
go back to reference Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374(44), 4483–4487 (2010)ADSCrossRefMATH Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374(44), 4483–4487 (2010)ADSCrossRefMATH
36.
go back to reference Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)ADSCrossRef Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)ADSCrossRef
37.
go back to reference Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617–2621 (2011)ADSCrossRef Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617–2621 (2011)ADSCrossRef
38.
go back to reference Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states. Int. J. Theor. Phys. 51(5), 1647–1654 (2012)MathSciNetCrossRefMATH Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states. Int. J. Theor. Phys. 51(5), 1647–1654 (2012)MathSciNetCrossRefMATH
39.
go back to reference Xia, Y., Chen, Q.Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. J. Phys. A Math. Theor. 45(33), 335306 (2012)CrossRef Xia, Y., Chen, Q.Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. J. Phys. A Math. Theor. 45(33), 335306 (2012)CrossRef
40.
go back to reference Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B At. Mol. Opt. Phys. 44(9), 095501 (2011)ADSCrossRef Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B At. Mol. Opt. Phys. 44(9), 095501 (2011)ADSCrossRef
41.
go back to reference An, N.B., Bich, C.T., Don, N.V.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B At. Mol. Opt. Phys. 44(13), 135506 (2011) An, N.B., Bich, C.T., Don, N.V.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B At. Mol. Opt. Phys. 44(13), 135506 (2011)
42.
43.
go back to reference Wang, D., Ye, L.: Probabilistic joint remote preparation of four-particle cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51(11), 3376–3386 (2012)MathSciNetADSCrossRefMATH Wang, D., Ye, L.: Probabilistic joint remote preparation of four-particle cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51(11), 3376–3386 (2012)MathSciNetADSCrossRefMATH
44.
go back to reference Long, L.R., Zhou, P., Li, Z., Yin, C.L.: Multiparty joint remote preparation of an arbitrary GHZ-class state via positive operator-valued measurement. Int. J. Theor. Phys. 51(8), 2438–2446 (2012)MathSciNetCrossRefMATH Long, L.R., Zhou, P., Li, Z., Yin, C.L.: Multiparty joint remote preparation of an arbitrary GHZ-class state via positive operator-valued measurement. Int. J. Theor. Phys. 51(8), 2438–2446 (2012)MathSciNetCrossRefMATH
45.
go back to reference Zhou, P.: Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A: Math. Theor. 45(21), 215305 (2012)ADSCrossRef Zhou, P.: Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A: Math. Theor. 45(21), 215305 (2012)ADSCrossRef
46.
go back to reference Zhou, P., Li, H.W., Long, L.R.: Probabilistic multiparty joint remote preparation of an arbitrary m-qubit state with a pure entangled channel against collective noise. Int. J. Theor. Phys. 52(3), 849–861 (2013)CrossRefMATH Zhou, P., Li, H.W., Long, L.R.: Probabilistic multiparty joint remote preparation of an arbitrary m-qubit state with a pure entangled channel against collective noise. Int. J. Theor. Phys. 52(3), 849–861 (2013)CrossRefMATH
47.
go back to reference Yang, C.P., Chu, S.I., Han, S.Y.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)ADSCrossRef Yang, C.P., Chu, S.I., Han, S.Y.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)ADSCrossRef
48.
go back to reference Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)ADSCrossRef Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)ADSCrossRef
49.
go back to reference Han, C., Xue, P., Guo, G.C.: Multipartite entanglement preparation and quantum communication with atomic ensembles. Phys. Rev. A 72(3), 034301 (2005)ADSCrossRef Han, C., Xue, P., Guo, G.C.: Multipartite entanglement preparation and quantum communication with atomic ensembles. Phys. Rev. A 72(3), 034301 (2005)ADSCrossRef
50.
go back to reference Galiautdinov, A.: Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits. Phys. Rev. A 75(5), 052303 (2007)ADSCrossRef Galiautdinov, A.: Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits. Phys. Rev. A 75(5), 052303 (2007)ADSCrossRef
51.
go back to reference Ostatnický, T., Shelykh, I.A., Kavokin, A.V.: Theory of polarization-controlled polariton logic gates. Phys. Rev. B 81(12), 125319 (2010)ADSCrossRef Ostatnický, T., Shelykh, I.A., Kavokin, A.V.: Theory of polarization-controlled polariton logic gates. Phys. Rev. B 81(12), 125319 (2010)ADSCrossRef
52.
go back to reference Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351–1354 (1988)MathSciNetADSCrossRef Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351–1354 (1988)MathSciNetADSCrossRef
53.
go back to reference Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41(1), 11–20 (1990)MathSciNetADSCrossRef Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41(1), 11–20 (1990)MathSciNetADSCrossRef
55.
go back to reference Grudka, A., Wójcik, A.: Projective measurement of the two-photon polarization state: linear optics approach. Phys. Rev. A 66(6), 064303 (2002)ADSCrossRef Grudka, A., Wójcik, A.: Projective measurement of the two-photon polarization state: linear optics approach. Phys. Rev. A 66(6), 064303 (2002)ADSCrossRef
56.
go back to reference Loock, P.V., Lütkenhaus, N.: Simple criteria for the implementation of projective measurements with linear optics. Phys. Rev. A 69(1), 012302 (2004)ADSCrossRef Loock, P.V., Lütkenhaus, N.: Simple criteria for the implementation of projective measurements with linear optics. Phys. Rev. A 69(1), 012302 (2004)ADSCrossRef
57.
go back to reference Takeoka, M., Sasaki, M., Loock, P.V., Lütkenhaus, N.: Implementation of projective measurements with linear optics and continuous photon counting. Phys. Rev. A 71(2), 022318 (2005)ADSCrossRef Takeoka, M., Sasaki, M., Loock, P.V., Lütkenhaus, N.: Implementation of projective measurements with linear optics and continuous photon counting. Phys. Rev. A 71(2), 022318 (2005)ADSCrossRef
58.
go back to reference Takeoka, M., Sasaki, M., Lütkenhaus, N.: Binary projective measurement via linear optics and photon counting. Phys. Rev. Lett. 97(4), 040502 (2006)ADSCrossRef Takeoka, M., Sasaki, M., Lütkenhaus, N.: Binary projective measurement via linear optics and photon counting. Phys. Rev. Lett. 97(4), 040502 (2006)ADSCrossRef
59.
go back to reference Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58–61 (1994)ADSCrossRef Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58–61 (1994)ADSCrossRef
60.
go back to reference Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)ADSCrossRef Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)ADSCrossRef
61.
go back to reference Pittman, T.B., Fitch, M.J., Jacobs, B.C., Franson, J.D.: Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68(3), 032316 (2003)ADSCrossRef Pittman, T.B., Fitch, M.J., Jacobs, B.C., Franson, J.D.: Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68(3), 032316 (2003)ADSCrossRef
62.
go back to reference O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature (London) 426, 264–267 (2003)ADSCrossRef O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature (London) 426, 264–267 (2003)ADSCrossRef
63.
go back to reference Gasparoni, S., Pan, J.W., Walther, P., Rudolph, T., Zeilinger, A.: Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93(2), 020504 (2004)ADSCrossRef Gasparoni, S., Pan, J.W., Walther, P., Rudolph, T., Zeilinger, A.: Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93(2), 020504 (2004)ADSCrossRef
Metadata
Title
Multiparty-controlled joint remote state preparation
Authors
Dong Wang
Liu Ye
Publication date
01-10-2013
Publisher
Springer US
Published in
Quantum Information Processing / Issue 10/2013
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-013-0595-8

Other articles of this Issue 10/2013

Quantum Information Processing 10/2013 Go to the issue