Skip to main content
Top

2019 | OriginalPaper | Chapter

37. Multiscale Fatigue Crack Growth Modeling for Welded Stiffened Panels

Authors : Ž. Božić, Siegfried Schmauder, M. Mlikota, M. Hummel

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of welding residual stresses in stiffened panels on effective stress intensity factor values and fatigue crack growth rate is studied in this paper. Interpretation of relevant effects on different length scales such as dislocation appearance and microstructural crack nucleation and propagation is taken into account using molecular dynamics (MD) simulations as well as a Tanaka-Mura approach for the analysis of the problem. Mode I stress intensity factors (SIFs), KI, were calculated by the finite element method (FEM) using shell elements and the crack tip displacement extrapolation technique. The total SIF value, Ktot, is derived by a part due to the applied load, Kappl, and by a part due to welding residual stresses, Kres. Fatigue crack propagation simulations based on power law models showed that high tensile residual stresses in the vicinity of a stiffener significantly increase the crack growth rate, which is in good agreement with experimental results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Luo C, Chattopadhyay A. Prediction of fatigue crack initial stage based on a multiscale damage criterion. Int J Fatigue. 2011;33:403–13.CrossRef Luo C, Chattopadhyay A. Prediction of fatigue crack initial stage based on a multiscale damage criterion. Int J Fatigue. 2011;33:403–13.CrossRef
2.
go back to reference Curtin WA, Deshpande VS, Needleman A, Van der Giessen E, Wallin M. Hybrid discrete dislocation models for fatigue crack growth. Int J Fatigue. 2010;32:1511–20.CrossRef Curtin WA, Deshpande VS, Needleman A, Van der Giessen E, Wallin M. Hybrid discrete dislocation models for fatigue crack growth. Int J Fatigue. 2010;32:1511–20.CrossRef
3.
go back to reference White P. Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions. Int J Fatigue. 2012;44:141–50.CrossRef White P. Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions. Int J Fatigue. 2012;44:141–50.CrossRef
4.
go back to reference Horstemeyer MF, Farkas D, Kim S, Tang T, Potirniche G. Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue. Int J Fatigue. 2010;32:1473–502.CrossRef Horstemeyer MF, Farkas D, Kim S, Tang T, Potirniche G. Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue. Int J Fatigue. 2010;32:1473–502.CrossRef
5.
go back to reference Božić Ž, Schmauder S, Mlikota M, Hummel M. Fatigue Crack Growth Modelling in Welded Stiffened Panels under Cyclic Tension, 13th International Conference on Fracture, Beijing, China. 2013. Božić Ž, Schmauder S, Mlikota M, Hummel M. Fatigue Crack Growth Modelling in Welded Stiffened Panels under Cyclic Tension, 13th International Conference on Fracture, Beijing, China. 2013.
6.
go back to reference Stadler J, Mikulla R, Trebin HR. IMD: a software package for molecular dynamics studies on parallel computers. Int J Mod Phys. 1997;8:1131.CrossRef Stadler J, Mikulla R, Trebin HR. IMD: a software package for molecular dynamics studies on parallel computers. Int J Mod Phys. 1997;8:1131.CrossRef
7.
go back to reference Bonny G, Pasianot RC, Castin N, Malerba L. Ternary Fe-cu-Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing. Phil Mag. 2009;89:3531–46.CrossRef Bonny G, Pasianot RC, Castin N, Malerba L. Ternary Fe-cu-Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing. Phil Mag. 2009;89:3531–46.CrossRef
8.
go back to reference Grottel S, Reina G, Dachsbacher C, Ertl T. Coherent culling and shading for large molecular dynamics visualization. Computer Graphics Forum Proc of EUROVIS 2010. 2010;29(3):953–62. Grottel S, Reina G, Dachsbacher C, Ertl T. Coherent culling and shading for large molecular dynamics visualization. Computer Graphics Forum Proc of EUROVIS 2010. 2010;29(3):953–62.
9.
go back to reference Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Modelling Simul Mater Sci Eng. 2012;20:085007.CrossRef Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Modelling Simul Mater Sci Eng. 2012;20:085007.CrossRef
11.
go back to reference Glodez S, Jezernik N, Kramberger J, Lassen T. Numerical modelling of fatigue crack initiation of martensitic steel. Adv Eng Softw. 2010;41(5):823–9.CrossRefMATH Glodez S, Jezernik N, Kramberger J, Lassen T. Numerical modelling of fatigue crack initiation of martensitic steel. Adv Eng Softw. 2010;41(5):823–9.CrossRefMATH
12.
go back to reference Wood WA. Fatigue in aircraft structures. New York: Academic Press; 1956. Wood WA. Fatigue in aircraft structures. New York: Academic Press; 1956.
13.
go back to reference Fine ME, Ritchie RO. Fatigue-crack initiation and near-threshold crack growth. In: Meshii M, editor. Fatigue and microstructure. Materials Park: ASM; 1978. p. 245–78. Fine ME, Ritchie RO. Fatigue-crack initiation and near-threshold crack growth. In: Meshii M, editor. Fatigue and microstructure. Materials Park: ASM; 1978. p. 245–78.
14.
go back to reference Laird C. Mechanisms and theories of fatigue. In: Meshii M, editor. Fatigue and microstructure. Materials Park: ASM; 1978. p. 149–203. Laird C. Mechanisms and theories of fatigue. In: Meshii M, editor. Fatigue and microstructure. Materials Park: ASM; 1978. p. 149–203.
15.
go back to reference Klesnil M, Lukas P. Fatigue of metallic materials. New York: Elsevier; 1980. p. 57–80. Klesnil M, Lukas P. Fatigue of metallic materials. New York: Elsevier; 1980. p. 57–80.
17.
go back to reference Mughrabi H. In: Chan KS, Liaw PK, Bellows RS, Zogas T, Soboyejo WO, editors. Fatigue: David L. Davidson symposium. Warrendale: TMS; 2002. p. 3–15. Mughrabi H. In: Chan KS, Liaw PK, Bellows RS, Zogas T, Soboyejo WO, editors. Fatigue: David L. Davidson symposium. Warrendale: TMS; 2002. p. 3–15.
18.
go back to reference Davidson DL, Chan KS. Crystallography of fatigue crack initiation in astrology at ambient temperature. Acta Metall. 1989;37(4):1089–97.CrossRef Davidson DL, Chan KS. Crystallography of fatigue crack initiation in astrology at ambient temperature. Acta Metall. 1989;37(4):1089–97.CrossRef
19.
go back to reference Wang QY, Bathias C, Kawagoishi N, Chen Q. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue. 2002;24(12):1269–74.CrossRef Wang QY, Bathias C, Kawagoishi N, Chen Q. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue. 2002;24(12):1269–74.CrossRef
20.
go back to reference Murakami Y, Nomoto T, Ueda T. On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1: influence of hydrogen trapped by inclusions. Fatigue Fract Engng Mater Struct. 2000;23(11):893–902.CrossRef Murakami Y, Nomoto T, Ueda T. On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1: influence of hydrogen trapped by inclusions. Fatigue Fract Engng Mater Struct. 2000;23(11):893–902.CrossRef
21.
go back to reference Tanaka K, Mura T. A dislocation model for fatigue crack initiation. J Appl Mech. 1981;48:97–103.CrossRefMATH Tanaka K, Mura T. A dislocation model for fatigue crack initiation. J Appl Mech. 1981;48:97–103.CrossRefMATH
22.
go back to reference Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions. Metall Trans A. 1982;13(1):117–23.CrossRef Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions. Metall Trans A. 1982;13(1):117–23.CrossRef
23.
go back to reference Brückner-Foit A, Huang X. Numerical simulation of micro-crack initiation of martensitic steel under fatigue loading. Int J Fatigue. 2006;28(9):963–71.CrossRef Brückner-Foit A, Huang X. Numerical simulation of micro-crack initiation of martensitic steel under fatigue loading. Int J Fatigue. 2006;28(9):963–71.CrossRef
24.
go back to reference Jezernik N, Kramberger J, Lassen T, Glodez S. Numerical modelling of fatigue crack initiation and growth of martensitic steels. Fatigue & Fracture of Engineering Materials & Structures. 2010;33:714–23.MATH Jezernik N, Kramberger J, Lassen T, Glodez S. Numerical modelling of fatigue crack initiation and growth of martensitic steels. Fatigue & Fracture of Engineering Materials & Structures. 2010;33:714–23.MATH
25.
go back to reference Broek D. The practical use of fracture mechanics. Dordrecht: Kluwer Academic Publishers; 1989.CrossRef Broek D. The practical use of fracture mechanics. Dordrecht: Kluwer Academic Publishers; 1989.CrossRef
26.
go back to reference Paris P, Erdogan F. A critical analysis of crack propagation laws. J Basic Eng. 1963;85:528–34.CrossRef Paris P, Erdogan F. A critical analysis of crack propagation laws. J Basic Eng. 1963;85:528–34.CrossRef
27.
go back to reference Dexter RJ, Pilarski PJ, Mahmoud HN. Analysis of crack propagation in welded stiffened panels. Int J Fatigue. 2003;25:1169–74.CrossRef Dexter RJ, Pilarski PJ, Mahmoud HN. Analysis of crack propagation in welded stiffened panels. Int J Fatigue. 2003;25:1169–74.CrossRef
28.
go back to reference Mahmoud HN, Dexter RJ. Propagation rate of large cracks in stiffened panels under tension loading. Mar Struct. 2005;18:265–88.CrossRef Mahmoud HN, Dexter RJ. Propagation rate of large cracks in stiffened panels under tension loading. Mar Struct. 2005;18:265–88.CrossRef
29.
go back to reference Sumi Y, Božić Ž, Iyama H, Kawamura Y. Multiple fatigue cracks propagating in a stiffened panel. Journal of the Society of Naval Architects of Japan. 1996;179:407–12.CrossRef Sumi Y, Božić Ž, Iyama H, Kawamura Y. Multiple fatigue cracks propagating in a stiffened panel. Journal of the Society of Naval Architects of Japan. 1996;179:407–12.CrossRef
30.
go back to reference Elber W. The significance of fatigue crack closure, Damage tolerance in aircraft structures. ASTM STP 486. American Society for Testing & Materials; 1971. p. 230–242. Elber W. The significance of fatigue crack closure, Damage tolerance in aircraft structures. ASTM STP 486. American Society for Testing & Materials; 1971. p. 230–242.
31.
go back to reference Donahue RJ, Clark HM, Atanmo P, Kumble R, McEvily AJ. Crack opening displacement and the rate of fatigue crack growth. Int J Fract Mech. 1972;8:209–19.CrossRef Donahue RJ, Clark HM, Atanmo P, Kumble R, McEvily AJ. Crack opening displacement and the rate of fatigue crack growth. Int J Fract Mech. 1972;8:209–19.CrossRef
32.
go back to reference Swanson Analysis System (2009). Inc. ANSYS User’s Manual Revision 11.0. Swanson Analysis System (2009). Inc. ANSYS User’s Manual Revision 11.0.
33.
go back to reference Han T, Luo Y, Wang C. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. J Phys D Appl Phys. 2014;47:025303.CrossRef Han T, Luo Y, Wang C. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. J Phys D Appl Phys. 2014;47:025303.CrossRef
34.
go back to reference Tapasa K, Bacon DJ, Osetsky YN. Simulation of dislocation glide in dilute Fe-cu alloys. Materials Science & Engineering A. 2005;400-401:109–13.CrossRef Tapasa K, Bacon DJ, Osetsky YN. Simulation of dislocation glide in dilute Fe-cu alloys. Materials Science & Engineering A. 2005;400-401:109–13.CrossRef
35.
go back to reference Kohler C, Kizler P, Schmauder S. Atomistic simulation of precipitation hardening in α-iron: influence of precipitate shape and chemical composition. Model Simul Mater Sci Eng. 2005;13:35–45.CrossRef Kohler C, Kizler P, Schmauder S. Atomistic simulation of precipitation hardening in α-iron: influence of precipitate shape and chemical composition. Model Simul Mater Sci Eng. 2005;13:35–45.CrossRef
36.
go back to reference Molnar D, et al.. Unpublished research. 2014. Molnar D, et al.. Unpublished research. 2014.
37.
go back to reference Naveen Kumar N, Durgaprasad PV, Dutta BK, Dey GK. Modeling of radiation hardening in ferritic/martensitic steel using multi-scale approach. Comput Mater Sci. 2012;53:258–67.CrossRef Naveen Kumar N, Durgaprasad PV, Dutta BK, Dey GK. Modeling of radiation hardening in ferritic/martensitic steel using multi-scale approach. Comput Mater Sci. 2012;53:258–67.CrossRef
38.
go back to reference Latapie A, Farkas D. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe. Modelling Simul. Mater. Sci. Eng. 2003;11:745–53.CrossRef Latapie A, Farkas D. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe. Modelling Simul. Mater. Sci. Eng. 2003;11:745–53.CrossRef
39.
go back to reference Nakai Y. Evaluation of fatigue damage and fatigue crack initiation process by means of atomic-force microscopy. Mater Sci Res Int. 2001;7(2):1–9. Nakai Y. Evaluation of fatigue damage and fatigue crack initiation process by means of atomic-force microscopy. Mater Sci Res Int. 2001;7(2):1–9.
40.
go back to reference Zabett A, Plumtree A. Microstructural effects on the small fatigue crack behaviour of an aluminum alloy plate. Fatigue & Fracture of Engineering Materials & Structures. 1995;18(7–8):801–9. Zabett A, Plumtree A. Microstructural effects on the small fatigue crack behaviour of an aluminum alloy plate. Fatigue & Fracture of Engineering Materials & Structures. 1995;18(7–8):801–9.
41.
go back to reference Taylor D, Knott JF. Fatigue crack propagation behaviour of short cracks; the effect of microstructure. Fatigue & Fracture of Engineering Materials & Structures. 1981;4(2):147–55.CrossRef Taylor D, Knott JF. Fatigue crack propagation behaviour of short cracks; the effect of microstructure. Fatigue & Fracture of Engineering Materials & Structures. 1981;4(2):147–55.CrossRef
42.
go back to reference Miller KJ. The behaviour of short fatigue cracks and their initiation part II-A general summary. Fatigue & Fracture of Engineering Materials & Structures. 1987;10(2):93–113.CrossRef Miller KJ. The behaviour of short fatigue cracks and their initiation part II-A general summary. Fatigue & Fracture of Engineering Materials & Structures. 1987;10(2):93–113.CrossRef
43.
go back to reference Bao R, Zhang X, Yahaya NA. Evaluating stress intensity factors due to weld residual stresses by the weight function and finite element methods. Eng Fract Mech. 2010;77:2550–66.CrossRef Bao R, Zhang X, Yahaya NA. Evaluating stress intensity factors due to weld residual stresses by the weight function and finite element methods. Eng Fract Mech. 2010;77:2550–66.CrossRef
44.
go back to reference Croatian Register of Shipping. Rules for the Classification of Ships, Part 25 – Metallic Materials. 2012. Croatian Register of Shipping. Rules for the Classification of Ships, Part 25 – Metallic Materials. 2012.
45.
go back to reference Faulkner D. A review of effective plating for use in the analysis of stiffened plating in bending and compression. J Ship Res. 1975;19:1–17. Faulkner D. A review of effective plating for use in the analysis of stiffened plating in bending and compression. J Ship Res. 1975;19:1–17.
46.
go back to reference Barsoum RS. On the use of Isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng. 1976;10:25–37.CrossRefMATH Barsoum RS. On the use of Isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng. 1976;10:25–37.CrossRefMATH
47.
go back to reference Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. Int J Numer Methods Eng. 1975;9:495–507.CrossRefMATH Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. Int J Numer Methods Eng. 1975;9:495–507.CrossRefMATH
48.
go back to reference Božić Ž, Mlikota M, Schmauder S. Application of the ΔK, ΔJ and ΔCTOD parameters in fatigue crack growth modelling, Technical. Gazette. 2011;18(3):459–66. Božić Ž, Mlikota M, Schmauder S. Application of the ΔK, ΔJ and ΔCTOD parameters in fatigue crack growth modelling, Technical. Gazette. 2011;18(3):459–66.
49.
go back to reference Božić Ž, Schmauder S, Mlikota M. Fatigue growth models for multiple long cracks in plates under cyclic tension based on ΔKI, ΔJ-integral and ΔCTOD parameter. Key Eng Mater. 2012;488-489:525–8.CrossRef Božić Ž, Schmauder S, Mlikota M. Fatigue growth models for multiple long cracks in plates under cyclic tension based on ΔKI, ΔJ-integral and ΔCTOD parameter. Key Eng Mater. 2012;488-489:525–8.CrossRef
50.
go back to reference Liu Y, Mahadevan S. Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading. Eng Fract Mech. 2007;74:332–45.CrossRef Liu Y, Mahadevan S. Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading. Eng Fract Mech. 2007;74:332–45.CrossRef
51.
go back to reference Glinka G. Effect of residual stresses on fatigue crack growth in steel weldments under constant and variable amplitude load, Fracture mechanics, ASTM STP 677, American Society for Testing and Materials; 1979. p. 198–214. Glinka G. Effect of residual stresses on fatigue crack growth in steel weldments under constant and variable amplitude load, Fracture mechanics, ASTM STP 677, American Society for Testing and Materials; 1979. p. 198–214.
52.
go back to reference Servetti G, Zhang X. Predicting fatigue crack growth rate in a welded butt joint: the role of effective R ratio in accounting for residual stress effect. Engng Fract Mech. 2009;76:1589–602.CrossRef Servetti G, Zhang X. Predicting fatigue crack growth rate in a welded butt joint: the role of effective R ratio in accounting for residual stress effect. Engng Fract Mech. 2009;76:1589–602.CrossRef
Metadata
Title
Multiscale Fatigue Crack Growth Modeling for Welded Stiffened Panels
Authors
Ž. Božić
Siegfried Schmauder
M. Mlikota
M. Hummel
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_73

Premium Partners