Skip to main content
Top
Published in: Rheologica Acta 1/2022

15-11-2021 | Original Contribution

MUnCH: a calculator for propagating statistical and other sources of error in passive microrheology

Authors: Andrés Córdoba, Jay D. Schieber

Published in: Rheologica Acta | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A complete propagation of error procedure for passive microrheology is illustrated using synthetic data from generalized Brownian dynamics. Moreover, measurement errors typical of bead tracking done with laser interferometry are employed. We use the blocking transformation method of Flyvbjerg and Petersen (J Chem Phys 91(1):461–466 1989) applicable to estimating statistical uncertainty in autocorrelations for any time series data, to account properly for the correlation in the bead position data. These contributions to uncertainty in correlations have previously been neglected when calculating the error in the mean-squared displacement of the probe bead (MSD). The uncertainty in the MSD can be underestimated by a factor of about 20 if the correlation in the bead position data is neglected. Using the generalized Stokes-Einstein relation, the uncertainty in the MSD is then propagated to the dynamic modulus. Uncertainties in the bead radius and the trap stiffness are also taken into account. A simple code used to aid in the calculations is provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Addas KM, Schmidt CF, Tang JX (2004) Microrheology of solutions of semiflexible biopolymer filaments using laser, tweezers interferometry. Phys Rev E 7:021503CrossRef Addas KM, Schmidt CF, Tang JX (2004) Microrheology of solutions of semiflexible biopolymer filaments using laser, tweezers interferometry. Phys Rev E 7:021503CrossRef
go back to reference Becerra D, Córdoba A, Katzarova M, Andreev M, Venerus DC, Schieber JD (2020) Polymer rheology predictions from first principles using the slip-link model. J Rheol 64(5):1035–1043CrossRef Becerra D, Córdoba A, Katzarova M, Andreev M, Venerus DC, Schieber JD (2020) Polymer rheology predictions from first principles using the slip-link model. J Rheol 64(5):1035–1043CrossRef
go back to reference Córdoba A (2018) The effects of the interplay between motor and Brownian forces on the rheology of active gels. J Phys Chem B 122(15):4267–4277CrossRef Córdoba A (2018) The effects of the interplay between motor and Brownian forces on the rheology of active gels. J Phys Chem B 122(15):4267–4277CrossRef
go back to reference Córdoba A, Indei T, Schieber JD (2012) Elimination of inertia from a generalized Langevin equation: Applications to microbead rheology modeling and data analysis. J Rheol 56(1):185–212CrossRef Córdoba A, Indei T, Schieber JD (2012) Elimination of inertia from a generalized Langevin equation: Applications to microbead rheology modeling and data analysis. J Rheol 56(1):185–212CrossRef
go back to reference Córdoba A, Indei T, Schieber JD (2013) The effects of compressibility, hydrodynamic interaction and inertia on two-point, passive microrheology of viscoelastic materials. Soft Matter 9(13):3521–3534CrossRef Córdoba A, Indei T, Schieber JD (2013) The effects of compressibility, hydrodynamic interaction and inertia on two-point, passive microrheology of viscoelastic materials. Soft Matter 9(13):3521–3534CrossRef
go back to reference Córdoba A, Schieber JD, Indei T (2012) The effects of hydrodynamic interaction and inertia in determining the high-frequency dynamic modulus of a viscoelastic fluid with two-point passive microrheology. Phys Fluids 24(7):073103CrossRef Córdoba A, Schieber JD, Indei T (2012) The effects of hydrodynamic interaction and inertia in determining the high-frequency dynamic modulus of a viscoelastic fluid with two-point passive microrheology. Phys Fluids 24(7):073103CrossRef
go back to reference Córdoba A, Schieber JD, Indei T (2015) The role of filament length, finite-extensibility and motor force dispersity in stress relaxation and buckling mechanisms in non-sarcomeric active gels. Soft Matter 11 (1):38–57CrossRef Córdoba A, Schieber JD, Indei T (2015) The role of filament length, finite-extensibility and motor force dispersity in stress relaxation and buckling mechanisms in non-sarcomeric active gels. Soft Matter 11 (1):38–57CrossRef
go back to reference Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh A, Weitz D (2000) Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett 85:888–891CrossRef Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh A, Weitz D (2000) Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett 85:888–891CrossRef
go back to reference Dawson M, Wirtz D, Hanes J (2003) Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem 278(50):50393–50401CrossRef Dawson M, Wirtz D, Hanes J (2003) Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem 278(50):50393–50401CrossRef
go back to reference Dutov P, Schieber JD (2013) Calibration of optical traps by dual trapping of one bead. Opt Lett 38(22):4923–4926CrossRef Dutov P, Schieber JD (2013) Calibration of optical traps by dual trapping of one bead. Opt Lett 38(22):4923–4926CrossRef
go back to reference Fernandez-Castanon J, Bianchi S, Saglimbeni F, Di Leonardo R, Sciortino F (2018) Microrheology of dna hydrogel gelling and melting on cooling. Soft Matter 14(31):6431–6438CrossRef Fernandez-Castanon J, Bianchi S, Saglimbeni F, Di Leonardo R, Sciortino F (2018) Microrheology of dna hydrogel gelling and melting on cooling. Soft Matter 14(31):6431–6438CrossRef
go back to reference Flyvbjerg H, Petersen HG (1989) Error estimates on averages of correlated data. J Chem Phys 91(1):461–466CrossRef Flyvbjerg H, Petersen HG (1989) Error estimates on averages of correlated data. J Chem Phys 91(1):461–466CrossRef
go back to reference Forier K, Messiaen A-S, Raemdonck K, Deschout H, Rejman J, De Baets F, Nelis H, De Smedt SC, Demeester J, Coenye T et al (2013) Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy. Nanomedicine 8(6):935–949CrossRef Forier K, Messiaen A-S, Raemdonck K, Deschout H, Rejman J, De Baets F, Nelis H, De Smedt SC, Demeester J, Coenye T et al (2013) Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy. Nanomedicine 8(6):935–949CrossRef
go back to reference Fricks J, Yao L, Elston TC, Forest MG (2009) Time-domain methods for diffusive transport in soft matter. SIAM J Appl Math 69:1277–1308CrossRef Fricks J, Yao L, Elston TC, Forest MG (2009) Time-domain methods for diffusive transport in soft matter. SIAM J Appl Math 69:1277–1308CrossRef
go back to reference Gardel ML, Valentine MT, Crocker JC, Bausch AR, Weitz DA (2003) Microrheology of entangled F-actin solutions. Phys Rev Lett 91:158302CrossRef Gardel ML, Valentine MT, Crocker JC, Bausch AR, Weitz DA (2003) Microrheology of entangled F-actin solutions. Phys Rev Lett 91:158302CrossRef
go back to reference Indei T, Schieber JD, Córdoba A (2012) Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology. Phys Rev E 85 (4):041504CrossRef Indei T, Schieber JD, Córdoba A (2012) Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology. Phys Rev E 85 (4):041504CrossRef
go back to reference Indei T, Schieber JD, Córdoba A, Pilyugina E (2012) Treating inertia in passive microbead rheology. Phys Rev E 85(2):021504CrossRef Indei T, Schieber JD, Córdoba A, Pilyugina E (2012) Treating inertia in passive microbead rheology. Phys Rev E 85(2):021504CrossRef
go back to reference Kumar A, Sundararaghavan V, Browning A (2014) Study of temperature dependence of thermal conductivity in cross-linked epoxies using molecular dynamics simulations with long range interactions. Model Simul Mater Sci Eng 22(2):025013CrossRef Kumar A, Sundararaghavan V, Browning A (2014) Study of temperature dependence of thermal conductivity in cross-linked epoxies using molecular dynamics simulations with long range interactions. Model Simul Mater Sci Eng 22(2):025013CrossRef
go back to reference Kumar R, Vitali V, Wiedemann T, Meissner R, Minzioni P, Denz C (2021) Multi-frequency passive and active microrheology with optical tweezers. Sci Rep 11(1):1–11 Kumar R, Vitali V, Wiedemann T, Meissner R, Minzioni P, Denz C (2021) Multi-frequency passive and active microrheology with optical tweezers. Sci Rep 11(1):1–11
go back to reference Le Goff L, Amblard F, Furst EM (2001) Motor-driven dynamics in actin-myosin networks. Phys Rev Lett 88(1):018101CrossRef Le Goff L, Amblard F, Furst EM (2001) Motor-driven dynamics in actin-myosin networks. Phys Rev Lett 88(1):018101CrossRef
go back to reference Maier T, Haraszti T (2012) Python algorithms in particle tracking microrheology. Chem Central J 6(1):1–9CrossRef Maier T, Haraszti T (2012) Python algorithms in particle tracking microrheology. Chem Central J 6(1):1–9CrossRef
go back to reference Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheologica acta 39(4):371–378CrossRef Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheologica acta 39(4):371–378CrossRef
go back to reference Medronho B, Filipe A, Costa C, Romano A, Lindman B, Edlund H, Norgren M (2018) Microrheology of novel cellulose stabilized oil-in-water emulsions. J Colloid Interface Sci 531:225–232CrossRef Medronho B, Filipe A, Costa C, Romano A, Lindman B, Edlund H, Norgren M (2018) Microrheology of novel cellulose stabilized oil-in-water emulsions. J Colloid Interface Sci 531:225–232CrossRef
go back to reference Mizuno D, Head D, MacKintosh F, Schmidt C (2008) Active and passive microrheology in equilibrium and nonequilibrium systems. Macromolecules 41(19):7194–7202CrossRef Mizuno D, Head D, MacKintosh F, Schmidt C (2008) Active and passive microrheology in equilibrium and nonequilibrium systems. Macromolecules 41(19):7194–7202CrossRef
go back to reference Mizuno D, Tardin C, Schmidt CF, MacKintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810):370–373CrossRef Mizuno D, Tardin C, Schmidt CF, MacKintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810):370–373CrossRef
go back to reference Palmer A, Xu J, Wirtz D (1998) High-frequency viscoelasticity of crosslinked actin filament networks measured by diffusing wave spectroscopy. Rheol Acta 37(2):97–106CrossRef Palmer A, Xu J, Wirtz D (1998) High-frequency viscoelasticity of crosslinked actin filament networks measured by diffusing wave spectroscopy. Rheol Acta 37(2):97–106CrossRef
go back to reference Pelletier V, Gal N, Fournier P, Kilfoil ML (2009) Microrheology of microtubule solutions and actin-microtubule composite networks. Phys Rev Lett 102:188303CrossRef Pelletier V, Gal N, Fournier P, Kilfoil ML (2009) Microrheology of microtubule solutions and actin-microtubule composite networks. Phys Rev Lett 102:188303CrossRef
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: The art of scientific computing, 2nd ed. Cambridge University Press, Cambridge Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: The art of scientific computing, 2nd ed. Cambridge University Press, Cambridge
go back to reference Rogers SS, Waigh TA, Lu JR (2008) Intracellular microrheology of motile. Amoeba proteus, Biophys J 94(8):3313–3322 Rogers SS, Waigh TA, Lu JR (2008) Intracellular microrheology of motile. Amoeba proteus, Biophys J 94(8):3313–3322
go back to reference Rogers S, Van Der Walle C, Waigh T (2008) Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 24(23):13549–13555CrossRef Rogers S, Van Der Walle C, Waigh T (2008) Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 24(23):13549–13555CrossRef
go back to reference Sanchez T, Chen DT, DeCamp SJ, Heymann M, Dogic Z (2012) Spontaneous motion in hierarchically assembled active matter. Nature 491(7424):431–434CrossRef Sanchez T, Chen DT, DeCamp SJ, Heymann M, Dogic Z (2012) Spontaneous motion in hierarchically assembled active matter. Nature 491(7424):431–434CrossRef
go back to reference Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88:623–638CrossRef Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88:623–638CrossRef
go back to reference Schieber JD, Córdoba A, Indei T (2013) The analytic solution of Stokes for time-dependent creeping flow around a sphere: Application to linear viscoelasticity as an ingredient for the generalized Stokes–Einstein relation and microrheology analysis. J Non-Newtonian Fluid Mech 200:3–8CrossRef Schieber JD, Córdoba A, Indei T (2013) The analytic solution of Stokes for time-dependent creeping flow around a sphere: Application to linear viscoelasticity as an ingredient for the generalized Stokes–Einstein relation and microrheology analysis. J Non-Newtonian Fluid Mech 200:3–8CrossRef
go back to reference Squires TM, Mason TG (2010) Fluid mechanics of microrheology. Annu Rev Fluid Mech 42:413–438CrossRef Squires TM, Mason TG (2010) Fluid mechanics of microrheology. Annu Rev Fluid Mech 42:413–438CrossRef
go back to reference Stuhrmann B, e Silva MS, Depken M, MacKintosh FC, Koenderink GH (2012) Nonequilibrium fluctuations of a remodeling in vitro cytoskeleton. Phys Rev E 86(2):020901CrossRef Stuhrmann B, e Silva MS, Depken M, MacKintosh FC, Koenderink GH (2012) Nonequilibrium fluctuations of a remodeling in vitro cytoskeleton. Phys Rev E 86(2):020901CrossRef
go back to reference Tassieri M, Evans R, Warren RL, Bailey NJ, Cooper JM (2012) Microrheology with optical tweezers: data analysis. New J Phys 14(11):115032CrossRef Tassieri M, Evans R, Warren RL, Bailey NJ, Cooper JM (2012) Microrheology with optical tweezers: data analysis. New J Phys 14(11):115032CrossRef
go back to reference Vasilev A, Lorenz T, Breitkopf C (2020) Thermal conductivity of polyisoprene and polybutadiene from molecular dynamics simulations and transient measurements. Polymers 12(5):1081CrossRef Vasilev A, Lorenz T, Breitkopf C (2020) Thermal conductivity of polyisoprene and polybutadiene from molecular dynamics simulations and transient measurements. Polymers 12(5):1081CrossRef
go back to reference Wessel AD, Gumalla M, Grosshans J, Schmidt CF (2015) The mechanical properties of early drosophila embryos measured by high-speed video microrheology. Biophys J 108(8):1899–1907CrossRef Wessel AD, Gumalla M, Grosshans J, Schmidt CF (2015) The mechanical properties of early drosophila embryos measured by high-speed video microrheology. Biophys J 108(8):1899–1907CrossRef
go back to reference Xing Z, Caciagli A, Cao T, Stoev I, Zupkauskas M, O’Neill T, Wenzel T, Lamboll R, Liu D, Eiser E (2018) Microrheology of dna hydrogels. Proc Natl Acad Sci 115(32):8137–8142CrossRef Xing Z, Caciagli A, Cao T, Stoev I, Zupkauskas M, O’Neill T, Wenzel T, Lamboll R, Liu D, Eiser E (2018) Microrheology of dna hydrogels. Proc Natl Acad Sci 115(32):8137–8142CrossRef
go back to reference Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J 78:1736–1747CrossRef Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J 78:1736–1747CrossRef
go back to reference Zhou Y, Li B, Li S, Ardoña HAM, Wilson WL, Tovar JD, Schroeder CM (2017) Concentration-driven assembly and sol–gel transition of π-conjugated oligopeptides. ACS Central Sci 3(9):986–994CrossRef Zhou Y, Li B, Li S, Ardoña HAM, Wilson WL, Tovar JD, Schroeder CM (2017) Concentration-driven assembly and sol–gel transition of π-conjugated oligopeptides. ACS Central Sci 3(9):986–994CrossRef
Metadata
Title
MUnCH: a calculator for propagating statistical and other sources of error in passive microrheology
Authors
Andrés Córdoba
Jay D. Schieber
Publication date
15-11-2021
Publisher
Springer Berlin Heidelberg
Published in
Rheologica Acta / Issue 1/2022
Print ISSN: 0035-4511
Electronic ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-021-01312-1

Other articles of this Issue 1/2022

Rheologica Acta 1/2022 Go to the issue

Premium Partners