Skip to main content
Top

2019 | OriginalPaper | Chapter

18. MXenes for Supercapacitor Application

Authors : Zifeng Lin, Patrice Simon

Published in: 2D Metal Carbides and Nitrides (MXenes)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Being one of the key applications of MXenes, MXene-based supercapacitors attracted huge attention for their superior electrochemical performance. In this section, an overview of MXenes as supercapacitor electrodes in various electrolytes is discussed as well as strategies for improving their performance. In aqueous electrolytes, MXenes exhibit capacitive behavior in neutral and alkaline electrolytes, while a pseudocapacitive behavior was observed in acidic electrolytes, resulting in ultrahigh capacitance values up to 370 F g−1 (1500 F cm−3). Studies were extended to nonaqueous electrolytes to achieve large voltage windows (up to 3 V), but were limited by low capacitance values. The effects of surface chemistry on energy storage in MXenes are also discussed. In addition, composite MXene electrodes have been developed to increase the electrical conductivity, the mechanical robustness, or surface accessibility of MXenes. Lastly, MXene-based supercapacitor devices including hybrid, all-solid-state, and micro-supercapacitors are introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Ethyl-methyl-imidazole, tri-fluoro-sulfonyl-imide
 
Literature
1.
go back to reference Simon, P., Gogotsi, Y., & Dunn, B. (2014). Where do batteries end and supercapacitors begin? Science, 343(6176), 1210–1211.CrossRef Simon, P., Gogotsi, Y., & Dunn, B. (2014). Where do batteries end and supercapacitors begin? Science, 343(6176), 1210–1211.CrossRef
2.
go back to reference Béguin, F., Presser, V., Balducci, A., & Frackowiak, E. (2014). Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 26(14), 2219–2251.CrossRef Béguin, F., Presser, V., Balducci, A., & Frackowiak, E. (2014). Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 26(14), 2219–2251.CrossRef
3.
go back to reference Boisset, A., Athouël, L., Jacquemin, J., Porion, P., Brousse, T., & Anouti, M. (2013). Comparative performances of cirnessite and cryptomelane MnO2 as electrode material in neutral aqueous lithium salt for supercapacitor application. The Journal of Physical Chemistry C, 117(15), 7408–7422.CrossRef Boisset, A., Athouël, L., Jacquemin, J., Porion, P., Brousse, T., & Anouti, M. (2013). Comparative performances of cirnessite and cryptomelane MnO2 as electrode material in neutral aqueous lithium salt for supercapacitor application. The Journal of Physical Chemistry C, 117(15), 7408–7422.CrossRef
4.
go back to reference Shimizu, W., Makino, S., Takahashi, K., Imanishi, N., & Sugimoto, W. (2013). Development of a 4.2 V aqueous hybrid electrochemical capacitor based on MnO2 positive and protected Li negative electrodes. Journal of Power Sources, 241, 572–577.CrossRef Shimizu, W., Makino, S., Takahashi, K., Imanishi, N., & Sugimoto, W. (2013). Development of a 4.2 V aqueous hybrid electrochemical capacitor based on MnO2 positive and protected Li negative electrodes. Journal of Power Sources, 241, 572–577.CrossRef
5.
go back to reference Okubo, M., Hosono, E., Kim, J., Enomoto, M., Kojima, N., Kudo, T., et al. (2007). Nanosize effect on high-rate Li- ion intercalation in LiCoO2 electrode. Journal of the American Chemical Society, 129(23), 7444–7452.CrossRef Okubo, M., Hosono, E., Kim, J., Enomoto, M., Kojima, N., Kudo, T., et al. (2007). Nanosize effect on high-rate Li- ion intercalation in LiCoO2 electrode. Journal of the American Chemical Society, 129(23), 7444–7452.CrossRef
6.
go back to reference Galiński, M., Lewandowski, A., & Stępniak, I. (2006). Ionic liquids as electrolytes. Electrochimica Acta, 51(26), 5567–5580.CrossRef Galiński, M., Lewandowski, A., & Stępniak, I. (2006). Ionic liquids as electrolytes. Electrochimica Acta, 51(26), 5567–5580.CrossRef
7.
go back to reference Negre, L., Daffos, B., Taberna, P. L., & Simon, P. (2015). Solvent-free electrolytes for electrical double layer capacitors. Journal of the Electrochemical Society, 162(5), A5037–A5040.CrossRef Negre, L., Daffos, B., Taberna, P. L., & Simon, P. (2015). Solvent-free electrolytes for electrical double layer capacitors. Journal of the Electrochemical Society, 162(5), A5037–A5040.CrossRef
8.
go back to reference Neouze, M. A., Le Bideau, J., Gaveau, P., Bellayer, S., & Vioux, A. (2006). Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chemistry of Materials, 18(17), 3931–3936.CrossRef Neouze, M. A., Le Bideau, J., Gaveau, P., Bellayer, S., & Vioux, A. (2006). Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chemistry of Materials, 18(17), 3931–3936.CrossRef
9.
go back to reference Shimano, S., Zhou, H., & Honma, I. (2007). Preparation of nanohybrid solid-state electrolytes with liquidlike Mobilities by solidifying ionic liquids with silica particles. Chemistry of Materials, 19(22), 5216–5221.CrossRef Shimano, S., Zhou, H., & Honma, I. (2007). Preparation of nanohybrid solid-state electrolytes with liquidlike Mobilities by solidifying ionic liquids with silica particles. Chemistry of Materials, 19(22), 5216–5221.CrossRef
10.
go back to reference Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., et al. (2017). Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nature Materials, 16(4), 446–453.CrossRef Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., et al. (2017). Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nature Materials, 16(4), 446–453.CrossRef
11.
go back to reference Forgie, J. C., & Rochefort, D. (2013). Electroactive imidazolium salts based on 1,4-dimethoxybenzene redox groups: Synthesis and electrochemical characterisation. RSC Advances, 3(30), 12035–12038.CrossRef Forgie, J. C., & Rochefort, D. (2013). Electroactive imidazolium salts based on 1,4-dimethoxybenzene redox groups: Synthesis and electrochemical characterisation. RSC Advances, 3(30), 12035–12038.CrossRef
12.
go back to reference Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., et al. (2016). Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nature Materials, 16, 446.CrossRef Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., et al. (2016). Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nature Materials, 16, 446.CrossRef
13.
go back to reference Bodin, C., Mourad, E., Zigah, D., Le Vot, S., Freunberger, S. A., Favier, F., et al. (2018). Biredox ionic liquids: New opportunities toward high performance supercapacitors. Faraday Discussions, 206(0), 393–404.CrossRef Bodin, C., Mourad, E., Zigah, D., Le Vot, S., Freunberger, S. A., Favier, F., et al. (2018). Biredox ionic liquids: New opportunities toward high performance supercapacitors. Faraday Discussions, 206(0), 393–404.CrossRef
14.
go back to reference Suo, L., Borodin, O., Gao, T., Olguin, M., Ho, J., Fan, X., et al. (2015). “Water-in-salt” electrolyte enables high- voltage aqueous lithium-ion chemistries. Science, 350(6263), 938–943.CrossRef Suo, L., Borodin, O., Gao, T., Olguin, M., Ho, J., Fan, X., et al. (2015). “Water-in-salt” electrolyte enables high- voltage aqueous lithium-ion chemistries. Science, 350(6263), 938–943.CrossRef
15.
go back to reference Gambou-Bosca, A., & Bélanger, D. (2016). Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors. Journal of Power Sources, 326, 595–603.CrossRef Gambou-Bosca, A., & Bélanger, D. (2016). Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors. Journal of Power Sources, 326, 595–603.CrossRef
16.
go back to reference Lannelongue, P., Bouchal, R., Mourad, E., Bodin, C., Olarte, M., le Vot, S., et al. (2018). “Water-in-salt” for supercapacitors: A compromise between voltage, power density, energy density and stability. Journal of the Electrochemical Society, 165(3), A657–A663.CrossRef Lannelongue, P., Bouchal, R., Mourad, E., Bodin, C., Olarte, M., le Vot, S., et al. (2018). “Water-in-salt” for supercapacitors: A compromise between voltage, power density, energy density and stability. Journal of the Electrochemical Society, 165(3), A657–A663.CrossRef
17.
go back to reference Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2), 16098.CrossRef Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2), 16098.CrossRef
18.
go back to reference Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall’Agnese, Y., Rozier, P., Taberna, P. L., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341(6153), 1502–1505.CrossRef Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall’Agnese, Y., Rozier, P., Taberna, P. L., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341(6153), 1502–1505.CrossRef
19.
go back to reference Levi, M. D., Lukatskaya, M. R., Sigalov, S., Beidaghi, M., Shpigel, N., Daikhin, L., et al. (2015). Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Advanced Energy Materials, 5(1), 1400815.CrossRef Levi, M. D., Lukatskaya, M. R., Sigalov, S., Beidaghi, M., Shpigel, N., Daikhin, L., et al. (2015). Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Advanced Energy Materials, 5(1), 1400815.CrossRef
20.
go back to reference Come, J., Black, J. M., Lukatskaya, M. R., Naguib, M., Beidaghi, M., Rondinone, A. J., et al. (2015). Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 17, 27–35.CrossRef Come, J., Black, J. M., Lukatskaya, M. R., Naguib, M., Beidaghi, M., Rondinone, A. J., et al. (2015). Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 17, 27–35.CrossRef
21.
go back to reference Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516(7529), 78–81.CrossRef Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516(7529), 78–81.CrossRef
22.
go back to reference Lukatskaya, M. R., Bak, S.-M., Yu, X., Yang, X.-Q., Barsoum, M. W., & Gogotsi, Y. (2015). Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Advanced Energy Materials, 5(15), 1500589.CrossRef Lukatskaya, M. R., Bak, S.-M., Yu, X., Yang, X.-Q., Barsoum, M. W., & Gogotsi, Y. (2015). Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Advanced Energy Materials, 5(15), 1500589.CrossRef
23.
go back to reference Hu, M., Li, Z., Hu, T., Zhu, S., Zhang, C., & Wang, X. (2016). High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano, 10(12), 11344–11350.CrossRef Hu, M., Li, Z., Hu, T., Zhu, S., Zhang, C., & Wang, X. (2016). High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano, 10(12), 11344–11350.CrossRef
24.
go back to reference Zhan, C., Naguib, M., Lukatskaya, M., Kent, P. R. C., Gogotsi, Y., & D-e, J. (2018). Understanding the MXene pseudocapacitance. The Journal of Physical Chemistry Letters, 9(6), 1223–1228.CrossRef Zhan, C., Naguib, M., Lukatskaya, M., Kent, P. R. C., Gogotsi, Y., & D-e, J. (2018). Understanding the MXene pseudocapacitance. The Journal of Physical Chemistry Letters, 9(6), 1223–1228.CrossRef
25.
go back to reference Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M. D., et al. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2(8), 17105.CrossRef Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M. D., et al. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2(8), 17105.CrossRef
26.
go back to reference Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRef Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRef
27.
go back to reference Halim, J., Cook, K. M., Naguib, M., Eklund, P., Gogotsi, Y., Rosen, J., et al. (2016). X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Applied Surface Science, 362, 406–417.CrossRef Halim, J., Cook, K. M., Naguib, M., Eklund, P., Gogotsi, Y., Rosen, J., et al. (2016). X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Applied Surface Science, 362, 406–417.CrossRef
28.
go back to reference Zha, X. H., Luo, K., Li, Q. W., Huang, Q., He, J., Wen, X. D., et al. (2015). Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. EPL, 111(2), 26007.CrossRef Zha, X. H., Luo, K., Li, Q. W., Huang, Q., He, J., Wen, X. D., et al. (2015). Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. EPL, 111(2), 26007.CrossRef
29.
go back to reference Xie, Y., Naguib, M., Mochalin, V. N., Barsoum, M. W., Gogotsi, Y., Yu, X., et al. (2014). Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 136(17), 6385–6394.CrossRef Xie, Y., Naguib, M., Mochalin, V. N., Barsoum, M. W., Gogotsi, Y., Yu, X., et al. (2014). Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 136(17), 6385–6394.CrossRef
30.
go back to reference Dall’Agnese, Y., Lukatskaya, M. R., Cook, K. M., Taberna, P. L., Gogotsi, Y., & Simon, P. (2014). High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochemistry Communications, 48, 118–122.CrossRef Dall’Agnese, Y., Lukatskaya, M. R., Cook, K. M., Taberna, P. L., Gogotsi, Y., & Simon, P. (2014). High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochemistry Communications, 48, 118–122.CrossRef
31.
go back to reference Hope, M. A., Forse, A. C., Griffith, K. J., Lukatskaya, M. R., Ghidiu, M., Gogotsi, Y., et al. (2016). NMR reveals the surface functionalisation of Ti3C2 MXene. Physical Chemistry Chemical Physics, 18(7), 5099–5102.CrossRef Hope, M. A., Forse, A. C., Griffith, K. J., Lukatskaya, M. R., Ghidiu, M., Gogotsi, Y., et al. (2016). NMR reveals the surface functionalisation of Ti3C2 MXene. Physical Chemistry Chemical Physics, 18(7), 5099–5102.CrossRef
32.
go back to reference Ingemar, P., Lars-Åke, N., Joseph, H., Michel, W. B., Vanya, D., Justinas, P., et al. (2018). On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Materials, 5(1), 015002. Ingemar, P., Lars-Åke, N., Joseph, H., Michel, W. B., Vanya, D., Justinas, P., et al. (2018). On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Materials, 5(1), 015002.
33.
go back to reference Li, J., Yuan, X., Lin, C., Yang, Y., Xu, L., Du, X., et al. (2017). Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Advanced Energy Materials, 7(15), 1602725.CrossRef Li, J., Yuan, X., Lin, C., Yang, Y., Xu, L., Du, X., et al. (2017). Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Advanced Energy Materials, 7(15), 1602725.CrossRef
34.
go back to reference Yoon, Y., Lee, M., Kim, S. K., Bae, G., Song, W., Myung, S., et al. (2018). A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. Advanced Energy Materials, 8(15), 1703173.CrossRef Yoon, Y., Lee, M., Kim, S. K., Bae, G., Song, W., Myung, S., et al. (2018). A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. Advanced Energy Materials, 8(15), 1703173.CrossRef
35.
go back to reference Wen, Y., Rufford, T. E., Chen, X., Li, N., Lyu, M., Dai, L., et al. (2017). Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 38, 368–376.CrossRef Wen, Y., Rufford, T. E., Chen, X., Li, N., Lyu, M., Dai, L., et al. (2017). Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 38, 368–376.CrossRef
36.
go back to reference Sang, X., Xie, Y., Lin, M.-W., Alhabeb, M., Van Aken, K. L., Gogotsi, Y., et al. (2016). Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano. 10 9193–9200. Sang, X., Xie, Y., Lin, M.-W., Alhabeb, M., Van Aken, K. L., Gogotsi, Y., et al. (2016). Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano. 10 9193–9200.
37.
go back to reference Tao, Q., Dahlqvist, M., Lu, J., Kota, S., Meshkian, R., Halim, J., et al. (2017). Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature Communications, 8, 14949.CrossRef Tao, Q., Dahlqvist, M., Lu, J., Kota, S., Meshkian, R., Halim, J., et al. (2017). Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature Communications, 8, 14949.CrossRef
38.
go back to reference Dall’Agnese, Y., Rozier, P., Taberna, P.-L., Gogotsi, Y., & Simon, P. (2016). Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. Journal of Power Sources, 306, 510–515.CrossRef Dall’Agnese, Y., Rozier, P., Taberna, P.-L., Gogotsi, Y., & Simon, P. (2016). Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. Journal of Power Sources, 306, 510–515.CrossRef
39.
go back to reference Lin, Z., Barbara, D., Taberna, P.-L., Van Aken, K. L., Anasori, B., Gogotsi, Y., et al. (2016). Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. Journal of Power Sources, 326, 575–579.CrossRef Lin, Z., Barbara, D., Taberna, P.-L., Van Aken, K. L., Anasori, B., Gogotsi, Y., et al. (2016). Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. Journal of Power Sources, 326, 575–579.CrossRef
40.
go back to reference Lin, Z., Rozier, P., Duployer, B., Taberna, P.-L., Anasori, B., Gogotsi, Y., et al. (2016). Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochemistry Communications, 72, 50–53.CrossRef Lin, Z., Rozier, P., Duployer, B., Taberna, P.-L., Anasori, B., Gogotsi, Y., et al. (2016). Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochemistry Communications, 72, 50–53.CrossRef
41.
go back to reference Jäckel, N., Krüner, B., Van Aken, K. L., Alhabeb, M., Anasori, B., Kaasik, F., et al. (2016). Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids. ACS Applied Materials & Interfaces, 8(47), 32089–32093.CrossRef Jäckel, N., Krüner, B., Van Aken, K. L., Alhabeb, M., Anasori, B., Kaasik, F., et al. (2016). Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids. ACS Applied Materials & Interfaces, 8(47), 32089–32093.CrossRef
42.
go back to reference Xu, K., Lin, Z., Merlet, C., Taberna, P. L., Miao, L., Jiang, J., et al. (2018). Tracking ionic rearrangements and interpreting dynamic volumetric changes in two-dimensional metal carbide supercapacitors: A molecular dynamics simulation study. ChemSusChem, 11(12), 1892–1899.CrossRef Xu, K., Lin, Z., Merlet, C., Taberna, P. L., Miao, L., Jiang, J., et al. (2018). Tracking ionic rearrangements and interpreting dynamic volumetric changes in two-dimensional metal carbide supercapacitors: A molecular dynamics simulation study. ChemSusChem, 11(12), 1892–1899.CrossRef
43.
go back to reference Conway, B. E., Birss, V., & Wojtowicz, J. (1997). The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources, 66(1–2), 1–14.CrossRef Conway, B. E., Birss, V., & Wojtowicz, J. (1997). The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources, 66(1–2), 1–14.CrossRef
44.
go back to reference Zhu, K., Zhang, H., Ye, K., Zhao, W., Yan, J., Cheng, K., et al. (2017). Two-dimensional titanium carbide MXene as a capacitor-type electrode for rechargeable aqueous Li-ion and Na-ion capacitor batteries. ChemElectroChem, 4(11), 3018–3025.CrossRef Zhu, K., Zhang, H., Ye, K., Zhao, W., Yan, J., Cheng, K., et al. (2017). Two-dimensional titanium carbide MXene as a capacitor-type electrode for rechargeable aqueous Li-ion and Na-ion capacitor batteries. ChemElectroChem, 4(11), 3018–3025.CrossRef
45.
go back to reference Ling, Z., Ren, C. E., Zhao, M.-Q., Yang, J., Giammarco, J. M., Qiu, J., et al. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676–16681.CrossRef Ling, Z., Ren, C. E., Zhao, M.-Q., Yang, J., Giammarco, J. M., Qiu, J., et al. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676–16681.CrossRef
46.
go back to reference Xie, X., Zhao, M.-Q., Anasori, B., Maleski, K., Ren, C. E., Li, J., et al. (2016). Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 26, 513–523.CrossRef Xie, X., Zhao, M.-Q., Anasori, B., Maleski, K., Ren, C. E., Li, J., et al. (2016). Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 26, 513–523.CrossRef
47.
go back to reference Li, L., Wang, F., Zhu, J., & Wu, W. (2017). The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties. Dalton Transactions, 46(43), 14880–14887.CrossRef Li, L., Wang, F., Zhu, J., & Wu, W. (2017). The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties. Dalton Transactions, 46(43), 14880–14887.CrossRef
48.
go back to reference Wang, Y., Dou, H., Wang, J., Ding, B., Xu, Y., Chang, Z., et al. (2016). Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. Journal of Power Sources, 327, 221–228.CrossRef Wang, Y., Dou, H., Wang, J., Ding, B., Xu, Y., Chang, Z., et al. (2016). Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. Journal of Power Sources, 327, 221–228.CrossRef
49.
go back to reference Yan, P., Zhang, R., Jia, J., Wu, C., Zhou, A., Xu, J., et al. (2015). Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. Journal of Power Sources, 284, 38–43.CrossRef Yan, P., Zhang, R., Jia, J., Wu, C., Zhou, A., Xu, J., et al. (2015). Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. Journal of Power Sources, 284, 38–43.CrossRef
50.
go back to reference Boota, M., Anasori, B., Voigt, C., Zhao, M.-Q., Barsoum, M. W., & Gogotsi, Y. (2016). Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 28(7), 1517–1522.CrossRef Boota, M., Anasori, B., Voigt, C., Zhao, M.-Q., Barsoum, M. W., & Gogotsi, Y. (2016). Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 28(7), 1517–1522.CrossRef
51.
go back to reference Li, H., Hou, Y., Wang, F., Lohe, M. R., Zhuang, X., Niu, L., et al. (2017). Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Advanced Energy Materials, 7(4), 1601847.CrossRef Li, H., Hou, Y., Wang, F., Lohe, M. R., Zhuang, X., Niu, L., et al. (2017). Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Advanced Energy Materials, 7(4), 1601847.CrossRef
52.
go back to reference Luo, J., Zhang, W., Yuan, H., Jin, C., Zhang, L., Huang, H., et al. (2017). Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano, 11(3), 2459–2469.CrossRef Luo, J., Zhang, W., Yuan, H., Jin, C., Zhang, L., Huang, H., et al. (2017). Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano, 11(3), 2459–2469.CrossRef
53.
go back to reference Yan, J., Ren, C. E., Maleski, K., Hatter, C. B., Anasori, B., Urbankowski, P., et al. (2017). Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 27(30), 1701264.CrossRef Yan, J., Ren, C. E., Maleski, K., Hatter, C. B., Anasori, B., Urbankowski, P., et al. (2017). Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 27(30), 1701264.CrossRef
54.
go back to reference Zhu, M., Huang, Y., Deng, Q., Zhou, J., Pei, Z., Xue, Q., et al. (2016). Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Advanced Energy Materials, 6(21), 1600969.CrossRef Zhu, M., Huang, Y., Deng, Q., Zhou, J., Pei, Z., Xue, Q., et al. (2016). Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Advanced Energy Materials, 6(21), 1600969.CrossRef
55.
go back to reference Zhao, M.-Q., Ren, C. E., Ling, Z., Lukatskaya, M. R., Zhang, C., Van Aken, K. L., et al. (2015). Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 27(2), 339–345.CrossRef Zhao, M.-Q., Ren, C. E., Ling, Z., Lukatskaya, M. R., Zhang, C., Van Aken, K. L., et al. (2015). Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 27(2), 339–345.CrossRef
56.
go back to reference Yang, Q., Xu, Z., Fang, B., Huang, T., Cai, S., Chen, H., et al. (2017). MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A, 5(42), 22113–22119.CrossRef Yang, Q., Xu, Z., Fang, B., Huang, T., Cai, S., Chen, H., et al. (2017). MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A, 5(42), 22113–22119.CrossRef
57.
go back to reference Zhao, C., Wang, Q., Zhang, H., Passerini, S., & Qian, X. (2016). Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Applied Materials & Interfaces, 8(24), 15661–15667.CrossRef Zhao, C., Wang, Q., Zhang, H., Passerini, S., & Qian, X. (2016). Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Applied Materials & Interfaces, 8(24), 15661–15667.CrossRef
58.
go back to reference Zhu, J., Tang, Y., Yang, C., Wang, F., & Cao, M. (2016). Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. Journal of the Electrochemical Society, 163(5), A785–A791.CrossRef Zhu, J., Tang, Y., Yang, C., Wang, F., & Cao, M. (2016). Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. Journal of the Electrochemical Society, 163(5), A785–A791.CrossRef
59.
go back to reference Lu, X., Zhu, J., Wu, W., & Zhang, B. (2017). Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochimica Acta, 228, 282–289. Lu, X., Zhu, J., Wu, W., & Zhang, B. (2017). Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochimica Acta, 228, 282–289.
60.
go back to reference Wang, F., Cao, M., Qin, Y., Zhu, J., Wang, L., & Tang, Y. (2016). ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. RSC Advances, 6(92), 88934–88942.CrossRef Wang, F., Cao, M., Qin, Y., Zhu, J., Wang, L., & Tang, Y. (2016). ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. RSC Advances, 6(92), 88934–88942.CrossRef
61.
go back to reference Rakhi, R. B., Ahmed, B., Anjum, D., & Alshareef, H. N. (2016). Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Applied Materials & Interfaces, 8(29), 18806–18814.CrossRef Rakhi, R. B., Ahmed, B., Anjum, D., & Alshareef, H. N. (2016). Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Applied Materials & Interfaces, 8(29), 18806–18814.CrossRef
62.
go back to reference Tang, Y., Zhu, J., Yang, C., & Wang, F. (2016). Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. Journal of Alloys and Compounds, 685, 194–201.CrossRef Tang, Y., Zhu, J., Yang, C., & Wang, F. (2016). Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. Journal of Alloys and Compounds, 685, 194–201.CrossRef
63.
go back to reference Zhang, C., Beidaghi, M., Naguib, M., Lukatskaya, M. R., Zhao, M.-Q., Dyatkin, B., et al. (2016). Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chemistry of Materials, 28(11), 3937–3943.CrossRef Zhang, C., Beidaghi, M., Naguib, M., Lukatskaya, M. R., Zhao, M.-Q., Dyatkin, B., et al. (2016). Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chemistry of Materials, 28(11), 3937–3943.CrossRef
64.
go back to reference Zhu, J., Lu, X., & Wang, L. (2016). Synthesis of a MoO3/Ti3C2Tx composite with enhanced capacitive performance for supercapacitors. RSC Advances, 6(100), 98506–98513.CrossRef Zhu, J., Lu, X., & Wang, L. (2016). Synthesis of a MoO3/Ti3C2Tx composite with enhanced capacitive performance for supercapacitors. RSC Advances, 6(100), 98506–98513.CrossRef
65.
go back to reference Navarro-Suárez, A. M., Van Aken, K. L., Mathis, T., Makaryan, T., Yan, J., Carretero-González, J., et al. (2018). Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochimica Acta, 259, 752–761.CrossRef Navarro-Suárez, A. M., Van Aken, K. L., Mathis, T., Makaryan, T., Yan, J., Carretero-González, J., et al. (2018). Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochimica Acta, 259, 752–761.CrossRef
66.
go back to reference Xia, Q. X., Fu, J., Yun, J. M., Mane, R. S., & Kim, K. H. (2017). High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 7(18), 11000–11011.CrossRef Xia, Q. X., Fu, J., Yun, J. M., Mane, R. S., & Kim, K. H. (2017). High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 7(18), 11000–11011.CrossRef
67.
go back to reference Jiang, Q., Kurra, N., Alhabeb, M., Gogotsi, Y., & Alshareef, H. N. (2018). All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Advanced Energy Materials, 8(13), 1703043.CrossRef Jiang, Q., Kurra, N., Alhabeb, M., Gogotsi, Y., & Alshareef, H. N. (2018). All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Advanced Energy Materials, 8(13), 1703043.CrossRef
68.
go back to reference Li, L., Zhang, M., Zhang, X., & Zhang, Z. (2017). New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. Journal of Power Sources, 364, 234–241.CrossRef Li, L., Zhang, M., Zhang, X., & Zhang, Z. (2017). New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. Journal of Power Sources, 364, 234–241.CrossRef
69.
go back to reference Zhao, R., Wang, M., Zhao, D., Li, H., Wang, C., & Yin, L. (2018). Molecular-level Heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Letters, 3(1), 132–140.CrossRef Zhao, R., Wang, M., Zhao, D., Li, H., Wang, C., & Yin, L. (2018). Molecular-level Heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Letters, 3(1), 132–140.CrossRef
70.
go back to reference Wang, X., Mathis, T. S., Li, K., Lin, Z., Vlcek, L., Torita, T., Osti, N. C., Hatter, C., Urbankowski, P., Sarycheva, A., Tyagi, M., Mamontov, E., Simon, P., & Gogotsi, Y. (2019). Influences from solvents on charge storage in titanium carbide MXenes. Nature Energy, 4(3), 241–248.CrossRef Wang, X., Mathis, T. S., Li, K., Lin, Z., Vlcek, L., Torita, T., Osti, N. C., Hatter, C., Urbankowski, P., Sarycheva, A., Tyagi, M., Mamontov, E., Simon, P., & Gogotsi, Y. (2019). Influences from solvents on charge storage in titanium carbide MXenes. Nature Energy, 4(3), 241–248.CrossRef
71.
go back to reference Lu, X., Yu, M., Wang, G., Tong, Y., & Li, Y. (2014). Flexible solid-state supercapacitors: Design, fabrication and applications. Energy & Environmental Science, 7(7), 2160–2181.CrossRef Lu, X., Yu, M., Wang, G., Tong, Y., & Li, Y. (2014). Flexible solid-state supercapacitors: Design, fabrication and applications. Energy & Environmental Science, 7(7), 2160–2181.CrossRef
72.
go back to reference Peng, Y.-Y., Akuzum, B., Kurra, N., Zhao, M.-Q., Alhabeb, M., Anasori, B., et al. (2016). All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy & Environmental Science, 9(9), 2847–2854.CrossRef Peng, Y.-Y., Akuzum, B., Kurra, N., Zhao, M.-Q., Alhabeb, M., Anasori, B., et al. (2016). All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy & Environmental Science, 9(9), 2847–2854.CrossRef
73.
go back to reference Hu, M., Li, Z., Li, G., Hu, T., Zhang, C., & Wang, X. (2017). All-solid-state flexible fiber-based MXene supercapacitors. Advanced Materials Technologies, 2(10), 1700143.CrossRef Hu, M., Li, Z., Li, G., Hu, T., Zhang, C., & Wang, X. (2017). All-solid-state flexible fiber-based MXene supercapacitors. Advanced Materials Technologies, 2(10), 1700143.CrossRef
74.
go back to reference Qin, L., Tao, Q., El Ghazaly, A., Fernandez-Rodriguez, J., Persson, P. O. Å., Rosen, J., et al. (2018). High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS. Advanced Functional Materials, 28(2), 1703808.CrossRef Qin, L., Tao, Q., El Ghazaly, A., Fernandez-Rodriguez, J., Persson, P. O. Å., Rosen, J., et al. (2018). High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS. Advanced Functional Materials, 28(2), 1703808.CrossRef
75.
go back to reference Kurra, N., Ahmed, B., Gogotsi, Y., & Alshareef, H. N. (2016). MXene-on-Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 6(24), 1601372.CrossRef Kurra, N., Ahmed, B., Gogotsi, Y., & Alshareef, H. N. (2016). MXene-on-Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 6(24), 1601372.CrossRef
76.
go back to reference Zhang, C. J., Kremer, M. P., Seral-Ascaso, A., Park, S.-H., McEvoy, N., Anasori, B., et al. (2018). Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Advanced Functional Materials, 28(9), 1705506.CrossRef Zhang, C. J., Kremer, M. P., Seral-Ascaso, A., Park, S.-H., McEvoy, N., Anasori, B., et al. (2018). Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Advanced Functional Materials, 28(9), 1705506.CrossRef
Metadata
Title
MXenes for Supercapacitor Application
Authors
Zifeng Lin
Patrice Simon
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19026-2_18