Skip to main content
Top

2019 | OriginalPaper | Chapter

17. Optical Properties of MXenes

Authors : Krishnakali Chaudhuri, Zhuoxian Wang, Mohamed Alhabeb, Kathleen Maleski, Yury Gogotsi, Vladimir Shalaev, Alexandra Boltasseva

Published in: 2D Metal Carbides and Nitrides (MXenes)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the past decade, two-dimensional (2D) materials have had a significant impact on the physics and optics research community as they are observed to interact with light in a large variety of unique ways. MXenes have been added to this class of 2D in 2011. Ever since their discovery, they have been explored by a growing number of different fields of research, including optics and nanophotonics. In relation to optics, in the past few years, researchers have demonstrated a number of widely useful and interesting features of the MXenes, for example, optical transparency, plasmonic behavior, optical nonlinearity, efficient photothermal conversion, tunability of optical response, etc. These have led to application of the MXenes in functional metamaterial devices, mode-locked lasers, surface-enhanced Raman spectroscopy (SERS), photothermal therapy (PTT), and so on. In this chapter, we start by reviewing the theoretical and experimental approaches in studying the optical properties of the MXenes and then discuss the impactful optical device demonstrations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451–10453.CrossRef Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451–10453.CrossRef
2.
go back to reference Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., & Kis, A. (2017). 2D transition metal dichalcogenides. Nature Reviews Materials, 2(8), 17033.CrossRef Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., & Kis, A. (2017). 2D transition metal dichalcogenides. Nature Reviews Materials, 2(8), 17033.CrossRef
3.
go back to reference Xia, F., Wang, H., & Jia, Y. (2014). Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458.CrossRef Xia, F., Wang, H., & Jia, Y. (2014). Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458.CrossRef
4.
go back to reference Koppens, F. H. L., Chang, D. E., & García de Abajo, F. J. (2011). Graphene plasmonics: A platform for strong light-matter interactions. Nano Letters, 11(8), 3370–3377.CrossRef Koppens, F. H. L., Chang, D. E., & García de Abajo, F. J. (2011). Graphene plasmonics: A platform for strong light-matter interactions. Nano Letters, 11(8), 3370–3377.CrossRef
5.
go back to reference Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S. K., & Colombo, L. (2014). Electronics based on two-dimensional materials. Nature Nanotechnology, 9(10), 768–779.CrossRef Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S. K., & Colombo, L. (2014). Electronics based on two-dimensional materials. Nature Nanotechnology, 9(10), 768–779.CrossRef
6.
go back to reference Xia, F., Wang, H., Xiao, D., Dubey, M., & Ramasubramaniam, A. (2014). Two-dimensional material nanophotonics. Nature Photonics, 8(12), 899–907.CrossRef Xia, F., Wang, H., Xiao, D., Dubey, M., & Ramasubramaniam, A. (2014). Two-dimensional material nanophotonics. Nature Photonics, 8(12), 899–907.CrossRef
7.
go back to reference Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.CrossRef Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.CrossRef
8.
go back to reference Wallace, P. R. (1947). The band theory of graphite. Physics Review, 71(9), 622–634.CrossRef Wallace, P. R. (1947). The band theory of graphite. Physics Review, 71(9), 622–634.CrossRef
9.
go back to reference Fei, Z., Rodin, A. S., Andreev, G. O., Bao, W., McLeod, A. S., Wagner, M., Zhang, L. M., Zhao, Z., Thiemens, M., Dominguez, G., et al. (2012). Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487(7405), 82–85.CrossRef Fei, Z., Rodin, A. S., Andreev, G. O., Bao, W., McLeod, A. S., Wagner, M., Zhang, L. M., Zhao, Z., Thiemens, M., Dominguez, G., et al. (2012). Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487(7405), 82–85.CrossRef
10.
go back to reference Pirruccio, G., Martín Moreno, L., Lozano, G., & Gómez Rivas, J. (2013). Coherent and broadband enhanced optical absorption in graphene. ACS Nano, 7(6), 4810–4817.CrossRef Pirruccio, G., Martín Moreno, L., Lozano, G., & Gómez Rivas, J. (2013). Coherent and broadband enhanced optical absorption in graphene. ACS Nano, 7(6), 4810–4817.CrossRef
11.
go back to reference Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D. M., & Ferrari, A. C. (2010). Graphene mode-locked ultrafast laser. ACS Nano, 4(2), 803–810.CrossRef Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D. M., & Ferrari, A. C. (2010). Graphene mode-locked ultrafast laser. ACS Nano, 4(2), 803–810.CrossRef
12.
go back to reference Kim, Y. D., Kim, H., Cho, Y., Ryoo, J. H., Park, C.-H., Kim, P., Kim, Y. S., Lee, S., Li, Y., Park, S.-N., et al. (2015). Bright visible light emission from graphene. Nature Nanotechnology, 10(8), 676–681.CrossRef Kim, Y. D., Kim, H., Cho, Y., Ryoo, J. H., Park, C.-H., Kim, P., Kim, Y. S., Lee, S., Li, Y., Park, S.-N., et al. (2015). Bright visible light emission from graphene. Nature Nanotechnology, 10(8), 676–681.CrossRef
13.
go back to reference Lui, C. H., Mak, K. F., Shan, J., & Heinz, T. F. (2010). Ultrafast photoluminescence from graphene. Physical Review Letters, 105(12), 127404.CrossRef Lui, C. H., Mak, K. F., Shan, J., & Heinz, T. F. (2010). Ultrafast photoluminescence from graphene. Physical Review Letters, 105(12), 127404.CrossRef
14.
go back to reference Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308–1308.CrossRef Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308–1308.CrossRef
15.
go back to reference Blake, P., Hill, E. W., Castro Neto, A. H., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., & Geim, A. K. (2007). Making graphene visible. Applied Physics Letters, 91(6), 63124.CrossRef Blake, P., Hill, E. W., Castro Neto, A. H., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., & Geim, A. K. (2007). Making graphene visible. Applied Physics Letters, 91(6), 63124.CrossRef
16.
go back to reference Xiao, D., Liu, G.-B., Feng, W., Xu, X., & Yao, W. (2012). Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 108(19), 196802.CrossRef Xiao, D., Liu, G.-B., Feng, W., Xu, X., & Yao, W. (2012). Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 108(19), 196802.CrossRef
17.
go back to reference Yu, H., Liu, G.-B., Gong, P., Xu, X., & Yao, W. (2014). Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nature Communications, 5(May), 3876.CrossRef Yu, H., Liu, G.-B., Gong, P., Xu, X., & Yao, W. (2014). Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nature Communications, 5(May), 3876.CrossRef
18.
go back to reference Berkelbach, T. C., Hybertsen, M. S., & Reichman, D. R. (2013). Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Physical Review B, 88(4), 45318.CrossRef Berkelbach, T. C., Hybertsen, M. S., & Reichman, D. R. (2013). Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Physical Review B, 88(4), 45318.CrossRef
19.
go back to reference Rodin, A. S., Carvalho, A., & Castro Neto, A. H. (2014). Excitons in anisotropic two-dimensional semiconducting crystals. Physical Review B, 90(7), 1–7.CrossRef Rodin, A. S., Carvalho, A., & Castro Neto, A. H. (2014). Excitons in anisotropic two-dimensional semiconducting crystals. Physical Review B, 90(7), 1–7.CrossRef
20.
go back to reference Mak, K. F., He, K., Shan, J., & Heinz, T. F. (2012). Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 7(8), 494–498.CrossRef Mak, K. F., He, K., Shan, J., & Heinz, T. F. (2012). Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 7(8), 494–498.CrossRef
21.
go back to reference Clark, D. J., Senthilkumar, V., Le, C. T., Weerawarne, D. L., Shim, B., Jang, J. I., Shim, J. H., Cho, J., Sim, Y., Seong, M.-J., et al. (2014). Strong optical nonlinearity of CVD-grown MoS2 monolayer as probed by wavelength-dependent second-harmonic generation. Physical Review B, 90(12), 121409.CrossRef Clark, D. J., Senthilkumar, V., Le, C. T., Weerawarne, D. L., Shim, B., Jang, J. I., Shim, J. H., Cho, J., Sim, Y., Seong, M.-J., et al. (2014). Strong optical nonlinearity of CVD-grown MoS2 monolayer as probed by wavelength-dependent second-harmonic generation. Physical Review B, 90(12), 121409.CrossRef
22.
go back to reference Wang, R., Chien, H. C., Kumar, J., Kumar, N., Chiu, H. Y., & Zhao, H. (2014). Third-harmonic generation in ultrathin films of MoS2. ACS Applied Materials & Interfaces, 6, 314–318.CrossRef Wang, R., Chien, H. C., Kumar, J., Kumar, N., Chiu, H. Y., & Zhao, H. (2014). Third-harmonic generation in ultrathin films of MoS2. ACS Applied Materials & Interfaces, 6, 314–318.CrossRef
23.
go back to reference Zhang, H., Lu, S. B., Zheng, J., Du, J., Wen, S. C., Tang, D. Y., & Loh, K. P. (2014). Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Optics Express, 22(6), 7249.CrossRef Zhang, H., Lu, S. B., Zheng, J., Du, J., Wen, S. C., Tang, D. Y., & Loh, K. P. (2014). Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Optics Express, 22(6), 7249.CrossRef
24.
go back to reference Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., André, R., Dang, L. S., & Deveaud-Plédran, B. (2008). Quantized vortices in an exciton–polariton condensate. Nature Physics, 4(9), 706–710.CrossRef Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., André, R., Dang, L. S., & Deveaud-Plédran, B. (2008). Quantized vortices in an exciton–polariton condensate. Nature Physics, 4(9), 706–710.CrossRef
25.
go back to reference Ye, Y., Wong, Z. J., Lu, X., Ni, X., Zhu, H., Chen, X., Wang, Y., & Zhang, X. (2015). Monolayer excitonic laser. Nature Photonics, 9(11), 733–737.CrossRef Ye, Y., Wong, Z. J., Lu, X., Ni, X., Zhu, H., Chen, X., Wang, Y., & Zhang, X. (2015). Monolayer excitonic laser. Nature Photonics, 9(11), 733–737.CrossRef
26.
go back to reference Ye, Y., Dou, X., Ding, K., Chen, Y., Jiang, D., Yang, F., & Sun, B. (2017). Single photon emission from deep-level defects in monolayer WSe2. Physical Review B, 95(24), 245313.CrossRef Ye, Y., Dou, X., Ding, K., Chen, Y., Jiang, D., Yang, F., & Sun, B. (2017). Single photon emission from deep-level defects in monolayer WSe2. Physical Review B, 95(24), 245313.CrossRef
27.
go back to reference Ling, X., Wang, H., Huang, S., Xia, F., & Dresselhaus, M. S. (2015). The renaissance of black phosphorus. Proceedings of the National Academy of Sciences, 112(15), 201416581.CrossRef Ling, X., Wang, H., Huang, S., Xia, F., & Dresselhaus, M. S. (2015). The renaissance of black phosphorus. Proceedings of the National Academy of Sciences, 112(15), 201416581.CrossRef
28.
go back to reference Low, T., Rodin, A. S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., & Neto, A. H. C. (2014). Tunable optical properties of multilayers black phosphorus. arXiv, 75434, 1–5. Low, T., Rodin, A. S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., & Neto, A. H. C. (2014). Tunable optical properties of multilayers black phosphorus. arXiv, 75434, 1–5.
29.
go back to reference Tran, V., Soklaski, R., Liang, Y., & Yang, L. (2014). Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 89(23), 1–6.CrossRef Tran, V., Soklaski, R., Liang, Y., & Yang, L. (2014). Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 89(23), 1–6.CrossRef
30.
go back to reference Qiao, J., Kong, X., Hu, Z.-X., Yang, F., & Ji, W. (2014). High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 5, 4475.CrossRef Qiao, J., Kong, X., Hu, Z.-X., Yang, F., & Ji, W. (2014). High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 5, 4475.CrossRef
31.
go back to reference Mao, N., Tang, J., Xie, L., Wu, J., Han, B., Lin, J., Deng, S., Ji, W., Xu, H., Liu, K., et al. (2016). Optical anisotropy of black phosphorus in the visible regime. Journal of the American Chemical Society, 138(1), 300–305.CrossRef Mao, N., Tang, J., Xie, L., Wu, J., Han, B., Lin, J., Deng, S., Ji, W., Xu, H., Liu, K., et al. (2016). Optical anisotropy of black phosphorus in the visible regime. Journal of the American Chemical Society, 138(1), 300–305.CrossRef
32.
go back to reference Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R. P., Lundstrom, M. S., Ye, P. D., & Xu, X. (2015). Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nature Communications, 6(1), 1–32. Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R. P., Lundstrom, M. S., Ye, P. D., & Xu, X. (2015). Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nature Communications, 6(1), 1–32.
33.
go back to reference Low, T., Rold, R., Wang, H., Xia, F., Avouris, P., & Mart, L. (2014). Plasmons and screening in monolayer and multilayer black phosphorus. Physical Review Letters, 67(12), 3–7. Low, T., Rold, R., Wang, H., Xia, F., Avouris, P., & Mart, L. (2014). Plasmons and screening in monolayer and multilayer black phosphorus. Physical Review Letters, 67(12), 3–7.
34.
go back to reference Chen, Y., Jiang, G., Chen, S., Guo, Z., Yu, X., Zhao, C., Zhang, H., Bao, Q., Wen, S., Tang, D., et al. (2015). Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Optics Express, 23(10), 12823.CrossRef Chen, Y., Jiang, G., Chen, S., Guo, Z., Yu, X., Zhao, C., Zhang, H., Bao, Q., Wen, S., Tang, D., et al. (2015). Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Optics Express, 23(10), 12823.CrossRef
35.
go back to reference Li, L., Wang, Y., & Wang, X. (2017). Ultrafast pulse generation with black phosphorus solution saturable absorber. Laser Physics, 27(8), 85104.CrossRef Li, L., Wang, Y., & Wang, X. (2017). Ultrafast pulse generation with black phosphorus solution saturable absorber. Laser Physics, 27(8), 85104.CrossRef
36.
go back to reference Sotor, J., Sobon, G., Macherzynski, W., Paletko, P., & Abramski, K. M. (2015). Black phosphorus saturable absorber for ultrashort pulse generation. Applied Physics Letters, 107(5), 51108.CrossRef Sotor, J., Sobon, G., Macherzynski, W., Paletko, P., & Abramski, K. M. (2015). Black phosphorus saturable absorber for ultrashort pulse generation. Applied Physics Letters, 107(5), 51108.CrossRef
37.
go back to reference Naguib, M. (2017). Chapter 4: Two-dimensional transition metal carbides and carbonitrides. In Y. Gogotsi (Ed.), Nanomaterials handbook (pp. 83–102). Boca Raton: Taylor & Francis, CRC Press.CrossRef Naguib, M. (2017). Chapter 4: Two-dimensional transition metal carbides and carbonitrides. In Y. Gogotsi (Ed.), Nanomaterials handbook (pp. 83–102). Boca Raton: Taylor & Francis, CRC Press.CrossRef
38.
go back to reference Naguib, M., & Gogotsi, Y. (2015). Synthesis of two-dimensional materials by selective extraction. Accounts of Chemical Research, 48(1), 128–135.CrossRef Naguib, M., & Gogotsi, Y. (2015). Synthesis of two-dimensional materials by selective extraction. Accounts of Chemical Research, 48(1), 128–135.CrossRef
39.
go back to reference Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., & Gogotsi, Y. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29(18), 7633–7644.CrossRef Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., & Gogotsi, Y. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29(18), 7633–7644.CrossRef
40.
go back to reference Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L.-Å., May, S. J., Hultman, L., Gogotsi, Y., Eklund, P., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26(7), 2374–2381.CrossRef Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L.-Å., May, S. J., Hultman, L., Gogotsi, Y., Eklund, P., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26(7), 2374–2381.CrossRef
41.
go back to reference Kajiyama, S., Szabova, L., Sodeyama, K., Iinuma, H., Morita, R., Gotoh, K., Tateyama, Y., Okubo, M., & Yamada, A. (2016). Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano, 10(3), 3334–3341.CrossRef Kajiyama, S., Szabova, L., Sodeyama, K., Iinuma, H., Morita, R., Gotoh, K., Tateyama, Y., Okubo, M., & Yamada, A. (2016). Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano, 10(3), 3334–3341.CrossRef
42.
go back to reference Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M. D., Halim, J., Taberna, P.-L., Barsoum, M. W., Simon, P., et al. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2(8), 17105.CrossRef Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M. D., Halim, J., Taberna, P.-L., Barsoum, M. W., Simon, P., et al. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2(8), 17105.CrossRef
43.
go back to reference Tian, Y., Yang, C., Que, W., Liu, X., Yin, X., & Kong, L. B. (2017). Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. Journal of Power Sources, 359, 332–339.CrossRef Tian, Y., Yang, C., Que, W., Liu, X., Yin, X., & Kong, L. B. (2017). Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. Journal of Power Sources, 359, 332–339.CrossRef
44.
go back to reference Yang, C., Que, W., Yin, X., Tian, Y., Yang, Y., & Que, M. (2017). Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochimica Acta, 225, 416–424.CrossRef Yang, C., Que, W., Yin, X., Tian, Y., Yang, Y., & Que, M. (2017). Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochimica Acta, 225, 416–424.CrossRef
45.
go back to reference Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Man Hong, S., Koo, C. M., & Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.CrossRef Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Man Hong, S., Koo, C. M., & Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.CrossRef
46.
go back to reference Geunchang, C., Faisal, S., Young-Mi, B., Min, J. Y., Hyunchul, P., Mohamed, A., Babak, A., Dai-Sik, K., Min, K. C., Yury, G., et al. (2018). Enhanced terahertz shielding of MXenes with nano-metamaterials. Advanced Optical Materials, 6(5), 1701076.CrossRef Geunchang, C., Faisal, S., Young-Mi, B., Min, J. Y., Hyunchul, P., Mohamed, A., Babak, A., Dai-Sik, K., Min, K. C., Yury, G., et al. (2018). Enhanced terahertz shielding of MXenes with nano-metamaterials. Advanced Optical Materials, 6(5), 1701076.CrossRef
47.
go back to reference Li, R., Zhang, L., Shi, L., & Wang, P. (2017). MXene Ti3C2 : An effective 2D light-to-heat conversion material. ACS Nano, 11(4), 3752–3759.CrossRef Li, R., Zhang, L., Shi, L., & Wang, P. (2017). MXene Ti3C2 : An effective 2D light-to-heat conversion material. ACS Nano, 11(4), 3752–3759.CrossRef
48.
go back to reference Jhon, Y. M. I., Koo, J., Anasori, B., Seo, M., Lee, J. H., Gogotsi, Y., & Jhon, Y. M. I. (2017). Metallic MXene saturable absorber for femtosecond mode-locked lasers. Advanced Materials, 29(40), 1702496.CrossRef Jhon, Y. M. I., Koo, J., Anasori, B., Seo, M., Lee, J. H., Gogotsi, Y., & Jhon, Y. M. I. (2017). Metallic MXene saturable absorber for femtosecond mode-locked lasers. Advanced Materials, 29(40), 1702496.CrossRef
49.
go back to reference Satheeshkumar, E., Makaryan, T., Melikyan, A., Minassian, H., Gogotsi, Y., & Yoshimura, M. (2016). One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Scientific Reports, 6(1), 32049.CrossRef Satheeshkumar, E., Makaryan, T., Melikyan, A., Minassian, H., Gogotsi, Y., & Yoshimura, M. (2016). One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Scientific Reports, 6(1), 32049.CrossRef
50.
go back to reference Sarycheva, A., Makaryan, T., Maleski, K., Satheeshkumar, E., Melikyan, A., Minassian, H., Yoshimura, M., & Gogotsi, Y. (2017). Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. Journal of Physical Chemistry C, 121(36), 19983–19988.CrossRef Sarycheva, A., Makaryan, T., Maleski, K., Satheeshkumar, E., Melikyan, A., Minassian, H., Yoshimura, M., & Gogotsi, Y. (2017). Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. Journal of Physical Chemistry C, 121(36), 19983–19988.CrossRef
51.
go back to reference Chaudhuri, K., Alhabeb, M., Wang, Z., Shalaev, V. M., Gogotsi, Y., & Boltasseva, A. (2018). Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics, 5(3), 1115–1122. Chaudhuri, K., Alhabeb, M., Wang, Z., Shalaev, V. M., Gogotsi, Y., & Boltasseva, A. (2018). Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics, 5(3), 1115–1122.
52.
go back to reference Dong, Y., Chertopalov, S., Maleski, K., Anasori, B., Hu, L., Bhattacharya, S., Rao, A. M., Gogotsi, Y., Mochalin, V. N., & Podila, R. (2018). Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Advanced Materials, 30(10), 1705714.CrossRef Dong, Y., Chertopalov, S., Maleski, K., Anasori, B., Hu, L., Bhattacharya, S., Rao, A. M., Gogotsi, Y., Mochalin, V. N., & Podila, R. (2018). Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Advanced Materials, 30(10), 1705714.CrossRef
53.
go back to reference Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., & Yunoki, S. (2017). Electronic properties and applications of MXenes: A theoretical review. Journal of Materials Chemistry C, 5(10), 2488–2503.CrossRef Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., & Yunoki, S. (2017). Electronic properties and applications of MXenes: A theoretical review. Journal of Materials Chemistry C, 5(10), 2488–2503.CrossRef
54.
go back to reference Lashgari, H., Abolhassani, M. R., Boochani, A., Elahi, S. M., & Khodadadi, J. (2014). Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Solid State Communications, 195, 61–69.CrossRef Lashgari, H., Abolhassani, M. R., Boochani, A., Elahi, S. M., & Khodadadi, J. (2014). Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Solid State Communications, 195, 61–69.CrossRef
55.
go back to reference Ambrosch-Draxl, C., & Sofo, J. O. (2006). Linear optical properties of solids within the full-potential linearized augmented planewave method. Computer Physics Communications, 175(1), 1–14.CrossRef Ambrosch-Draxl, C., & Sofo, J. O. (2006). Linear optical properties of solids within the full-potential linearized augmented planewave method. Computer Physics Communications, 175(1), 1–14.CrossRef
56.
go back to reference Ren, X., Rinke, P., Joas, C., & Scheffler, M. (2012). Random-phase approximation and its applications in computational chemistry and materials science. Journal of Materials Science, 47(21), 7447–7471.CrossRef Ren, X., Rinke, P., Joas, C., & Scheffler, M. (2012). Random-phase approximation and its applications in computational chemistry and materials science. Journal of Materials Science, 47(21), 7447–7471.CrossRef
57.
go back to reference Fox, M. (2001). Optical properties of solids. Oxford: Oxford University Press. Fox, M. (2001). Optical properties of solids. Oxford: Oxford University Press.
58.
go back to reference Wooten, F. (1972). Optical properties of solids. New York/London: Academic Press. Wooten, F. (1972). Optical properties of solids. New York/London: Academic Press.
59.
go back to reference Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2012). Two-dimensional transition metal carbides. ACS Nano, 6(2), 1322–1331.CrossRef Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2012). Two-dimensional transition metal carbides. ACS Nano, 6(2), 1322–1331.CrossRef
60.
go back to reference Zhang, X., Ma, Z., Zhao, X., Tang, Q., & Zhou, Z. (2015). Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes. Journal of Materials Chemistry A, 3(9), 4960–4966.CrossRef Zhang, X., Ma, Z., Zhao, X., Tang, Q., & Zhou, Z. (2015). Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes. Journal of Materials Chemistry A, 3(9), 4960–4966.CrossRef
61.
go back to reference Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.CrossRef Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.CrossRef
62.
go back to reference Berdiyorov, G. R. (2016). Optical properties of functionalized Ti3C2Tx (T = F, O, OH) MXene: First-principles calculations. AIP Advances, 6(5), 55105.CrossRef Berdiyorov, G. R. (2016). Optical properties of functionalized Ti3C2Tx (T = F, O, OH) MXene: First-principles calculations. AIP Advances, 6(5), 55105.CrossRef
63.
go back to reference Harrison, W. A. (1970). Solid state theory. New York: McGrawHill. Harrison, W. A. (1970). Solid state theory. New York: McGrawHill.
64.
go back to reference Dillon, A. D., Ghidiu, M. J., Krick, A. L., Griggs, J., May, S. J., Gogotsi, Y., Barsoum, M. W., & Fafarman, A. T. (2016). Highly conductive optical quality solution-processed films of 2D titanium carbide. Advanced Functional Materials, 26(23), 4162–4168.CrossRef Dillon, A. D., Ghidiu, M. J., Krick, A. L., Griggs, J., May, S. J., Gogotsi, Y., Barsoum, M. W., & Fafarman, A. T. (2016). Highly conductive optical quality solution-processed films of 2D titanium carbide. Advanced Functional Materials, 26(23), 4162–4168.CrossRef
65.
go back to reference Hantanasirisakul, K., Zhao, M.-Q., Urbankowski, P., Halim, J., Anasori, B., Kota, S., Ren, C. E., Barsoum, M. W., & Gogotsi, Y. (2016). Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Advanced Electronic Materials, 2(6), 1600050.CrossRef Hantanasirisakul, K., Zhao, M.-Q., Urbankowski, P., Halim, J., Anasori, B., Kota, S., Ren, C. E., Barsoum, M. W., & Gogotsi, Y. (2016). Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Advanced Electronic Materials, 2(6), 1600050.CrossRef
66.
go back to reference Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17(1), 384–391.CrossRef Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17(1), 384–391.CrossRef
67.
go back to reference Lin, H., Wang, Y., Gao, S., Chen, Y., & Shi, J. (2018). Theranostic 2D tantalum carbide (MXene). Advanced Materials, 30(4), 1703284.CrossRef Lin, H., Wang, Y., Gao, S., Chen, Y., & Shi, J. (2018). Theranostic 2D tantalum carbide (MXene). Advanced Materials, 30(4), 1703284.CrossRef
68.
go back to reference Jiang, X., Liu, S., Liang, W., Luo, S., He, Z., Ge, Y., Wang, H., Cao, R., Zhang, F., Wen, Q., et al. (2018). Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser & Photonics Reviews, 12(2), 1700229.CrossRef Jiang, X., Liu, S., Liang, W., Luo, S., He, Z., Ge, Y., Wang, H., Cao, R., Zhang, F., Wen, Q., et al. (2018). Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser & Photonics Reviews, 12(2), 1700229.CrossRef
69.
go back to reference Maier, S. A. (2007). Plasmonics: Fundamentals and applications. Boston, MA: Springer.CrossRef Maier, S. A. (2007). Plasmonics: Fundamentals and applications. Boston, MA: Springer.CrossRef
70.
go back to reference Maier, S. a., & Atwater, H. a. (2005). Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics, 98(1), 11101.CrossRef Maier, S. a., & Atwater, H. a. (2005). Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics, 98(1), 11101.CrossRef
71.
go back to reference Mauchamp, V., Bugnet, M., Bellido, E. P., Botton, G. a., Moreau, P., Magne, D., Naguib, M., Cabioc’h, T., & Barsoum, M. W. (2014). Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects. Physical Review B, 89(23), 235428.CrossRef Mauchamp, V., Bugnet, M., Bellido, E. P., Botton, G. a., Moreau, P., Magne, D., Naguib, M., Cabioc’h, T., & Barsoum, M. W. (2014). Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects. Physical Review B, 89(23), 235428.CrossRef
72.
go back to reference Kumar, A., & Ahluwalia, P. K. K. (2012). Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): Effect of quantum confinement. Physica B: Condensed Matter, 407(24), 4627–4634.CrossRef Kumar, A., & Ahluwalia, P. K. K. (2012). Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): Effect of quantum confinement. Physica B: Condensed Matter, 407(24), 4627–4634.CrossRef
73.
go back to reference Boersch, H., Geiger, J., Imbusch, A., & Niedrig, N. (1966). High resolution investigation of the energy losses of 30 keV electrons in aluminum foils of various thicknesses. Physics Letters, 22(2), 146–147.CrossRef Boersch, H., Geiger, J., Imbusch, A., & Niedrig, N. (1966). High resolution investigation of the energy losses of 30 keV electrons in aluminum foils of various thicknesses. Physics Letters, 22(2), 146–147.CrossRef
74.
go back to reference Rast, L., Sullivan, T. J., & Tewary, V. K. (2013). Stratified graphene/noble metal systems for low-loss plasmonics applications. Physical Review B, 87(4), 45428.CrossRef Rast, L., Sullivan, T. J., & Tewary, V. K. (2013). Stratified graphene/noble metal systems for low-loss plasmonics applications. Physical Review B, 87(4), 45428.CrossRef
75.
go back to reference Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2013). Planar photonics with metasurfaces. Science, 339(6125), 1232009–1232009.CrossRef Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2013). Planar photonics with metasurfaces. Science, 339(6125), 1232009–1232009.CrossRef
76.
go back to reference Pors, A., Albrektsen, O., Radko, I. P., & Bozhevolnyi, S. I. (2013). Gap plasmon-based metasurfaces for total control of reflected light. Scientific Reports, 3, 2155.CrossRef Pors, A., Albrektsen, O., Radko, I. P., & Bozhevolnyi, S. I. (2013). Gap plasmon-based metasurfaces for total control of reflected light. Scientific Reports, 3, 2155.CrossRef
77.
go back to reference Jung, J., Søndergaard, T., & Bozhevolnyi, S. I. (2009). Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons. Physical Review B, 79(3), 35401.CrossRef Jung, J., Søndergaard, T., & Bozhevolnyi, S. I. (2009). Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons. Physical Review B, 79(3), 35401.CrossRef
78.
go back to reference Bozhevolnyi, S. I., & Søndergaard, T. (2007). General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators. Optics Express, 15(17), 10869–10877.CrossRef Bozhevolnyi, S. I., & Søndergaard, T. (2007). General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators. Optics Express, 15(17), 10869–10877.CrossRef
79.
go back to reference Boyd, R. W. (Ed.). (2008). Nonlinear optics (3rd ed.). Amsterdam/Boston: Academic Press. Boyd, R. W. (Ed.). (2008). Nonlinear optics (3rd ed.). Amsterdam/Boston: Academic Press.
80.
go back to reference Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2008). Plasmonic Photothermal Therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23(3), 217–228.CrossRef Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2008). Plasmonic Photothermal Therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23(3), 217–228.CrossRef
81.
go back to reference Robinson, J. T., Tabakman, S. M., Liang, Y., Wang, H., Sanchez Casalongue, H., Vinh, D., & Dai, H. (2011). Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 133(17), 6825–6831.CrossRef Robinson, J. T., Tabakman, S. M., Liang, Y., Wang, H., Sanchez Casalongue, H., Vinh, D., & Dai, H. (2011). Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 133(17), 6825–6831.CrossRef
82.
go back to reference Akhavan, O., & Ghaderi, E. (2013). Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small, 9(21), 3593–3601.CrossRef Akhavan, O., & Ghaderi, E. (2013). Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small, 9(21), 3593–3601.CrossRef
83.
go back to reference Liu, T., Wang, C., Gu, X., Gong, H., Cheng, L., Shi, X., Feng, L., Sun, B., & Liu, Z. (2014). Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Advanced Materials, 26(21), 3433–3440.CrossRef Liu, T., Wang, C., Gu, X., Gong, H., Cheng, L., Shi, X., Feng, L., Sun, B., & Liu, Z. (2014). Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Advanced Materials, 26(21), 3433–3440.CrossRef
84.
go back to reference Cheng, L., Liu, J., Gu, X., Gong, H., Shi, X., Liu, T., Wang, C., Wang, X., Liu, G., Xing, H., et al. (2014). PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Advanced Materials, 26(12), 1886–1893.CrossRef Cheng, L., Liu, J., Gu, X., Gong, H., Shi, X., Liu, T., Wang, C., Wang, X., Liu, G., Xing, H., et al. (2014). PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Advanced Materials, 26(12), 1886–1893.CrossRef
85.
go back to reference Lin, H., Gao, S., Dai, C., Chen, Y., & Shi, J. (2017). A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 139(45), 16235–16247.CrossRef Lin, H., Gao, S., Dai, C., Chen, Y., & Shi, J. (2017). A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 139(45), 16235–16247.CrossRef
86.
go back to reference Lipatov, A., Alhabeb, M., Lukatskaya, M. R., Boson, A., Gogotsi, Y., & Sinitskii, A. (2016). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials, 2(12), 1600255.CrossRef Lipatov, A., Alhabeb, M., Lukatskaya, M. R., Boson, A., Gogotsi, Y., & Sinitskii, A. (2016). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials, 2(12), 1600255.CrossRef
87.
go back to reference Kinsey, N., DeVault, C., Kim, J., Ferrera, M., Shalaev, V. M., & Boltasseva, A. (2015). Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica, 2(7), 616–622.CrossRef Kinsey, N., DeVault, C., Kim, J., Ferrera, M., Shalaev, V. M., & Boltasseva, A. (2015). Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica, 2(7), 616–622.CrossRef
88.
go back to reference Marini, A., & García de Abajo, F. J. (2016). Graphene-based active random metamaterials for cavity-free lasing. Physical Review Letters, 116(21), 217401.CrossRef Marini, A., & García de Abajo, F. J. (2016). Graphene-based active random metamaterials for cavity-free lasing. Physical Review Letters, 116(21), 217401.CrossRef
89.
go back to reference Wang, Z., Meng, X., Chaudhuri, K., Alhabeb, M., Azzam, S. I., Kildishev, A. V., Kim, Y. L., Shalaev, V. M., Gogotsi, Y., & Boltasseva, A. (2017). Active metamaterials based on monolayer titanium carbide MXene for random lasing. In Conference on lasers and electro-optics (p. FTu4G.7). Washington, D.C.: OSA.CrossRef Wang, Z., Meng, X., Chaudhuri, K., Alhabeb, M., Azzam, S. I., Kildishev, A. V., Kim, Y. L., Shalaev, V. M., Gogotsi, Y., & Boltasseva, A. (2017). Active metamaterials based on monolayer titanium carbide MXene for random lasing. In Conference on lasers and electro-optics (p. FTu4G.7). Washington, D.C.: OSA.CrossRef
Metadata
Title
Optical Properties of MXenes
Authors
Krishnakali Chaudhuri
Zhuoxian Wang
Mohamed Alhabeb
Kathleen Maleski
Yury Gogotsi
Vladimir Shalaev
Alexandra Boltasseva
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19026-2_17