Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Nano-/Micro-engineering for Future Li–Ion Batteries

Authors : Prasit Kumar Dutta, Abhinanada Sengupta, Vishwas Goel, P. Preetham, Aakash Ahuja, Sagar Mitra

Published in: Nano-Energetic Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium–ion batteries are the key power sources for this technology based world, mainly in the modern mobile world. These batteries have served as the most prominent energy storage devices in case of smartphones, tablets, laptops, electric vehicles and grid-level storage. They offer many advantage in terms of high energy density, moderately high power density, high voltage, low self-discharge, and moderately long cycle life. There are various nano/micro- engineering techniques involved in fabrication of these devices. This chapter discusses in detail the various aspects of Lithium-ion batteries including storage mechanism to installation of various constituents of the battery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aurbach D, Markevich E, Salitra G (2018) Fluoroethylene Carbonate-Based Organic Electrolyte Solution for Very Stable Lithium Metal Stripping− Plating at a High Rate and High Areal Capacity. Meeting abstracts, MA2018–01, p 462 Aurbach D, Markevich E, Salitra G (2018) Fluoroethylene Carbonate-Based Organic Electrolyte Solution for Very Stable Lithium Metal Stripping− Plating at a High Rate and High Areal Capacity. Meeting abstracts, MA2018–01, p 462
go back to reference Bensebaa F (2013) Nanoparticle Assembling and System Integration. Nanoparticle assembling and system integration. In: Interface science and technology. Elsevier, Amsterdam, pp 185–277 Bensebaa F (2013) Nanoparticle Assembling and System Integration. Nanoparticle assembling and system integration. In: Interface science and technology. Elsevier, Amsterdam, pp 185–277
go back to reference Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chemie Int Ed 47:2930–2946CrossRef Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chemie Int Ed 47:2930–2946CrossRef
go back to reference Bubakova P, Pivokonsky M, Filip P (2013) Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol 235:540–549CrossRef Bubakova P, Pivokonsky M, Filip P (2013) Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol 235:540–549CrossRef
go back to reference Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008a) High-performance lithium battery anodes using silicon nanowires. Nat Nanotech 3:31CrossRef Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008a) High-performance lithium battery anodes using silicon nanowires. Nat Nanotech 3:31CrossRef
go back to reference Chan CK, Zhang XF, Cui Y (2008b) High capacity Li ion battery anodes using Ge nanowires. Nano Lett 8:307–309CrossRef Chan CK, Zhang XF, Cui Y (2008b) High capacity Li ion battery anodes using Ge nanowires. Nano Lett 8:307–309CrossRef
go back to reference Chen J, Cheng F (2009) Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res 42:713–723CrossRef Chen J, Cheng F (2009) Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res 42:713–723CrossRef
go back to reference Choi S, Kwon T-W, Coskun A, Choi JW (2017) Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357:279–283CrossRef Choi S, Kwon T-W, Coskun A, Choi JW (2017) Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357:279–283CrossRef
go back to reference Choy K (2003)Chemical vapour deposition of coatings. Prog Mater Sci 48:57–170CrossRef Choy K (2003)Chemical vapour deposition of coatings. Prog Mater Sci 48:57–170CrossRef
go back to reference Chung D-W, Shearing PR, Brandon NP, Harris SJ, García RE (2014) Particle size polydispersity in Li-ion batteries. J Electrochem Soc 161: A422–A430CrossRef Chung D-W, Shearing PR, Brandon NP, Harris SJ, García RE (2014) Particle size polydispersity in Li-ion batteries. J Electrochem Soc 161: A422–A430CrossRef
go back to reference Ding P, Pacek A (2009) Ultrasonic processing of suspensions of hematite nanopowder stabilized with sodium polyacrylate. AIChE 55:2796–2806CrossRef Ding P, Pacek A (2009) Ultrasonic processing of suspensions of hematite nanopowder stabilized with sodium polyacrylate. AIChE 55:2796–2806CrossRef
go back to reference Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef
go back to reference Dutta PK, Mitra S (2017) Efficient sodium storage: Experimental study of anode with additive-free ether-based electrolyte system. J Power Soc 349:152–162CrossRef Dutta PK, Mitra S (2017) Efficient sodium storage: Experimental study of anode with additive-free ether-based electrolyte system. J Power Soc 349:152–162CrossRef
go back to reference Dutta PK, Sen UK, Mitra S (2014) Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv 4:43155–43159CrossRef Dutta PK, Sen UK, Mitra S (2014) Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv 4:43155–43159CrossRef
go back to reference Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energ Environ Sci 4:3243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energ Environ Sci 4:3243–3262CrossRef
go back to reference Furquan M, Vijayalakshmi S, Mitra S (2018) Method of preparing silicon from sand. Google Patents Furquan M, Vijayalakshmi S, Mitra S (2018) Method of preparing silicon from sand. Google Patents
go back to reference Gallagher KG, Trask SE, Bauer C, Woehrle T, Lux SF, Tschech M, Lamp P, Polzin BJ, Ha S, Long B (2016) Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J Electrochem Soc 163:A138–A149CrossRef Gallagher KG, Trask SE, Bauer C, Woehrle T, Lux SF, Tschech M, Lamp P, Polzin BJ, Ha S, Long B (2016) Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J Electrochem Soc 163:A138–A149CrossRef
go back to reference Gao J, Shi S-Q, Li H (2015) Brief overview of electrochemical potential in lithium ion batteries. Chin Phys B 25:018210CrossRef Gao J, Shi S-Q, Li H (2015) Brief overview of electrochemical potential in lithium ion batteries. Chin Phys B 25:018210CrossRef
go back to reference Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef
go back to reference Hanson ED, Mayekar S, Dravid VP (2017) Applying insights from the pharma innovation model to battery commercialization—pros, cons, and pitfalls. MRS Energy Sustain 4 Hanson ED, Mayekar S, Dravid VP (2017) Applying insights from the pharma innovation model to battery commercialization—pros, cons, and pitfalls. MRS Energy Sustain 4
go back to reference Haselrieder W, Ivanov S, Christen DK, Bockholt H, Kwade A (2013) Impact of the calendering process on the interfacial structure and the related electrochemical performance of secondary lithium-ion batteries. ECS Trans 50:59–70CrossRef Haselrieder W, Ivanov S, Christen DK, Bockholt H, Kwade A (2013) Impact of the calendering process on the interfacial structure and the related electrochemical performance of secondary lithium-ion batteries. ECS Trans 50:59–70CrossRef
go back to reference Ji L, Medford AJ, Zhang X (2009) Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials. J Mater Chem 19:5593–5601CrossRef Ji L, Medford AJ, Zhang X (2009) Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials. J Mater Chem 19:5593–5601CrossRef
go back to reference Kim UH, Lee EJ, Yoon CS, Myung ST, Sun YK (2016) Compositionally Graded Cathode Material with Long‐Term Cycling Stability for Electric Vehicles Application. Adv Energy Mater 6:1601417CrossRef Kim UH, Lee EJ, Yoon CS, Myung ST, Sun YK (2016) Compositionally Graded Cathode Material with Long‐Term Cycling Stability for Electric Vehicles Application. Adv Energy Mater 6:1601417CrossRef
go back to reference Kitada K, Murayama H, Fukuda K, Arai H, Uchimoto Y, Ogumi Z, Matsubara E (2016) Factors determining the packing-limitation of active materials in the composite electrode of lithium-ion batteries. J Power Sources 301:11–17CrossRef Kitada K, Murayama H, Fukuda K, Arai H, Uchimoto Y, Ogumi Z, Matsubara E (2016) Factors determining the packing-limitation of active materials in the composite electrode of lithium-ion batteries. J Power Sources 301:11–17CrossRef
go back to reference Kobayashi G, Nishimura S, Park MS, Kanno R, Yashima M, Ida T, Yamada A (2009) Isolation of Solid Solution Phases in Size‐Controlled LixFePO4 at Room Temperature. Adv Funct Mater 19:395–403CrossRef Kobayashi G, Nishimura S, Park MS, Kanno R, Yashima M, Ida T, Yamada A (2009) Isolation of Solid Solution Phases in Size‐Controlled LixFePO4 at Room Temperature. Adv Funct Mater 19:395–403CrossRef
go back to reference Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 1209150 Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 1209150
go back to reference Kraytsberg A, Ein-Eli Y (2016) Conveying Advanced Li‐ion Battery Materials into Practice The Impact of Electrode Slurry Preparation Skills. Adv Energy Mater 6:1600655CrossRef Kraytsberg A, Ein-Eli Y (2016) Conveying Advanced Li‐ion Battery Materials into Practice The Impact of Electrode Slurry Preparation Skills. Adv Energy Mater 6:1600655CrossRef
go back to reference Li J, Dahn H, Krause L, Le D-B, Dahn J (2008) Impact of Binder Choice on the Performance of α-Fe2O3 as a Negative Electrode. J Electrochem Soc 155:A812–A816CrossRef Li J, Dahn H, Krause L, Le D-B, Dahn J (2008) Impact of Binder Choice on the Performance of α-Fe2O3 as a Negative Electrode. J Electrochem Soc 155:A812–A816CrossRef
go back to reference Li G, Cai W, Liu B, Li Z (2015) Materials processing for lithium-ion batteries. J Power Sources 294:187–192 (2011) Science 1209150 CrossRef Li G, Cai W, Liu B, Li Z (2015) Materials processing for lithium-ion batteries. J Power Sources 294:187–192 (2011) Science 1209150 CrossRef
go back to reference Ling M, Qiu J, Li S, Yan C, Kiefel MJ, Liu G, Zhang S (2015) Multifunctional SA-PProDOT binder for lithium ion batteries Nano Lett 15:4440–4447CrossRef Ling M, Qiu J, Li S, Yan C, Kiefel MJ, Liu G, Zhang S (2015) Multifunctional SA-PProDOT binder for lithium ion batteries Nano Lett 15:4440–4447CrossRef
go back to reference Liu J, Li Y, Ding R, Jiang J, Hu Y, Ji X, Chi Q, Zhu Z, Huang X (2009) Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. J Phys Chem C 113:5336–5339CrossRef Liu J, Li Y, Ding R, Jiang J, Hu Y, Ji X, Chi Q, Zhu Z, Huang X (2009) Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. J Phys Chem C 113:5336–5339CrossRef
go back to reference Liu D, Chen L-C, Liu T-J, Fan T, Tsou E-Y, Tiu C (2014) An effective mixing for lithium ion battery slurries. Adv Chem Eng Sci 4:515CrossRef Liu D, Chen L-C, Liu T-J, Fan T, Tsou E-Y, Tiu C (2014) An effective mixing for lithium ion battery slurries. Adv Chem Eng Sci 4:515CrossRef
go back to reference Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries. Angew Chemie Int Ed 54:4440–4457CrossRef Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries. Angew Chemie Int Ed 54:4440–4457CrossRef
go back to reference Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353CrossRef Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353CrossRef
go back to reference Markevich E, Salitra G, Chesneau F, Schmidt M, Aurbach D (2017) Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett 2:1321–1326CrossRef Markevich E, Salitra G, Chesneau F, Schmidt M, Aurbach D (2017) Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett 2:1321–1326CrossRef
go back to reference Mazouzi D, Lestriez B, Roue L, Guyomard D (2009) Silicon composite electrode with high capacity and long cycle life. Electrochem Solid ST 12:A215–A218CrossRef Mazouzi D, Lestriez B, Roue L, Guyomard D (2009) Silicon composite electrode with high capacity and long cycle life. Electrochem Solid ST 12:A215–A218CrossRef
go back to reference Meyer C, Bockholt H, Haselrieder W, Kwade A (2017) Characterization of the calendering process for compaction of electrodes for lithium-ion batteries. J Mater Process Technol 249:172–178CrossRef Meyer C, Bockholt H, Haselrieder W, Kwade A (2017) Characterization of the calendering process for compaction of electrodes for lithium-ion batteries. J Mater Process Technol 249:172–178CrossRef
go back to reference Mitra S, Veluri PS, Chakraborthy A, Petla RK (2014) Electrochemical properties of spinel cobalt ferrite nanoparticles with sodium alginate as interactive binder. ChemElectroChem 1:1068–1074CrossRef Mitra S, Veluri PS, Chakraborthy A, Petla RK (2014) Electrochemical properties of spinel cobalt ferrite nanoparticles with sodium alginate as interactive binder. ChemElectroChem 1:1068–1074CrossRef
go back to reference Moussa AS, Soos M, Sefcik J, Morbidelli M (2007) Effect of solid volume fraction on aggregation and breakage in colloidal suspensions in batch and continuous stirred tanks. Langmuir 23:1664–1673CrossRef Moussa AS, Soos M, Sefcik J, Morbidelli M (2007) Effect of solid volume fraction on aggregation and breakage in colloidal suspensions in batch and continuous stirred tanks. Langmuir 23:1664–1673CrossRef
go back to reference Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106CrossRef Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106CrossRef
go back to reference Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BC-K, Shi Y, Cui Y (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci 109:9287–9292CrossRef Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BC-K, Shi Y, Cui Y (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci 109:9287–9292CrossRef
go back to reference Park D-W, Cañas NA, Wagner N, Friedrich KA (2016) Novel solvent-free direct coating process for battery electrodes and their electrochemical performance. J Power Sources 306:758–763CrossRef Park D-W, Cañas NA, Wagner N, Friedrich KA (2016) Novel solvent-free direct coating process for battery electrodes and their electrochemical performance. J Power Sources 306:758–763CrossRef
go back to reference Pieper M, Aman S, Tomas J (2013) Redispersing and stabilizing agglomerates in an annular-gap high shear disperser. Powder Technol 239:381–388CrossRef Pieper M, Aman S, Tomas J (2013) Redispersing and stabilizing agglomerates in an annular-gap high shear disperser. Powder Technol 239:381–388CrossRef
go back to reference Pu X, Yu C (2012) Enhanced overcharge performance of nano-LiCoO 2 by novel Li 3 VO 4 surface coatings. Nanoscale 4:6743–6747CrossRef Pu X, Yu C (2012) Enhanced overcharge performance of nano-LiCoO 2 by novel Li 3 VO 4 surface coatings. Nanoscale 4:6743–6747CrossRef
go back to reference Röder F, Sonntag S, Schröder D, Krewer U (2016) Simulating the Impact of Particle Size Distribution on the Performance of Graphite Electrodes in Lithium‐Ion Batteries. Energy Technol 4:1588–1597CrossRef Röder F, Sonntag S, Schröder D, Krewer U (2016) Simulating the Impact of Particle Size Distribution on the Performance of Graphite Electrodes in Lithium‐Ion Batteries. Energy Technol 4:1588–1597CrossRef
go back to reference Sarkar S, Veluri P, Mitra S (2014) Morphology controlled synthesis of layered NH4V4O10 and the impact of binder on stable high rate electrochemical performance. Electrochim Acta 132:448–456CrossRef Sarkar S, Veluri P, Mitra S (2014) Morphology controlled synthesis of layered NH4V4O10 and the impact of binder on stable high rate electrochemical performance. Electrochim Acta 132:448–456CrossRef
go back to reference Schmitt M, Baunach M, Wengeler L, Peters K, Junges P, Scharfer P, Schabel W (2013) Slot-die processing of lithium-ion battery electrodes—Coating window characterization. Chem Eng Process 68:32–37CrossRef Schmitt M, Baunach M, Wengeler L, Peters K, Junges P, Scharfer P, Schabel W (2013) Slot-die processing of lithium-ion battery electrodes—Coating window characterization. Chem Eng Process 68:32–37CrossRef
go back to reference Schmitt M, Scharfer P, Schabel W (2014) Slot die coating of lithium-ion battery electrodes: investigations on edge effect issues for stripe and pattern coatings. J Coat Technol Res 11:57–63CrossRef Schmitt M, Scharfer P, Schabel W (2014) Slot die coating of lithium-ion battery electrodes: investigations on edge effect issues for stripe and pattern coatings. J Coat Technol Res 11:57–63CrossRef
go back to reference Shi Y, Zhou X, Yu G (2017) Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc Chem Res 50:2642–2652CrossRef Shi Y, Zhou X, Yu G (2017) Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc Chem Res 50:2642–2652CrossRef
go back to reference Shim J, Kostecki R, Richardson T, Song X, Striebel KA (2002) Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J Power Sources 112:222–230CrossRef Shim J, Kostecki R, Richardson T, Song X, Striebel KA (2002) Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J Power Sources 112:222–230CrossRef
go back to reference Shin J, Duong H (2018) Electrochemical Performance of Dry Battery Electrode. Meeting abstracts, MA2018–01, p 365 Shin J, Duong H (2018) Electrochemical Performance of Dry Battery Electrode. Meeting abstracts, MA2018–01, p 365
go back to reference Singh M, Kaiser J, Hahn H (2015) Thick electrodes for high energy lithium ion batteries. J Electrochem Soc 162:A1196–A1201CrossRef Singh M, Kaiser J, Hahn H (2015) Thick electrodes for high energy lithium ion batteries. J Electrochem Soc 162:A1196–A1201CrossRef
go back to reference Singh M, Kaiser J, Hahn H (2016) Effect of porosity on the thick electrodes for high energy density lithium ion batteries for stationary applications. Batteries 2:35CrossRef Singh M, Kaiser J, Hahn H (2016) Effect of porosity on the thick electrodes for high energy density lithium ion batteries for stationary applications. Batteries 2:35CrossRef
go back to reference Smekens J, Gopalakrishnan R, Steen NV, Omar N, Hegazy O, Hubin A, Van Mierlo J (2016) Influence of electrode density on the performance of Li-ion batteries: Experimental and simulation results. Energies 9:104CrossRef Smekens J, Gopalakrishnan R, Steen NV, Omar N, Hegazy O, Hubin A, Van Mierlo J (2016) Influence of electrode density on the performance of Li-ion batteries: Experimental and simulation results. Energies 9:104CrossRef
go back to reference Spahr ME, Goers D, Leone A, Stallone S, Grivei E (2011) Development of carbon conductive additives for advanced lithium ion batteries. J Power Sources 196:3404–3413CrossRef Spahr ME, Goers D, Leone A, Stallone S, Grivei E (2011) Development of carbon conductive additives for advanced lithium ion batteries. J Power Sources 196:3404–3413CrossRef
go back to reference Sun P, Wang Y, Wang X, Xu Q, Fan Q, Sun Y (2018) Off-stoichiometric Na 3− 3x V 2+ x (PO 4) 3/C nanocomposites as cathode materials for high-performance sodium-ion batteries. RSC Adv 8:20319–20326CrossRef Sun P, Wang Y, Wang X, Xu Q, Fan Q, Sun Y (2018) Off-stoichiometric Na 3− 3x V 2+ x (PO 4) 3/C nanocomposites as cathode materials for high-performance sodium-ion batteries. RSC Adv 8:20319–20326CrossRef
go back to reference Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573CrossRef Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573CrossRef
go back to reference Veluri P, Mitra S (2013) Enhanced high rate performance of α-Fe 2 O 3 nanotubes with alginate binder as a conversion anode. RSC Adv 3:15132–15138CrossRef Veluri P, Mitra S (2013) Enhanced high rate performance of α-Fe 2 O 3 nanotubes with alginate binder as a conversion anode. RSC Adv 3:15132–15138CrossRef
go back to reference Veluri PS, Shaligram A, Mitra S (2015) Porous α-Fe2O3 nanostructures and their lithium storage properties as full cell configuration against LiFePO4. J Power Sources 293:213–220CrossRef Veluri PS, Shaligram A, Mitra S (2015) Porous α-Fe2O3 nanostructures and their lithium storage properties as full cell configuration against LiFePO4. J Power Sources 293:213–220CrossRef
go back to reference Wang H, Umeno T, Mizuma K, Yoshio M (2008) Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries. J Power Sources 175:886–890CrossRef Wang H, Umeno T, Mizuma K, Yoshio M (2008) Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries. J Power Sources 175:886–890CrossRef
go back to reference Wang Y, Li H, He P, Hosono E, Zhou H (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294–1305CrossRef Wang Y, Li H, He P, Hosono E, Zhou H (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294–1305CrossRef
go back to reference Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRef Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRef
go back to reference Wasz M (2009) 7th international energy conversion engineering conference, p 4503 Wasz M (2009) 7th international energy conversion engineering conference, p 4503
go back to reference Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943CrossRef Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943CrossRef
go back to reference Xiang J, Tu J, Zhang L, Wang X, Zhou Y, Qiao Y, Lu Y (2010) Improved electrochemical performances of 9LiFePO4• Li3V2 (PO4)/C composite prepared by a simple solid-state method. J Power Sources 195:8331–8335CrossRef Xiang J, Tu J, Zhang L, Wang X, Zhou Y, Qiao Y, Lu Y (2010) Improved electrochemical performances of 9LiFePO4• Li3V2 (PO4)/C composite prepared by a simple solid-state method. J Power Sources 195:8331–8335CrossRef
go back to reference Zhang J, Xu S, Li W (2012) High shear mixers: A review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties. Chem Eng Process 57:25–41CrossRef Zhang J, Xu S, Li W (2012) High shear mixers: A review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties. Chem Eng Process 57:25–41CrossRef
go back to reference Zhao R, Liu J, Gu J (2015) The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery. Appl Energy 139:220–229CrossRef Zhao R, Liu J, Gu J (2015) The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery. Appl Energy 139:220–229CrossRef
Metadata
Title
Nano-/Micro-engineering for Future Li–Ion Batteries
Authors
Prasit Kumar Dutta
Abhinanada Sengupta
Vishwas Goel
P. Preetham
Aakash Ahuja
Sagar Mitra
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3269-2_7

Premium Partners