Skip to main content
Top
Published in: Cellulose 10/2018

22-08-2018 | Original Paper

Nanocellulose mediated injectable bio-nanocomposite hydrogel scaffold-microstructure and rheological properties

Authors: Kapender Phogat, Sanchita Bandyopadhyay-Ghosh

Published in: Cellulose | Issue 10/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Here we report, for the first time, development of nanocellulose based novel bio-nanocomposite injectable hydrogel scaffold. An integrated approach has been used to incorporate ultrafine fluorcanasite (FC) glass-ceramic particulates within nanocellulose matrix, synthesized from lignocellulosic biomass. Epichlorohydrin (ECH) was used as a chemical cross-linking agent for hydrogel synthesis. The compositions and properties of bio-nanocomposite hydrogels were controlled by varying the loading of FC and ECH. Moreover, microstructural characterizations and functional group analysis of synthesized nanocellulose and bio-nanocomposite hydrogels were carried out using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). SEM studies revealed successful extraction of cellulosic nanofibres and interconnected porous micro-architecture of injectable hydrogels. Incorporation of FC particulates resulted into development of well-defined micro-porous morphology. FT-IR studies indicated the presence of hydroxyl groups and possible interactions between nanocellulose and FC reinforcements. The rheological study of the developed injectable hydrogel was carried out at different frequency, amplitude and temperature sweeps. The studies revealed that after the incorporation of FC, dynamic storage modulus increased, while synergistically enhancing the injectability of the bio-nanocomposite hydrogels. An optimum loading level of FC reinforcement could also be established. Swelling behaviour studies of the hydrogels demonstrated higher degree of swelling and enhanced structural integrity with incorporation of FC. The novel bio-nanocomposite injectable hydrogels developed in this study, could demonstrate promising potential as injectable implant material.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmed EM, Aggor FS (2010) Swelling kinetic study and characterization of cross linked hydrogels containing silver nanoparticles. J Appl Polym Sci 117:2168–2174CrossRef Ahmed EM, Aggor FS (2010) Swelling kinetic study and characterization of cross linked hydrogels containing silver nanoparticles. J Appl Polym Sci 117:2168–2174CrossRef
go back to reference Bandyopadhyay-Ghosh S (2008) Bone as a collagen–hydroxyapatite composite and its repair trends. Biomater Artif Organs 22:116–124 Bandyopadhyay-Ghosh S (2008) Bone as a collagen–hydroxyapatite composite and its repair trends. Biomater Artif Organs 22:116–124
go back to reference Bandyopadhyay-Ghosh S, Reaney IM, Brook IM, Hurrell-Gillingham K, Johnson A, Hatton PV (2007) In vitro biocompatibility of fluorcanasite glass–ceramics for bone tissue repair. J Biomed Mater Res Part A 80A(1):175–183CrossRef Bandyopadhyay-Ghosh S, Reaney IM, Brook IM, Hurrell-Gillingham K, Johnson A, Hatton PV (2007) In vitro biocompatibility of fluorcanasite glass–ceramics for bone tissue repair. J Biomed Mater Res Part A 80A(1):175–183CrossRef
go back to reference Bandyopadhyay-Ghosh S, Reaney IM, Johnson A, Hurrell-Gillingham K, Brook IM, Hatton PV (2008) The effect of investment materials on the surface of cast fluorcanasite glasses and glass-ceramics. J Mater Sci Mater Med 19:839–846CrossRefPubMed Bandyopadhyay-Ghosh S, Reaney IM, Johnson A, Hurrell-Gillingham K, Brook IM, Hatton PV (2008) The effect of investment materials on the surface of cast fluorcanasite glasses and glass-ceramics. J Mater Sci Mater Med 19:839–846CrossRefPubMed
go back to reference Bandyopadhyay-Ghosh S, Faria PEP, Johnson A, Felipucci DNB, Reaney IM, Salata LA, Brook IM, Hatton PV (2010) Osteoconductivity of modified fluorcanasite glass–ceramics for bone tissue augmentation and repair. J Biomed Mater Res Part A 94A(3):760–768 Bandyopadhyay-Ghosh S, Faria PEP, Johnson A, Felipucci DNB, Reaney IM, Salata LA, Brook IM, Hatton PV (2010) Osteoconductivity of modified fluorcanasite glass–ceramics for bone tissue augmentation and repair. J Biomed Mater Res Part A 94A(3):760–768
go back to reference Bandyopadhyay-Ghosh S, Ghosh SB, Sain M (2014) The use of biobasednanofibers in composites in biofibre reinforcement in composite materials. In: Faruk O, Sain M (eds) Woodhead Publication. ISBN: 978-1-782-42122-1: 571-647 Bandyopadhyay-Ghosh S, Ghosh SB, Sain M (2014) The use of biobasednanofibers in composites in biofibre reinforcement in composite materials. In: Faruk O, Sain M (eds) Woodhead Publication. ISBN: 978-1-782-42122-1: 571-647
go back to reference Bendtsen ST, Wei M (2015) Synthesis and characterization of a novel injectable alginate–collagen–hydroxyapatite hydrogel for bone tissue regeneration. J Mater Chem B 3(15):3081–3090CrossRef Bendtsen ST, Wei M (2015) Synthesis and characterization of a novel injectable alginate–collagen–hydroxyapatite hydrogel for bone tissue regeneration. J Mater Chem B 3(15):3081–3090CrossRef
go back to reference Boonmahitthisud A, Nakajima L, Nguyen KD, Kobayashi T (2016) Composite effect of silica nanoparticle on the mechanical properties of cellulose-based hydrogels derived from cottonseed hulls. J Appl Polym Sci 133(44557):1–12 Boonmahitthisud A, Nakajima L, Nguyen KD, Kobayashi T (2016) Composite effect of silica nanoparticle on the mechanical properties of cellulose-based hydrogels derived from cottonseed hulls. J Appl Polym Sci 133(44557):1–12
go back to reference Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ (2015) Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 84:1–29CrossRefPubMed Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ (2015) Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 84:1–29CrossRefPubMed
go back to reference Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2544–2551CrossRefPubMed Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2544–2551CrossRefPubMed
go back to reference Jung YS, Park W, Park H, Lee DK, Na K (2017) Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and pluronic F-127 for sustained NSAID delivery. Carbohydr Polym 156:403–408CrossRefPubMed Jung YS, Park W, Park H, Lee DK, Na K (2017) Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and pluronic F-127 for sustained NSAID delivery. Carbohydr Polym 156:403–408CrossRefPubMed
go back to reference Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544CrossRefPubMed Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544CrossRefPubMed
go back to reference Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:1–3CrossRef Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:1–3CrossRef
go back to reference Nourmohammadi J, Ghaee A, Liavali SH (2016) Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Carbohydr Polym 138:172–179CrossRefPubMed Nourmohammadi J, Ghaee A, Liavali SH (2016) Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Carbohydr Polym 138:172–179CrossRefPubMed
go back to reference Novak BM (1993) Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Adv Mater 5:422–433CrossRef Novak BM (1993) Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Adv Mater 5:422–433CrossRef
go back to reference Portnov T, Shulimzon TR, Zilberman M (2017) Injectable hydrogel-based scaffolds for tissue engineering applications. Rev Chem Eng 33(1):91–107CrossRef Portnov T, Shulimzon TR, Zilberman M (2017) Injectable hydrogel-based scaffolds for tissue engineering applications. Rev Chem Eng 33(1):91–107CrossRef
go back to reference Safdari F, Carreau PJ, Heuzey MC, Kamal MR, Sain M (2017) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose 24(2):755–767CrossRef Safdari F, Carreau PJ, Heuzey MC, Kamal MR, Sain M (2017) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose 24(2):755–767CrossRef
go back to reference Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21:2405–2412CrossRefPubMed Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21:2405–2412CrossRefPubMed
go back to reference Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef
Metadata
Title
Nanocellulose mediated injectable bio-nanocomposite hydrogel scaffold-microstructure and rheological properties
Authors
Kapender Phogat
Sanchita Bandyopadhyay-Ghosh
Publication date
22-08-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 10/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2001-2

Other articles of this Issue 10/2018

Cellulose 10/2018 Go to the issue