Skip to main content
Top

2021 | OriginalPaper | Chapter

Nanocrystalline Spinel Manganese Ferrite MnFe2O4: Synthesis, Electronic Structure, and Evaluation of Their Magnetic Hyperthermia Applications

Authors : Walmir E. Pottker, Patricia de la Presa, Mateus A. Gonçalves, Teodorico C. Ramalho, Antonio Hernando, Felipe A. La Porta

Published in: Functional Properties of Advanced Engineering Materials and Biomolecules

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, nanocrystalline spinel manganese ferrites MnFe2O4 (MFO) were synthesised using the co-precipitation method under different conditions and characterised by XRD, TEM, magnetic measurements and also theoretical calculations. Herein, the first-principles calculations and electron density topologic analysis at DFT level, including a comparison on the influence of relativistic effects, were carried out to obtain the geometries and the electronic parameters of the bulk and (100), (110) and (111) surfaces of the MFO structure, for the first time. The magnetisation field curves reveal a superparamagnetic behaviour for all the analysed samples. The saturation magnetisation values were determined to be 56.6, 53.3, and 54.8 emu/g at 300 K, respectively. Furthermore, the aqueous colloids were transferred to organic media to investigate the effect of particle size and aggregation degrees on the heating efficiency of the nanoparticles. Our findings demonstrate that the MFO spinel nanocrystals hold promise for innovative applications in magnetic hyperthermia.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hervault, A., Thanh, N.T.K.: Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6, 11553–11573 (2014)CrossRef Hervault, A., Thanh, N.T.K.: Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6, 11553–11573 (2014)CrossRef
2.
go back to reference Rossi, L.M., Costa, N.J.S., Silva, F.P.: Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 16, 2906–2933 (2014)CrossRef Rossi, L.M., Costa, N.J.S., Silva, F.P.: Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 16, 2906–2933 (2014)CrossRef
3.
go back to reference Meffre, A., Mehdaoui, B., Connord, V., Carrey, J., Fazzini, P.F., Lachaize, S., et al.: Complex nano-objects displaying both magnetic and catalytic properties: a proof of concept for magnetically induced heterogeneous catalysis. Nano Lett. 15, 3241–3248 (2015)CrossRef Meffre, A., Mehdaoui, B., Connord, V., Carrey, J., Fazzini, P.F., Lachaize, S., et al.: Complex nano-objects displaying both magnetic and catalytic properties: a proof of concept for magnetically induced heterogeneous catalysis. Nano Lett. 15, 3241–3248 (2015)CrossRef
4.
go back to reference Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., et al.: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 103, 317–324 (2011)CrossRef Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., et al.: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 103, 317–324 (2011)CrossRef
5.
go back to reference de la Presa, P., Luengo, Y., Multigner, M., Costo, R., Morales, M.P., Rivero, G., et al.: Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J. Phys. Chem. C. 116, 25602–25610 (2012)CrossRef de la Presa, P., Luengo, Y., Multigner, M., Costo, R., Morales, M.P., Rivero, G., et al.: Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J. Phys. Chem. C. 116, 25602–25610 (2012)CrossRef
6.
go back to reference Cruz, M.M., Ferreira, L.P., Ramos, J., Mendo, S.G., Alves, A.F., Godinho, M., et al.: Enhanced magnetic hyperthermia of CoFe2O4 and MnFe2O4 nanoparticles. J. Alloy Compd. 703, 370–380 (2017)CrossRef Cruz, M.M., Ferreira, L.P., Ramos, J., Mendo, S.G., Alves, A.F., Godinho, M., et al.: Enhanced magnetic hyperthermia of CoFe2O4 and MnFe2O4 nanoparticles. J. Alloy Compd. 703, 370–380 (2017)CrossRef
7.
go back to reference Salas, G., Costo, R., Morales, MDP.: In Jesus, M.d.l.F.; Grazu, V., (eds.) Frontiers of Nanoscience, vol. 4, pp. 35–79. Elsevier (2012) Salas, G., Costo, R., Morales, MDP.: In Jesus, M.d.l.F.; Grazu, V., (eds.) Frontiers of Nanoscience, vol. 4, pp. 35–79. Elsevier (2012)
8.
go back to reference Gonzalez-Fernandez, M.A., Torres, T.E., Andres-Verges, M., Costo, R., de la Presa, P., Serna, C.J., et al.: Magnetic Nanoparticles for Power Absorption: optimizing size, shape and magnetic properties. J. Solid State Chem. 182, 2779–2784 (2009)CrossRef Gonzalez-Fernandez, M.A., Torres, T.E., Andres-Verges, M., Costo, R., de la Presa, P., Serna, C.J., et al.: Magnetic Nanoparticles for Power Absorption: optimizing size, shape and magnetic properties. J. Solid State Chem. 182, 2779–2784 (2009)CrossRef
9.
go back to reference Sharifi, I., Shokrollahi, H., Amiri, S.: Ferrite-Based Magnetic Nanofluids Used in Hyperthermia Applications. J. Magn. Magn. Mater. 324, 903–915 (2012)CrossRef Sharifi, I., Shokrollahi, H., Amiri, S.: Ferrite-Based Magnetic Nanofluids Used in Hyperthermia Applications. J. Magn. Magn. Mater. 324, 903–915 (2012)CrossRef
10.
go back to reference Pottker, W.E., Ono, R., Cobos, M.A., Hernando, A., Araujo, J.F.D.F., Bruno, A.C.O., et al.: Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceram. Int. 44, 17290–17297 (2018)CrossRef Pottker, W.E., Ono, R., Cobos, M.A., Hernando, A., Araujo, J.F.D.F., Bruno, A.C.O., et al.: Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceram. Int. 44, 17290–17297 (2018)CrossRef
11.
go back to reference Mazario, E., Sánchez-Marcos, J., Menéndez, N., Cañete, M., Mayoral, A., Rivera-Fernández, S., et al.: High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route. J. Phys. Chem. C 34, 1196828–1196868 (2015) Mazario, E., Sánchez-Marcos, J., Menéndez, N., Cañete, M., Mayoral, A., Rivera-Fernández, S., et al.: High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route. J. Phys. Chem. C 34, 1196828–1196868 (2015)
12.
go back to reference Lemine, O.M., Omri, K., Iglesias, M., Velasco, V., Crespo, P., de la Presa, P., et al.: γ-Fe2O3 by sol–gel with large nanoparticles size for magnetic hyperthermia application. J Alloy Compd. 607, 125–131 (2014)CrossRef Lemine, O.M., Omri, K., Iglesias, M., Velasco, V., Crespo, P., de la Presa, P., et al.: γ-Fe2O3 by sol–gel with large nanoparticles size for magnetic hyperthermia application. J Alloy Compd. 607, 125–131 (2014)CrossRef
13.
go back to reference Arteaga-Cardona, F., Rojas-Rojas, K., Costo, R., Mendez-Rojas, M.A., Hernando, A., de la Presa, P.: Improving the magnetic heating by disaggregating nanoparticles. J. Alloy Compd. 663, 636–644 (2016)CrossRef Arteaga-Cardona, F., Rojas-Rojas, K., Costo, R., Mendez-Rojas, M.A., Hernando, A., de la Presa, P.: Improving the magnetic heating by disaggregating nanoparticles. J. Alloy Compd. 663, 636–644 (2016)CrossRef
14.
go back to reference Pereira, C., Pereira, A.M., Fernandes, C., Rocha, M., Mendes, R., Fernández-García, M.P., et al.: Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem. Mater. 24, 1496–1504 (2012)CrossRef Pereira, C., Pereira, A.M., Fernandes, C., Rocha, M., Mendes, R., Fernández-García, M.P., et al.: Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem. Mater. 24, 1496–1504 (2012)CrossRef
15.
go back to reference Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., et al.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)CrossRef Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., et al.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)CrossRef
16.
go back to reference Salazar, J.S., Perez, J.L., de Abril, O., Phuoc, L.T., Ihiawakrim, D., Vazquez, M., et al.: Magnetic iron oxide nanoparticles in 10–40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 23, 1379–1386 (2011)CrossRef Salazar, J.S., Perez, J.L., de Abril, O., Phuoc, L.T., Ihiawakrim, D., Vazquez, M., et al.: Magnetic iron oxide nanoparticles in 10–40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 23, 1379–1386 (2011)CrossRef
17.
go back to reference Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Devlin, E., Kostikas, A.: Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys. Rev. B 54, 9288–9296 (1996)CrossRef Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Devlin, E., Kostikas, A.: Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys. Rev. B 54, 9288–9296 (1996)CrossRef
18.
go back to reference Auzans, E., Zins, D., Blums, E., Massartet, R.: Synthesis and properties of Mn-Zn ferrite ferrofluids. J. Mater. Sci. 34, 1253–1260 (1999)CrossRef Auzans, E., Zins, D., Blums, E., Massartet, R.: Synthesis and properties of Mn-Zn ferrite ferrofluids. J. Mater. Sci. 34, 1253–1260 (1999)CrossRef
19.
go back to reference Kim, Y.I., Kim, D., Lee, C.S.: Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B 337, 42–51 (2003)CrossRef Kim, Y.I., Kim, D., Lee, C.S.: Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B 337, 42–51 (2003)CrossRef
20.
go back to reference Arelaro, A.D., Lima, E., Jr., Rossi, L.M., Kiyohara, P.K., Rechenberg, H.R.: Ion dependence of magnetic anisotropy in MFe2O4 (MFe, Co, Mn) nanoparticles synthesized by high-temperature reaction. J. Magn. Magn. Mater. 320, e335–e338 (2008)CrossRef Arelaro, A.D., Lima, E., Jr., Rossi, L.M., Kiyohara, P.K., Rechenberg, H.R.: Ion dependence of magnetic anisotropy in MFe2O4 (MFe, Co, Mn) nanoparticles synthesized by high-temperature reaction. J. Magn. Magn. Mater. 320, e335–e338 (2008)CrossRef
21.
go back to reference Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247–1248 (1981)CrossRef Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247–1248 (1981)CrossRef
22.
go back to reference Tartaj, P., Morales, M.D.P., Veintemillas-Verdaguer, S.: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. 36, R182–R197 (2003)CrossRef Tartaj, P., Morales, M.D.P., Veintemillas-Verdaguer, S.: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. 36, R182–R197 (2003)CrossRef
23.
go back to reference Gyergyek, S., Drofenik, M., Makovec, D.: Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis. Mater. Chem. Phys. 133, 515–522 (2012)CrossRef Gyergyek, S., Drofenik, M., Makovec, D.: Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis. Mater. Chem. Phys. 133, 515–522 (2012)CrossRef
24.
go back to reference Cullity, B.C., Graham, C.D.: Introduction to Magnetic Materials, 2nd ed. IEEE, Wiley (2009) Cullity, B.C., Graham, C.D.: Introduction to Magnetic Materials, 2nd ed. IEEE, Wiley (2009)
25.
go back to reference Natividad, E., Castro, M., Mediano, A.: Adiabatic versus non-adiabatic determination of specific absorption rate of ferrofluids. J. Magn. Magn. Mater. 32, 1497–1500 (2009)CrossRef Natividad, E., Castro, M., Mediano, A.: Adiabatic versus non-adiabatic determination of specific absorption rate of ferrofluids. J. Magn. Magn. Mater. 32, 1497–1500 (2009)CrossRef
26.
go back to reference de la Presa, P., Luengo, Y., Velasco, V., Morales, M.P., Iglesias, M., Veintemillas-Verdaguer, S., et al.: Particle interactions in liquid magnetic colloids by zero field cooled measurements: effects on heating efficiency. J. Phys. Chem. C. 119, 11022–11030 (2015)CrossRef de la Presa, P., Luengo, Y., Velasco, V., Morales, M.P., Iglesias, M., Veintemillas-Verdaguer, S., et al.: Particle interactions in liquid magnetic colloids by zero field cooled measurements: effects on heating efficiency. J. Phys. Chem. C. 119, 11022–11030 (2015)CrossRef
27.
go back to reference Baerends EJ, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, et al., ADF2009.01, SCM, Theoretical Chemistry,VrijeUniversiteit, Amsterdam, The Netherlands, 2009. Baerends EJ, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, et al., ADF2009.01, SCM, Theoretical Chemistry,VrijeUniversiteit, Amsterdam, The Netherlands, 2009.
28.
go back to reference Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRef Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRef
29.
go back to reference van Lenthe, E., Baerends, E.J., Snijders, J.G.: Relativistic regular two-component Hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993)CrossRef van Lenthe, E., Baerends, E.J., Snijders, J.G.: Relativistic regular two-component Hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993)CrossRef
30.
go back to reference Fleet, M.E.: The structure of magnetite. Acta Crystallogr. B. 37, 917–920 (1981)CrossRef Fleet, M.E.: The structure of magnetite. Acta Crystallogr. B. 37, 917–920 (1981)CrossRef
31.
go back to reference Antic, B., Kremenovic, A., Nikolic, A.S., Stoiljkovic, M.: Cation distribution and size-strain microstructure analysis in ultrafine Zn−Mn ferrites obtained from acetylacetonato complexes. J. Phys. Chem. B. 108, 12646–12651 (2004)CrossRef Antic, B., Kremenovic, A., Nikolic, A.S., Stoiljkovic, M.: Cation distribution and size-strain microstructure analysis in ultrafine Zn−Mn ferrites obtained from acetylacetonato complexes. J. Phys. Chem. B. 108, 12646–12651 (2004)CrossRef
32.
go back to reference Smit, J., Wijn, H.P.J.: Eindhoven, The Netherlands: Philips Research Laboratory. Eindhoven, The Netherlands (1959) Smit, J., Wijn, H.P.J.: Eindhoven, The Netherlands: Philips Research Laboratory. Eindhoven, The Netherlands (1959)
33.
go back to reference Goya, G.F., Berquó, T.S., Fonseca, F.C.: Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)CrossRef Goya, G.F., Berquó, T.S., Fonseca, F.C.: Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)CrossRef
34.
go back to reference Glockl, G., Hergt, R., Zeisberger, M., Dutz, S., Nagel, S., Weitschies, W.: The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. Condens. Matter 18, S2935–S2949 (2006)CrossRef Glockl, G., Hergt, R., Zeisberger, M., Dutz, S., Nagel, S., Weitschies, W.: The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. Condens. Matter 18, S2935–S2949 (2006)CrossRef
35.
go back to reference Hergt, R., Dutz, S., Muller, R., Zeisberger, M.: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter 18, S2919–S2934 (2006)CrossRef Hergt, R., Dutz, S., Muller, R., Zeisberger, M.: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter 18, S2919–S2934 (2006)CrossRef
36.
go back to reference Raland, R.D., Saikia, D., Borgohain, C., Borah, J.P.: Heating efficiency and correlation between the structural and magnetic properties of oleic acid coated MnFe2O4 nanoparticles for magnetic hyperthermia application. J. Phys. D. Appl. Phys. 325001–325004 (2017) Raland, R.D., Saikia, D., Borgohain, C., Borah, J.P.: Heating efficiency and correlation between the structural and magnetic properties of oleic acid coated MnFe2O4 nanoparticles for magnetic hyperthermia application. J. Phys. D. Appl. Phys. 325001–325004 (2017)
37.
go back to reference Tourinho, F.A., Franck, R., Massart, R.: Aqueous ferrofluids based on manganese and cobalt ferrites. J. Mater. Sci. 25, 3249–3254 (1990)CrossRef Tourinho, F.A., Franck, R., Massart, R.: Aqueous ferrofluids based on manganese and cobalt ferrites. J. Mater. Sci. 25, 3249–3254 (1990)CrossRef
38.
go back to reference Ustundağ, M., Aslan, M.: Electronic and magnetic properties of Ca-doped Mn-Ferrite. Acta Phys. Pol. A. 130, 362–364 (2016)CrossRef Ustundağ, M., Aslan, M.: Electronic and magnetic properties of Ca-doped Mn-Ferrite. Acta Phys. Pol. A. 130, 362–364 (2016)CrossRef
39.
go back to reference Elfalaky, A., Soliman, S.: Theoretical investigation of MnFe2O4. J Alloy Compd. 580, 401–406 (2013)CrossRef Elfalaky, A., Soliman, S.: Theoretical investigation of MnFe2O4. J Alloy Compd. 580, 401–406 (2013)CrossRef
40.
go back to reference Favero, P.P., de Souza-Parise, M., Fernandez, J.L.R., Miotto, R., Ferraz, A.C.: Surface properties of CdS nanoparticles. Braz. J. Phys. 36, 1032–1034 (2006)CrossRef Favero, P.P., de Souza-Parise, M., Fernandez, J.L.R., Miotto, R., Ferraz, A.C.: Surface properties of CdS nanoparticles. Braz. J. Phys. 36, 1032–1034 (2006)CrossRef
41.
go back to reference Ahuja, R., Blomqvist, A., Larsson, P., Pyykko, P., Zaleski-Ejgierd, P.: Relativity and the lead-acid battery. Phys. Rev. Lett. 106, 018301–018305 (2011)CrossRef Ahuja, R., Blomqvist, A., Larsson, P., Pyykko, P., Zaleski-Ejgierd, P.: Relativity and the lead-acid battery. Phys. Rev. Lett. 106, 018301–018305 (2011)CrossRef
42.
go back to reference Pecul, M., Lewandiwski, J., Sadlej, J.: Benchmark calculations of the shielding constants in the water dimer. Chem. Phys. Lett. 333, 139–145 (2011)CrossRef Pecul, M., Lewandiwski, J., Sadlej, J.: Benchmark calculations of the shielding constants in the water dimer. Chem. Phys. Lett. 333, 139–145 (2011)CrossRef
43.
go back to reference Cortesguzman, F., Bader, R.F.W.: Complementarity of QTAIM and MO theory in the study of bonding in donor-acceptor complexes. Coord. Chem. Rev. 249, 633–662 (2005)CrossRef Cortesguzman, F., Bader, R.F.W.: Complementarity of QTAIM and MO theory in the study of bonding in donor-acceptor complexes. Coord. Chem. Rev. 249, 633–662 (2005)CrossRef
44.
go back to reference Koch, U., Popelier, P.L.: Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density. J. Phys. Chem. A. 99, 9747–9754 (1995)CrossRef Koch, U., Popelier, P.L.: Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density. J. Phys. Chem. A. 99, 9747–9754 (1995)CrossRef
45.
go back to reference Gonçalves, M.A., Peixoto, F.C., da Cunha, E.F.F., Ramalho, T.C.: Dynamics, NMR parameters and hyperfine coupling constants of the Fe3O4 (100)–water interface: Implications for MRI probes. Chem. Phys. Lett. 609, 88–92 (2014)CrossRef Gonçalves, M.A., Peixoto, F.C., da Cunha, E.F.F., Ramalho, T.C.: Dynamics, NMR parameters and hyperfine coupling constants of the Fe3O4 (100)–water interface: Implications for MRI probes. Chem. Phys. Lett. 609, 88–92 (2014)CrossRef
46.
go back to reference La Porta, F.A., Ramos, P.H., de Resende, E.C., Guerreiro, M.C., Giacoppo, J.O.S., Ramalho, T.C., Sambrano, J.R., Andrés, J., Longo, E.: Structural, electronic and optical properties of Fe(III) complex with pyridine-2,6-dicarboxylic acid: A combined experimental and theoretical study. Inorg. Chim. Acta 416, 200–206 (2014)CrossRef La Porta, F.A., Ramos, P.H., de Resende, E.C., Guerreiro, M.C., Giacoppo, J.O.S., Ramalho, T.C., Sambrano, J.R., Andrés, J., Longo, E.: Structural, electronic and optical properties of Fe(III) complex with pyridine-2,6-dicarboxylic acid: A combined experimental and theoretical study. Inorg. Chim. Acta 416, 200–206 (2014)CrossRef
Metadata
Title
Nanocrystalline Spinel Manganese Ferrite MnFe2O4: Synthesis, Electronic Structure, and Evaluation of Their Magnetic Hyperthermia Applications
Authors
Walmir E. Pottker
Patricia de la Presa
Mateus A. Gonçalves
Teodorico C. Ramalho
Antonio Hernando
Felipe A. La Porta
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-62226-8_12

Premium Partners