Skip to main content
Top

2021 | OriginalPaper | Chapter

Synthesis, Properties, and Applications of Iron Oxides:  Versatility and Challenges

Authors : Nathalie Danree Busti, Rodrigo Parra, Márcio Sousa Góes

Published in: Functional Properties of Advanced Engineering Materials and Biomolecules

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Iron (III) oxide is a compound that appears in at least four different polymorphs: α-Fe2O3, β-Fe2O3, γ-Fe2O3, and ε-Fe2O3. However, Fe3+ ions are also present in another form of iron oxide: Fe3O4, which is an iron crystal structure with both Fe2+ and Fe3+ ions. And in its turn, Fe2+ ions are also present in the FeO form of iron oxide. Each of these six different structures presents distinctive physical properties and, therefore, diverse applications. The different crystalline forms of iron oxide have found fertile ground in the field of nanotechnology, and therefore, became popular among researchers who have proven a wide variety of biomedicine, electronics, construction, environmental remediation, and energy harvesting applications. In this regard, the main technological challenge is related to control of its physical characteristics such as morphology, size distribution, dispersion, crystallinity, structural defects, porosity, active area, as well as impurities. All of these influence the physical and optical properties of the synthesized material and will determine its field of application. As such, the synthesized material characteristics depend on the synthesis method employed. Thereby, in this chapter, we will cover the main characteristics of iron oxides with a focus on preparation processes, physicochemical properties, and their relationship with their main applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cornell, R.M., Schwertmann, U.: The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley (2003) Cornell, R.M., Schwertmann, U.: The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley (2003)
2.
go back to reference Schwertmann, U., Cornell, R.M.: Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed. Wiley-VCH (2008) Schwertmann, U., Cornell, R.M.: Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed. Wiley-VCH (2008)
3.
go back to reference Fernández-Remolar, D.C.: Iron oxides, hydroxides and oxy-hydroxides BT—encyclopedia of astrobiology. In: Gargaud, M., Irvine, W.M., Amils, R., Cleaves, H.J. (Jim), Pinti, D.L., Quintanilla, J.C., Rouan, D., Spohn, T., Tirard, S., Viso, M. (eds.), pp. 1268–1270.. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44185-5_1714 Fernández-Remolar, D.C.: Iron oxides, hydroxides and oxy-hydroxides BT—encyclopedia of astrobiology. In: Gargaud, M., Irvine, W.M., Amils, R., Cleaves, H.J. (Jim), Pinti, D.L., Quintanilla, J.C., Rouan, D., Spohn, T., Tirard, S., Viso, M. (eds.), pp. 1268–1270.. Springer, Berlin, Heidelberg (2015). https://​doi.​org/​10.​1007/​978-3-662-44185-5_​1714
4.
go back to reference Li, S.: Structural Design, Characterization, and Property Investigation of Iron Oxide (Nanoparticles with Visible Light Photoactivity), University of Paul Verlaine-Metz and Northeastern University (2009) Li, S.: Structural Design, Characterization, and Property Investigation of Iron Oxide (Nanoparticles with Visible Light Photoactivity), University of Paul Verlaine-Metz and Northeastern University (2009)
5.
go back to reference Atkins, P., Overton, T., Rourke, J., Weller, M., Armstrong, F.: Shriver & Atkins’ Inorganic Chemistry, 5th edn. Oxford University Press, USA (2010) Atkins, P., Overton, T., Rourke, J., Weller, M., Armstrong, F.: Shriver & Atkins’ Inorganic Chemistry, 5th edn. Oxford University Press, USA (2010)
8.
go back to reference Aschauer, U., Hockridge, J.G., Jones, F., Loan, M., Parkinson, G.M., Richmond, W.R.: Morphology control in the synthesis of iron oxide and oxyhydroxide nanoparticles. In: 2006 International Conference on Nanoscience and Nanotechnology, p. 1 (2006). https://doi.org/10.1109/ICONN.2006.340547 Aschauer, U., Hockridge, J.G., Jones, F., Loan, M., Parkinson, G.M., Richmond, W.R.: Morphology control in the synthesis of iron oxide and oxyhydroxide nanoparticles. In: 2006 International Conference on Nanoscience and Nanotechnology, p. 1 (2006). https://​doi.​org/​10.​1109/​ICONN.​2006.​340547
10.
11.
go back to reference Carter, C.B., Norton, M.G.: Ceramic Materials: Science and Engineering, vol. 716. Springer (2007) Carter, C.B., Norton, M.G.: Ceramic Materials: Science and Engineering, vol. 716. Springer (2007)
12.
go back to reference Dissanayake, D.M.S.N., Mantilaka, M.M.M.G.P.G., Palihawadana, T.C., Chandrakumara, G.T.D., De Silva, R.T., Pitawala, H.M.T.G.A., de Silva, K.M., Amaratunga, G.A.J.: Facile and low-cost synthesis of pure hematite (α-Fe2O3) nanoparticles from naturally occurring laterites and their superior adsorption capability towards acid-dyes. RSC Adv. 9(37), 21249–21257 (2019). https://doi.org/10.1039/C9RA03756JCrossRef Dissanayake, D.M.S.N., Mantilaka, M.M.M.G.P.G., Palihawadana, T.C., Chandrakumara, G.T.D., De Silva, R.T., Pitawala, H.M.T.G.A., de Silva, K.M., Amaratunga, G.A.J.: Facile and low-cost synthesis of pure hematite (α-Fe2O3) nanoparticles from naturally occurring laterites and their superior adsorption capability towards acid-dyes. RSC Adv. 9(37), 21249–21257 (2019). https://​doi.​org/​10.​1039/​C9RA03756JCrossRef
15.
go back to reference Mohapatra, M., Anand, S.: Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int. J. Eng. Sci. Technol. 2(8), 127–146 (2010) Mohapatra, M., Anand, S.: Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int. J. Eng. Sci. Technol. 2(8), 127–146 (2010)
16.
go back to reference Bigham, J., Fitzpatrick, R., Schulze, D.: Iron Oxides. In: Dixon, J., Schulze, D. (eds.) Soil mineralogy with environmental applications, pp. 323–366. Soil Science Society of America, Madison (2002) Bigham, J., Fitzpatrick, R., Schulze, D.: Iron Oxides. In: Dixon, J., Schulze, D. (eds.) Soil mineralogy with environmental applications, pp. 323–366. Soil Science Society of America, Madison (2002)
22.
go back to reference Zboril, R., Mashlan, M., Petridis, D.: Iron (III) Oxides from thermal processes synthesis. Chem. Mater. 14(III), 969–982 (2002) Zboril, R., Mashlan, M., Petridis, D.: Iron (III) Oxides from thermal processes synthesis. Chem. Mater. 14(III), 969–982 (2002)
23.
go back to reference Fleet, B.Y.M.E.: The structure of magnetite : two annealed natural magnetites, Fe3. 00504 and. Acta Crystallogr. 40x, 1491–1493 (1984) Fleet, B.Y.M.E.: The structure of magnetite : two annealed natural magnetites, Fe3. 00504 and. Acta Crystallogr. 40x, 1491–1493 (1984)
25.
go back to reference Finger, L.W., Hazen, R.M.: Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 Kbars. J. Appl. Phys. 51(10), 5362–5367 (1980)CrossRef Finger, L.W., Hazen, R.M.: Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 Kbars. J. Appl. Phys. 51(10), 5362–5367 (1980)CrossRef
26.
go back to reference Danno, T., Nakatsuka, D., Kusano, Y., Asaoka, H., Nakanishi, M., Fujii, T., Ikeda, Y., Takada, J.: Crystal structure of β-Fe2O3 and topotactic phase transformation to α-Fe2O3. Cryst. Growth Des. 13(2), 770–774 (2013)CrossRef Danno, T., Nakatsuka, D., Kusano, Y., Asaoka, H., Nakanishi, M., Fujii, T., Ikeda, Y., Takada, J.: Crystal structure of β-Fe2O3 and topotactic phase transformation to α-Fe2O3. Cryst. Growth Des. 13(2), 770–774 (2013)CrossRef
27.
go back to reference Gich, M., Frontera, C., Roig, A., Taboada, E., Molins, E., Rechenberg, H.R., Ardisson, J.D., Macedo, W.A.A., Ritter, C., Hardy, V., et al.: High- and low-temperature crystal and magnetic structures of ε-Fe2O3 and their correlation to its magnetic properties. Chem. Mater. 18(16), 3889–3897 (2006). https://doi.org/10.1021/cm060993lCrossRef Gich, M., Frontera, C., Roig, A., Taboada, E., Molins, E., Rechenberg, H.R., Ardisson, J.D., Macedo, W.A.A., Ritter, C., Hardy, V., et al.: High- and low-temperature crystal and magnetic structures of ε-Fe2O3 and their correlation to its magnetic properties. Chem. Mater. 18(16), 3889–3897 (2006). https://​doi.​org/​10.​1021/​cm060993lCrossRef
29.
go back to reference Fjellvåg, H., Grønvold, F., Stølen, S., Hauback, B.: On the crystallographic and magnetic structures of nearly stoichiometric iron monoxide. J. Solid State Chem. 124(1), 52–57 (1996)CrossRef Fjellvåg, H., Grønvold, F., Stølen, S., Hauback, B.: On the crystallographic and magnetic structures of nearly stoichiometric iron monoxide. J. Solid State Chem. 124(1), 52–57 (1996)CrossRef
32.
go back to reference Zia, M., Phull, A.R., Ali, J.S.: Challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016)CrossRef Zia, M., Phull, A.R., Ali, J.S.: Challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016)CrossRef
35.
36.
go back to reference Colpas-Ruiz, M.A., Gnecco-Molina, C., Jiménez-Rodríguez, G.A., Pérez-Mendoza, J.A., Higuera-Cobos, Ó.F.: Synthesis of an anticorrosive pigment by thermal treatment of iron oxides from steel industry wastes. Rev. Fac. Ing. 28(52), 44–58 (2019) Colpas-Ruiz, M.A., Gnecco-Molina, C., Jiménez-Rodríguez, G.A., Pérez-Mendoza, J.A., Higuera-Cobos, Ó.F.: Synthesis of an anticorrosive pigment by thermal treatment of iron oxides from steel industry wastes. Rev. Fac. Ing. 28(52), 44–58 (2019)
46.
61.
go back to reference Bachmann, J., Jing; Knez, M., Barth, S., Shen, H., Mathur, S., Gösele, U., Nielsch, K.: Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J. Am. Chem. Soc. 129(31), 9554–9555 (2007).https://doi.org/10.1021/ja072465w Bachmann, J., Jing; Knez, M., Barth, S., Shen, H., Mathur, S., Gösele, U., Nielsch, K.: Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J. Am. Chem. Soc. 129(31), 9554–9555 (2007).https://​doi.​org/​10.​1021/​ja072465w
63.
go back to reference Scheffe, J.R., Allendorf, M.D., Coker, E.N., Jacobs, B.W., McDaniel, A.H., Weimer, A.W.: Hydrogen production via chemical looping redox cycles using atomic layer deposition-synthesized iron oxide and cobalt ferrites. Chem. Mater. 23(8), 2030–2038 (2011). https://doi.org/10.1021/cm103622eCrossRef Scheffe, J.R., Allendorf, M.D., Coker, E.N., Jacobs, B.W., McDaniel, A.H., Weimer, A.W.: Hydrogen production via chemical looping redox cycles using atomic layer deposition-synthesized iron oxide and cobalt ferrites. Chem. Mater. 23(8), 2030–2038 (2011). https://​doi.​org/​10.​1021/​cm103622eCrossRef
75.
go back to reference Hradil, D., Grygar, T., Hradilová, J., Bezdička, P.: Clay and iron oxide pigments in the history of painting. Appl. Clay Sci. 22(5), 223–236 (2003)CrossRef Hradil, D., Grygar, T., Hradilová, J., Bezdička, P.: Clay and iron oxide pigments in the history of painting. Appl. Clay Sci. 22(5), 223–236 (2003)CrossRef
80.
go back to reference Zeng, S., Tang, K., Li, T., Liang, Z., Wang, D., Wang, Y., Qi, Y., Zhou, W.: Facile route for the fabrication of porous hematite nanoflowers: its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. J. Phys. Chem. C 112(13), 4836–4843 (2008). https://doi.org/10.1021/jp0768773CrossRef Zeng, S., Tang, K., Li, T., Liang, Z., Wang, D., Wang, Y., Qi, Y., Zhou, W.: Facile route for the fabrication of porous hematite nanoflowers: its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. J. Phys. Chem. C 112(13), 4836–4843 (2008). https://​doi.​org/​10.​1021/​jp0768773CrossRef
82.
go back to reference Chen, J.S., Zhu, T., Yang, X.H., Yang, H.G., Lou, X.W.: Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles. PDF 13162–13164 (2010) Chen, J.S., Zhu, T., Yang, X.H., Yang, H.G., Lou, X.W.: Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles. PDF 13162–13164 (2010)
83.
go back to reference Wang, B., Chen, J.S., Wu, H.B., Wang, Z., Lou, X.W.: Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133(43), 17146–17148 (2011). https://doi.org/10.1021/ja208346s Wang, B., Chen, J.S., Wu, H.B., Wang, Z., Lou, X.W.: Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133(43), 17146–17148 (2011). https://​doi.​org/​10.​1021/​ja208346s
87.
97.
go back to reference Pan, Z., Röhr, J.A., Ye, Z., Fishman, Z.S., Zhu, Q., Shen, X., Hu, S.: Elucidating charge separation in particulate photocatalysts using nearly intrinsic semiconductors with small asymmetric band bending. Sustain. Energy Fuels 3(3), 850–864 (2019). https://doi.org/10.1039/C9SE00036DCrossRef Pan, Z., Röhr, J.A., Ye, Z., Fishman, Z.S., Zhu, Q., Shen, X., Hu, S.: Elucidating charge separation in particulate photocatalysts using nearly intrinsic semiconductors with small asymmetric band bending. Sustain. Energy Fuels 3(3), 850–864 (2019). https://​doi.​org/​10.​1039/​C9SE00036DCrossRef
104.
go back to reference Zhang, M., Lin, Y., Mullen, T.J., Lin, W.-F., Sun, L.-D., Yan, C.-H., Patten, T.E., Wang, D., Liu, G.: Improving Hematite’s solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. J. Phys. Chem. Lett. 3(21), 3188–3192 (2012). https://doi.org/10.1021/jz301444aCrossRef Zhang, M., Lin, Y., Mullen, T.J., Lin, W.-F., Sun, L.-D., Yan, C.-H., Patten, T.E., Wang, D., Liu, G.: Improving Hematite’s solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. J. Phys. Chem. Lett. 3(21), 3188–3192 (2012). https://​doi.​org/​10.​1021/​jz301444aCrossRef
106.
go back to reference Wang, J.-J.J., Hu, Y., Toth, R., Fortunato, G., Braun, A.: A facile nonpolar organic solution process of a nanostructured hematite photoanode with high efficiency and stability for water splitting. J. Mater. Chem. A 4(8), 2821–2825 (2016). https://doi.org/10.1039/C5TA06439BCrossRef Wang, J.-J.J., Hu, Y., Toth, R., Fortunato, G., Braun, A.: A facile nonpolar organic solution process of a nanostructured hematite photoanode with high efficiency and stability for water splitting. J. Mater. Chem. A 4(8), 2821–2825 (2016). https://​doi.​org/​10.​1039/​C5TA06439BCrossRef
113.
go back to reference Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z., Huang, C., Xie, G.X., et al.: Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)CrossRef Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z., Huang, C., Xie, G.X., et al.: Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)CrossRef
119.
go back to reference Zhang, W-X.: Nanoscale iron particles for environmental remediation: an overview. J. Nanoparticle Res. 5(3–4), 323–332 (2003) Zhang, W-X.: Nanoscale iron particles for environmental remediation: an overview. J. Nanoparticle Res. 5(3–4), 323–332 (2003)
122.
go back to reference Dussán, K.J., Giese, E.C., Vieira, G.N.A., Lima, L.N., Silva, D.D.V.: Pharmaceutical and biomedical applications of magnetic iron-oxide nanoparticles. In: Metal Nanoparticles in Pharma, pp. 77–99. Springer (2017) Dussán, K.J., Giese, E.C., Vieira, G.N.A., Lima, L.N., Silva, D.D.V.: Pharmaceutical and biomedical applications of magnetic iron-oxide nanoparticles. In: Metal Nanoparticles in Pharma, pp. 77–99. Springer (2017)
125.
go back to reference Morber, J.R.: 1D nanowires : understanding growth and properties as steps toward biomedical and electrical application. Growth (Lakeland) (2008) Morber, J.R.: 1D nanowires : understanding growth and properties as steps toward biomedical and electrical application. Growth (Lakeland) (2008)
127.
go back to reference Patravale, V., Joshi, M.: Nanocarriers for imaging applications. In: Fanun, M. (ed.) Colloids in Drug Delivery, pp. 563–611. CRC Press, Boca Raton, Florida, US (2010)CrossRef Patravale, V., Joshi, M.: Nanocarriers for imaging applications. In: Fanun, M. (ed.) Colloids in Drug Delivery, pp. 563–611. CRC Press, Boca Raton, Florida, US (2010)CrossRef
129.
go back to reference Hinds, K.A., Hill, J.M., Shapiro, E.M., Laukkanen, M.O., Silva, A.C., Combs, C.A., Varney, T.R., Balaban, R.S., Koretsky, A.P., Dunbar, C.E.: Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102(3), 867–872 (2003). https://doi.org/10.1182/blood-2002-12-3669CrossRef Hinds, K.A., Hill, J.M., Shapiro, E.M., Laukkanen, M.O., Silva, A.C., Combs, C.A., Varney, T.R., Balaban, R.S., Koretsky, A.P., Dunbar, C.E.: Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102(3), 867–872 (2003). https://​doi.​org/​10.​1182/​blood-2002-12-3669CrossRef
134.
go back to reference Pultrum, B.B., van der Jagt, E.J., van Westreenen, H.L., van Dullemen, H.M., Kappert, P., Groen, H., Sietsma, J., Oudkerk, M., Plukker, J.T.M., van Dam, G.M.: Detection of lymph node metastases with ultrasmall super paramagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer: a feasibility study. Cancer Imaging 9(1), 19–28 (2009). https://doi.org/10.1102/1470-7330.2009.0004CrossRef Pultrum, B.B., van der Jagt, E.J., van Westreenen, H.L., van Dullemen, H.M., Kappert, P., Groen, H., Sietsma, J., Oudkerk, M., Plukker, J.T.M., van Dam, G.M.: Detection of lymph node metastases with ultrasmall super paramagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer: a feasibility study. Cancer Imaging 9(1), 19–28 (2009). https://​doi.​org/​10.​1102/​1470-7330.​2009.​0004CrossRef
136.
137.
go back to reference Semple, S., Alam, S.R., MacGillivray, T.J., Dweck, M.R., Shah, A.S., Richards, J., Wang, C., Lang, N., McKillop, G., Mirsadraee, S., et al.: Quantitative myocardial inflammation assessed using a novel USPIO-magnetic resonance imaging acquisition and analysis protocol. J. Cardiovasc. Magn. Reson. 15(S1), O114 (2013). https://doi.org/10.1186/1532-429x-15-s1-o114CrossRef Semple, S., Alam, S.R., MacGillivray, T.J., Dweck, M.R., Shah, A.S., Richards, J., Wang, C., Lang, N., McKillop, G., Mirsadraee, S., et al.: Quantitative myocardial inflammation assessed using a novel USPIO-magnetic resonance imaging acquisition and analysis protocol. J. Cardiovasc. Magn. Reson. 15(S1), O114 (2013). https://​doi.​org/​10.​1186/​1532-429x-15-s1-o114CrossRef
139.
go back to reference Lagan, J., Naish, J.H., Simpson, K., Zi, M., Cartwright, E.J., Foden, P., Morris, J., Clark, D., Birchall, L., Caldwell, J., et al.: Substrate for the myocardial inflammation–heart failure hypothesis identified using novel USPIO methodology. JACC Cardiovasc. Imag. 1–11 (2020). https://doi.org/10.1016/j.jcmg.2020.02.001 Lagan, J., Naish, J.H., Simpson, K., Zi, M., Cartwright, E.J., Foden, P., Morris, J., Clark, D., Birchall, L., Caldwell, J., et al.: Substrate for the myocardial inflammation–heart failure hypothesis identified using novel USPIO methodology. JACC Cardiovasc. Imag. 1–11 (2020). https://​doi.​org/​10.​1016/​j.​jcmg.​2020.​02.​001
142.
go back to reference Jordan, A., Wust, P., Scholz, R., Tesche, B., Fähling, H., Mitrovics, T., Vogl, T., Cervós-Navarro, J., Felix, R.: Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int. J. Hyperth. 12(6), 705–722 (1996). https://doi.org/10.3109/02656739609027678CrossRef Jordan, A., Wust, P., Scholz, R., Tesche, B., Fähling, H., Mitrovics, T., Vogl, T., Cervós-Navarro, J., Felix, R.: Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int. J. Hyperth. 12(6), 705–722 (1996). https://​doi.​org/​10.​3109/​0265673960902767​8CrossRef
146.
go back to reference Hergt, R., Andrä, W.: Magnetic hyperthermia and thermoablation. In: Andrä, W., Nowak, H. (eds.) Magnetism in Medicine, pp. 550–570. WILEY-VCH Verlag GmbH & Co., Weinheim, Germany (2007) Hergt, R., Andrä, W.: Magnetic hyperthermia and thermoablation. In: Andrä, W., Nowak, H. (eds.) Magnetism in Medicine, pp. 550–570. WILEY-VCH Verlag GmbH & Co., Weinheim, Germany (2007)
153.
go back to reference Dagan, R., Barkai, G., Givon-Lavi, N., Sharf, A.Z., Vardy, D., Cohen, T., Lipsitch, M., Greenberg, D.: Seasonality of antibiotic-resistant streptococcus pneumoniae that causes acute otitis media: a clue for an antibiotic-restriction policy? J. Infect. Dis. 197(8), 1094–1102 (2008). https://doi.org/10.1086/528995CrossRef Dagan, R., Barkai, G., Givon-Lavi, N., Sharf, A.Z., Vardy, D., Cohen, T., Lipsitch, M., Greenberg, D.: Seasonality of antibiotic-resistant streptococcus pneumoniae that causes acute otitis media: a clue for an antibiotic-restriction policy? J. Infect. Dis. 197(8), 1094–1102 (2008). https://​doi.​org/​10.​1086/​528995CrossRef
158.
go back to reference Dowaidar, M., Abdelhamid, H.N., Hällbrink, M., Freimann, K., Kurrikoff, K., Zou, X., Langel, Ü.: Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene delivery. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/s41598-017-09803-z Dowaidar, M., Abdelhamid, H.N., Hällbrink, M., Freimann, K., Kurrikoff, K., Zou, X., Langel, Ü.: Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene delivery. Sci. Rep. 7(1) (2017). https://​doi.​org/​10.​1038/​s41598-017-09803-z
160.
go back to reference Ayers, J.W., Stephens, R.A.: Gamma Ferric Oxide for Magnetic Impulse Record Members (1962) Ayers, J.W., Stephens, R.A.: Gamma Ferric Oxide for Magnetic Impulse Record Members (1962)
162.
go back to reference Mederos-Henry, F., Mahin, J., Pichon, B.P., Dîrtu, M.M., Garcia, Y., Delcorte, A., Bailly, C., Huynen, I., Hermans, S.: Highly efficient wideband microwave absorbers based on zero-valent Fe@γ-Fe2O3 and Fe/Co/Ni carbon-protected alloy nanoparticles supported on reduced graphene oxide. Nanomaterials 9(9) (2019). https://doi.org/10.3390/nano9091196 Mederos-Henry, F., Mahin, J., Pichon, B.P., Dîrtu, M.M., Garcia, Y., Delcorte, A., Bailly, C., Huynen, I., Hermans, S.: Highly efficient wideband microwave absorbers based on zero-valent Fe@γ-Fe2O3 and Fe/Co/Ni carbon-protected alloy nanoparticles supported on reduced graphene oxide. Nanomaterials 9(9) (2019). https://​doi.​org/​10.​3390/​nano9091196
175.
179.
go back to reference Marcot, G.C., Cauwenberg, W.J., Lamanna, S.: A. Production of Iron Oxide Pigments. Google Patents (1951) Marcot, G.C., Cauwenberg, W.J., Lamanna, S.: A. Production of Iron Oxide Pigments. Google Patents (1951)
Metadata
Title
Synthesis, Properties, and Applications of Iron Oxides:  Versatility and Challenges
Authors
Nathalie Danree Busti
Rodrigo Parra
Márcio Sousa Góes
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-62226-8_13

Premium Partners