Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Nanodiamonds: Synthesis and Applications

Authors : Mohd Bilal Khan, Zishan H. Khan

Published in: Nanomaterials and Their Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present chapter is devoted to the synthesis and applications of nanodiamond. Nanodiamond or nanocrystalline diamond is actually an allotrope of carbon which has nanosized carbon crystallites having well-known diamond structure. Although it is present in nature since long, the realization of its artificial production occurred in the 1960s by the Russian scientists. Due to the policy of secret research, it was in dark until 1980s, when the first formal report of its synthesis was published. Since then, it has been remained in the focus of scientists and researchers worldwide. Several techniques for the synthesis of nanodiamond have been developed. This chapter presents all the major techniques used for the synthesis of nanodiamond particles as well as thin films. Due to its excellent mechanical and optical properties, high surface area, non-toxicity and tenability of its surface structure, nanodiamond has been widely used in various applications. This chapter reviews some interesting applications of nanodiamond, especially, the recent ones.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.S. Lewis, T. Ming, J.F. Wacker, and E. Steel. Interstellar diamonds in meteorites. In Lunar and Planetary Science Conference, vol. 18. 1987 R.S. Lewis, T. Ming, J.F. Wacker, and E. Steel. Interstellar diamonds in meteorites. In Lunar and Planetary Science Conference, vol. 18. 1987
2.
go back to reference Roy S. Lewis, Edward Anders, Bruce T. Draine, Properties, detectability and origin of interstellar diamonds in meteorites. Nature 339(6220), 117–121 (1989)CrossRef Roy S. Lewis, Edward Anders, Bruce T. Draine, Properties, detectability and origin of interstellar diamonds in meteorites. Nature 339(6220), 117–121 (1989)CrossRef
3.
go back to reference Sachiko Amari, Roy S. Lewis, Edward Anders, Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite. Geochim. Cosmochim. Acta 58(1), 459–470 (1994)CrossRef Sachiko Amari, Roy S. Lewis, Edward Anders, Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite. Geochim. Cosmochim. Acta 58(1), 459–470 (1994)CrossRef
4.
go back to reference C.W. Bauschlicher Jr., Y. Liu, A. Ricca, A.L. Mattioda, L.J. Allamandola, Electronic and vibrational spectroscopy of diamondoids and the interstellar infrared bands between 3.35 and 3.55 μm. Astrophys. J 671(1), 458 (2007)CrossRef C.W. Bauschlicher Jr., Y. Liu, A. Ricca, A.L. Mattioda, L.J. Allamandola, Electronic and vibrational spectroscopy of diamondoids and the interstellar infrared bands between 3.35 and 3.55 μm. Astrophys. J 671(1), 458 (2007)CrossRef
5.
go back to reference Vadym N. Mochalin, Olga Shenderova, Dean Ho, Yury Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11–23 (2012)CrossRef Vadym N. Mochalin, Olga Shenderova, Dean Ho, Yury Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11–23 (2012)CrossRef
6.
go back to reference V.V. Danilenko, On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46(4), 595–599 (2004)CrossRef V.V. Danilenko, On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46(4), 595–599 (2004)CrossRef
7.
go back to reference N.R. Greiner, D.S. Phillips, J.D. Johnson, F. Volk, Diamonds in detonation soot. Nature 333(6172), 440–442 (1988)CrossRef N.R. Greiner, D.S. Phillips, J.D. Johnson, F. Volk, Diamonds in detonation soot. Nature 333(6172), 440–442 (1988)CrossRef
8.
go back to reference Guo-Wei Yang, Jin-Bin Wang, Qui-Xiang Liu, Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Matter 10(35), 7923 (1998)CrossRef Guo-Wei Yang, Jin-Bin Wang, Qui-Xiang Liu, Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Matter 10(35), 7923 (1998)CrossRef
9.
go back to reference J.P. Boudou et al., High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009)CrossRef J.P. Boudou et al., High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009)CrossRef
10.
go back to reference Y.G. Gogotsi et al., Structure of carbon produced by hydrothermal treatment of β-SiC powder. J. Mater. Chem. 6, 595–604 (1996)CrossRef Y.G. Gogotsi et al., Structure of carbon produced by hydrothermal treatment of β-SiC powder. J. Mater. Chem. 6, 595–604 (1996)CrossRef
11.
go back to reference M. Frenklach et al., Induced nucleation of diamond powder. Appl. Phys. Lett. 59, 546–548 (1991)CrossRef M. Frenklach et al., Induced nucleation of diamond powder. Appl. Phys. Lett. 59, 546–548 (1991)CrossRef
12.
go back to reference T.L. Daulton, M.A. Kirk, R.S. Lewis, L.E. Rehn, Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Meth. B 175, 12–20 (2001)CrossRef T.L. Daulton, M.A. Kirk, R.S. Lewis, L.E. Rehn, Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Meth. B 175, 12–20 (2001)CrossRef
13.
go back to reference S. Welz, Y. Gogotsi, M.J. McNallan, Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 93, 4207–4214 (2003)CrossRef S. Welz, Y. Gogotsi, M.J. McNallan, Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 93, 4207–4214 (2003)CrossRef
14.
go back to reference É. Galimov et al., Experimental corroboration of the synthesis of diamond in the cavitation process. Dokl. Phys. 49, 150–153 (2004)CrossRef É. Galimov et al., Experimental corroboration of the synthesis of diamond in the cavitation process. Dokl. Phys. 49, 150–153 (2004)CrossRef
15.
go back to reference O.A. Shedorova, D.M. Gruen (eds.), Ultrananocrystalline diamond: synthesis, properties and applications (William Andrew Publishing, Norwich, NY, 2006) O.A. Shedorova, D.M. Gruen (eds.), Ultrananocrystalline diamond: synthesis, properties and applications (William Andrew Publishing, Norwich, NY, 2006)
17.
go back to reference Y.R. Chang et al., Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotech. 3, 284–288 (2008)CrossRef Y.R. Chang et al., Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotech. 3, 284–288 (2008)CrossRef
18.
go back to reference V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009)CrossRef V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009)CrossRef
19.
go back to reference R.A. Shimkunas et al., Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009)CrossRef R.A. Shimkunas et al., Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009)CrossRef
20.
go back to reference K.V. Purtov, A.I. Petunin, A.E. Burov, A.P. Puzyr, V.S. Bondar, Nanodiamonds as carriers for address delivery of biologically active substances. Nanoscale Res. Lett. 5, 631–636 (2010)CrossRef K.V. Purtov, A.I. Petunin, A.E. Burov, A.P. Puzyr, V.S. Bondar, Nanodiamonds as carriers for address delivery of biologically active substances. Nanoscale Res. Lett. 5, 631–636 (2010)CrossRef
21.
go back to reference A. Krueger, Diamond nanoparticles: jewels for chemistry and physics. Adv. Mater. 20, 2445–2449 (2008)CrossRef A. Krueger, Diamond nanoparticles: jewels for chemistry and physics. Adv. Mater. 20, 2445–2449 (2008)CrossRef
22.
go back to reference W.W. Zheng et al., Organic functionalization of ultradispersed nanodiamond: synthesis and applications. J. Mater. Chem. 19, 8432–8441 (2009)CrossRef W.W. Zheng et al., Organic functionalization of ultradispersed nanodiamond: synthesis and applications. J. Mater. Chem. 19, 8432–8441 (2009)CrossRef
23.
go back to reference B.V. Spitsyn et al., Mater. 15, 296–299 (2006) B.V. Spitsyn et al., Mater. 15, 296–299 (2006)
24.
go back to reference K.D. Behler et al., Nanodiamond–polymer composite fibers and coatings. ACS Nano 3, 363–369 (2009)CrossRef K.D. Behler et al., Nanodiamond–polymer composite fibers and coatings. ACS Nano 3, 363–369 (2009)CrossRef
25.
go back to reference Q. Zhang et al., Fluorescent PLLA–nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011)CrossRef Q. Zhang et al., Fluorescent PLLA–nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011)CrossRef
26.
go back to reference D.H. Wang, L.S. Tan, H.J. Huang, L.M. Dai, E. Osawa, In-situ nanocomposite synthesis: arylcarbonylation and grafting of primary diamond nanoparticles with a poly(ether–ketone) in polyphosphoric acid. Macromolecules 42, 114–124 (2009)CrossRef D.H. Wang, L.S. Tan, H.J. Huang, L.M. Dai, E. Osawa, In-situ nanocomposite synthesis: arylcarbonylation and grafting of primary diamond nanoparticles with a poly(ether–ketone) in polyphosphoric acid. Macromolecules 42, 114–124 (2009)CrossRef
27.
go back to reference J.L. Cheng, J.P. He, C.X. Li, Y.L. Yang, Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes. Chem. Mater. 20, 4224–4230 (2008)CrossRef J.L. Cheng, J.P. He, C.X. Li, Y.L. Yang, Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes. Chem. Mater. 20, 4224–4230 (2008)CrossRef
28.
go back to reference V.N. Mochalin et al., Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 5, 7494–7502 (2011)CrossRef V.N. Mochalin et al., Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 5, 7494–7502 (2011)CrossRef
29.
go back to reference P.S. DeCarli, J.C. Jamieson, Formation of diamond by explosive shock. Science 133(3467), 1821–1822 (1961)CrossRef P.S. DeCarli, J.C. Jamieson, Formation of diamond by explosive shock. Science 133(3467), 1821–1822 (1961)CrossRef
30.
go back to reference P.S. DeCarli, Method of making diamond, US Patent, 3238019 (1966) P.S. DeCarli, Method of making diamond, US Patent, 3238019 (1966)
31.
go back to reference G.R. Cowan, N.J. Woodbury, B.W. Dunnington, P. Wood, A.H. Holtzman, Process for synthesizing diamond, US Patent 3401019 (1968) G.R. Cowan, N.J. Woodbury, B.W. Dunnington, P. Wood, A.H. Holtzman, Process for synthesizing diamond, US Patent 3401019 (1968)
32.
go back to reference V.V. Danilenko, On the discovery of detonation nanodiamond, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen (Norwich, WilliamAndrew, 2006), pp. 335–344CrossRef V.V. Danilenko, On the discovery of detonation nanodiamond, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen (Norwich, WilliamAndrew, 2006), pp. 335–344CrossRef
33.
go back to reference L.F. Trueb, J. Appl. Phys. 39, 4707 (1968). b) G. Burkhard, H. Tamura, Y. Tanabe, A.B. Sawaoka, K. Yamada, Appl. Phys. Lett. 66, 3131 (1995) L.F. Trueb, J. Appl. Phys. 39, 4707 (1968). b) G. Burkhard, H. Tamura, Y. Tanabe, A.B. Sawaoka, K. Yamada, Appl. Phys. Lett. 66, 3131 (1995)
35.
go back to reference V.Y. Dolmatov, Detonation synthesis ultradispersed diamonds: properties and applications. Usp. Khim. 70, 687–708 (2001)CrossRef V.Y. Dolmatov, Detonation synthesis ultradispersed diamonds: properties and applications. Usp. Khim. 70, 687–708 (2001)CrossRef
36.
go back to reference V.V. Danilenko, Synthesis and Sintering of Diamond by Explosion (Energoatomizdat, Moscow, 2003) V.V. Danilenko, Synthesis and Sintering of Diamond by Explosion (Energoatomizdat, Moscow, 2003)
37.
go back to reference V.Y. Dolmatov, M.V. Veretennikova, V.A. Marchukov, V.G. Sushchev, Currently available methods of industrial nanodiamond synthesis. Phys. solid state 46(4), 611–615 (2004)CrossRef V.Y. Dolmatov, M.V. Veretennikova, V.A. Marchukov, V.G. Sushchev, Currently available methods of industrial nanodiamond synthesis. Phys. solid state 46(4), 611–615 (2004)CrossRef
38.
go back to reference J.B. Donnet, C. Lemoigne, T.K. Wang, C.-M. Peng, M. Samirant, A. Eckhardt, Bull. Soc. Chim. Fr. 134, 875 (1997) J.B. Donnet, C. Lemoigne, T.K. Wang, C.-M. Peng, M. Samirant, A. Eckhardt, Bull. Soc. Chim. Fr. 134, 875 (1997)
39.
go back to reference G.A. Adadurov, A.V. Baluev, O.N. Breusov, V.N. Drobyshev, A.I. Rogacheva, A.M. Sapegin, V.F. Tatsii, Some properties of diamonds produced by an explosive method. Izv. Akad. Nauk SSSR Ser. Neorg. Mater. 13(4), 649–653 (1977) G.A. Adadurov, A.V. Baluev, O.N. Breusov, V.N. Drobyshev, A.I. Rogacheva, A.M. Sapegin, V.F. Tatsii, Some properties of diamonds produced by an explosive method. Izv. Akad. Nauk SSSR Ser. Neorg. Mater. 13(4), 649–653 (1977)
40.
go back to reference V.F. Tatsii, A.V. Bochko, G.S. Oleinik, Structure and properties of Dalan detonation diamonds. Combust. Explos. Shock Waves 45(1), 95–103 (2009)CrossRef V.F. Tatsii, A.V. Bochko, G.S. Oleinik, Structure and properties of Dalan detonation diamonds. Combust. Explos. Shock Waves 45(1), 95–103 (2009)CrossRef
41.
go back to reference V.V. Danilenko, in Synthesis, Properties and Applications of Ultrananocrystalline Diamond (Proceedings of NATO Advanced Research Workshop), ed. by D. Gruen, O. Shenderova, A. Vul (Springer, Heidelberg, 2005), pp. 181–198 V.V. Danilenko, in Synthesis, Properties and Applications of Ultrananocrystalline Diamond (Proceedings of NATO Advanced Research Workshop), ed. by D. Gruen, O. Shenderova, A. Vul (Springer, Heidelberg, 2005), pp. 181–198
42.
go back to reference P. Badziag, W.S. Verwoerd, W.P. Ellis, N.R. Greiner, Nanometre-sized diamonds are more stable than graphite. Nature 343, 244–245 (1990)CrossRef P. Badziag, W.S. Verwoerd, W.P. Ellis, N.R. Greiner, Nanometre-sized diamonds are more stable than graphite. Nature 343, 244–245 (1990)CrossRef
43.
go back to reference A.S. Barnard, S.P. Russo, I.K. Snook, Structural relaxation and relative stability of nanodiamond morphologies. Diamond Relat. Mater. 12, 1867–1872 (2003)CrossRef A.S. Barnard, S.P. Russo, I.K. Snook, Structural relaxation and relative stability of nanodiamond morphologies. Diamond Relat. Mater. 12, 1867–1872 (2003)CrossRef
44.
go back to reference A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811–4819 (2007)CrossRef A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811–4819 (2007)CrossRef
45.
go back to reference J.Y. Raty, G. Galli, Ultradispersity of diamond at the nanoscale. Nature Mater. 2, 792–795 (2003)CrossRef J.Y. Raty, G. Galli, Ultradispersity of diamond at the nanoscale. Nature Mater. 2, 792–795 (2003)CrossRef
46.
go back to reference L. Lai, A.S. Barnard, Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds. Nanoscale 3, 2566–2575 (2011)CrossRef L. Lai, A.S. Barnard, Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds. Nanoscale 3, 2566–2575 (2011)CrossRef
47.
go back to reference L. Lai, A.S. Barnard, Stability of nanodiamond surfaces exposed to N, NH, and NH2. J. Phys. Chem. C 115, 6218–6228 (2011)CrossRef L. Lai, A.S. Barnard, Stability of nanodiamond surfaces exposed to N, NH, and NH2. J. Phys. Chem. C 115, 6218–6228 (2011)CrossRef
48.
go back to reference A. Aleksenskiy, M. Baidakova, V. Osipov, A. Vul, Nanodiamonds, in Applications Biology and Nanoscale Medicine, ed. by D. Ho (Springer, Berlin, 2010), pp. 55–79 A. Aleksenskiy, M. Baidakova, V. Osipov, A. Vul, Nanodiamonds, in Applications Biology and Nanoscale Medicine, ed. by D. Ho (Springer, Berlin, 2010), pp. 55–79
49.
go back to reference I.I. Vlasov et al., Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 6, 687–694 (2010)CrossRef I.I. Vlasov et al., Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 6, 687–694 (2010)CrossRef
50.
go back to reference O.A. Shenderova, D.M. Gruen, Ultrananocrystalline Diamond: Synthesis, Properties, and Applications (William Andrew, New York, 2006) O.A. Shenderova, D.M. Gruen, Ultrananocrystalline Diamond: Synthesis, Properties, and Applications (William Andrew, New York, 2006)
51.
go back to reference Vincent Pichot, Benedikt Risse, Fabien Schnell, Julien Mory, Denis Spitzer, Understanding ultrafine nanodiamond formation using nanostructured explosives. Sci. Rep. 3, 2159 (2013)CrossRef Vincent Pichot, Benedikt Risse, Fabien Schnell, Julien Mory, Denis Spitzer, Understanding ultrafine nanodiamond formation using nanostructured explosives. Sci. Rep. 3, 2159 (2013)CrossRef
52.
go back to reference Stepan S. Batsanov, Alexander N. Osavchuk, Stepan P. Naumov, Alexander E. Efimov, Budhika G. Mendis, David C. Apperley, Andrei S. Batsanov, Synthesis and properties of hydrogen-free detonation diamond. Propellants Explos. Pyrotech. 40(1), 39–45 (2015)CrossRef Stepan S. Batsanov, Alexander N. Osavchuk, Stepan P. Naumov, Alexander E. Efimov, Budhika G. Mendis, David C. Apperley, Andrei S. Batsanov, Synthesis and properties of hydrogen-free detonation diamond. Propellants Explos. Pyrotech. 40(1), 39–45 (2015)CrossRef
53.
go back to reference Z.Y. Juang, J.F. Lai, C.H. Weng, J.H. Lee, H.J. Lai, T.S. Lai, C.H. Tsai, On the kinetics of carbon nanotube growth by thermal CVD method. Diamond and related materials 13(11), 2140–2146 (2004)CrossRef Z.Y. Juang, J.F. Lai, C.H. Weng, J.H. Lee, H.J. Lai, T.S. Lai, C.H. Tsai, On the kinetics of carbon nanotube growth by thermal CVD method. Diamond and related materials 13(11), 2140–2146 (2004)CrossRef
54.
go back to reference Xianbao Wang, Haijun You, Fangming Liu, Mingjian Li, Li Wan, Shaoqing Li, Qin Li et al., Large-scale synthesis of few-layered graphene using CVD. Chem. Vap. Deposition 15(1–3), 53–56 (2009)CrossRef Xianbao Wang, Haijun You, Fangming Liu, Mingjian Li, Li Wan, Shaoqing Li, Qin Li et al., Large-scale synthesis of few-layered graphene using CVD. Chem. Vap. Deposition 15(1–3), 53–56 (2009)CrossRef
55.
go back to reference James E. Butler, Anirudha V. Sumant, The CVD of nanodiamond materials. Chem. Vap. Deposition 14(7–8), 145–160 (2008)CrossRef James E. Butler, Anirudha V. Sumant, The CVD of nanodiamond materials. Chem. Vap. Deposition 14(7–8), 145–160 (2008)CrossRef
56.
go back to reference B.V. Spitsyn, B.V. Deryaguin, USSR Inventor’s Certificate No. 339134, Application No. 964957/716358 (July 10, 1956) B.V. Spitsyn, B.V. Deryaguin, USSR Inventor’s Certificate No. 339134, Application No. 964957/716358 (July 10, 1956)
57.
go back to reference S. Matsumoto, Y. Sato, M. Kamo et al., Jpn. J. Appl. Phys. 21(4A), L183 (1982)CrossRef S. Matsumoto, Y. Sato, M. Kamo et al., Jpn. J. Appl. Phys. 21(4A), L183 (1982)CrossRef
58.
60.
go back to reference M. Frenklach, R. Kematick, D. Huang, W. Howard, K.E. Spear, A.W. Phelps, R. Koba, Homogeneous nucleation of diamond powder in the gas phase. J. Appl. Phys. 66, 395–399 (1989)CrossRef M. Frenklach, R. Kematick, D. Huang, W. Howard, K.E. Spear, A.W. Phelps, R. Koba, Homogeneous nucleation of diamond powder in the gas phase. J. Appl. Phys. 66, 395–399 (1989)CrossRef
61.
go back to reference M. Frenklach, W. Howard, D. Huang, J. Yuan, K.E. Spear, R. Koba, Induced nucleation of diamond powder. Appl. Phys. Lett. 59(5), 546–548 (1991)CrossRef M. Frenklach, W. Howard, D. Huang, J. Yuan, K.E. Spear, R. Koba, Induced nucleation of diamond powder. Appl. Phys. Lett. 59(5), 546–548 (1991)CrossRef
62.
go back to reference P.R. Buerki, S. Leutwyler, Homogeneous nucleation of diamond powder by CO2 laser-driven reactions. J. Appl. Phys. 69, 3739–3745 (1991)CrossRef P.R. Buerki, S. Leutwyler, Homogeneous nucleation of diamond powder by CO2 laser-driven reactions. J. Appl. Phys. 69, 3739–3745 (1991)CrossRef
63.
go back to reference Jin-Woo Park, Kun-Su Kim, Nong-Moon Hwang, Gas phase generation of diamond nanoparticles in the hot filament chemical vapor deposition reactor. Carbon 106, 289–294 (2016)CrossRef Jin-Woo Park, Kun-Su Kim, Nong-Moon Hwang, Gas phase generation of diamond nanoparticles in the hot filament chemical vapor deposition reactor. Carbon 106, 289–294 (2016)CrossRef
64.
go back to reference O.A. Shenderova, A.C.H. Suzanne, Nanodiamonds. In Springer Handbook of Nanomaterials, (Springer, Berlin, 2013), pp. 263–300 O.A. Shenderova, A.C.H. Suzanne, Nanodiamonds. In Springer Handbook of Nanomaterials, (Springer, Berlin, 2013), pp. 263–300
65.
go back to reference Jean-Paul Boudou, Julia Tisler, Rolf Reuter, Alain Thorel, Patrick A. Curmi, Fedor Jelezko, Joerg Wrachtrup, Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diam. Relat. Mater. 37, 80–86 (2013)CrossRef Jean-Paul Boudou, Julia Tisler, Rolf Reuter, Alain Thorel, Patrick A. Curmi, Fedor Jelezko, Joerg Wrachtrup, Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diam. Relat. Mater. 37, 80–86 (2013)CrossRef
66.
go back to reference P. Curmi, J.-P. Boudou, A. Thorel, F. Jelezko, M. Sennour. Method for manufacturing cubic diamond nanocrystals. U.S. Patent 8,932,553, issued January 13, 2015 P. Curmi, J.-P. Boudou, A. Thorel, F. Jelezko, M. Sennour. Method for manufacturing cubic diamond nanocrystals. U.S. Patent 8,932,553, issued January 13, 2015
67.
go back to reference G.W. Yang, Laser ablation in liquids: applications in the synthesis of nanocrystals. Progr. Mater. Sci. 52, 648–698 (2007)CrossRef G.W. Yang, Laser ablation in liquids: applications in the synthesis of nanocrystals. Progr. Mater. Sci. 52, 648–698 (2007)CrossRef
68.
go back to reference C.X. Wang, P. Liu, H. Cui, G.W. Yang, Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl. Phys. Lett. 87(20), 201913 (2005)CrossRef C.X. Wang, P. Liu, H. Cui, G.W. Yang, Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl. Phys. Lett. 87(20), 201913 (2005)CrossRef
69.
go back to reference L. Yang, P.W. May, L. Yin, J.A. Smith, K.N. Rosser, Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. Diam. Relat. Mater. 16(4), 725–729 (2007)CrossRef L. Yang, P.W. May, L. Yin, J.A. Smith, K.N. Rosser, Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. Diam. Relat. Mater. 16(4), 725–729 (2007)CrossRef
70.
go back to reference N. Tarasenka, A. Stupak, N. Tarasenko, D. Mariotti, S. Chakrabarti. Structure and optical properties of carbon nanoparticles generated by laser treatment of graphite in liquid. ChemPhysChem (2016) N. Tarasenka, A. Stupak, N. Tarasenko, D. Mariotti, S. Chakrabarti. Structure and optical properties of carbon nanoparticles generated by laser treatment of graphite in liquid. ChemPhysChem (2016)
71.
go back to reference F. Gorrini, M. Cazzanelli, N. Bazzanella, R. Edla, M. Gemmi, V. Cappello, J. David, C. Dorigoni, A. Bifone, A. Miotello. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci. Rep. 6 (2016) F. Gorrini, M. Cazzanelli, N. Bazzanella, R. Edla, M. Gemmi, V. Cappello, J. David, C. Dorigoni, A. Bifone, A. Miotello. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci. Rep. 6 (2016)
72.
go back to reference David Amans, Mouhamed Diouf, Julien Lam, Gilles Ledoux, Christophe Dujardin, Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis. J. Colloid Interface Sci. 489, 114–125 (2017)CrossRef David Amans, Mouhamed Diouf, Julien Lam, Gilles Ledoux, Christophe Dujardin, Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis. J. Colloid Interface Sci. 489, 114–125 (2017)CrossRef
73.
go back to reference F. Banhart, P.M. Ajayan, Carbon onion as nanoscopic pressure cell for diamond formation. Nature 382, 433–437 (1996)CrossRef F. Banhart, P.M. Ajayan, Carbon onion as nanoscopic pressure cell for diamond formation. Nature 382, 433–437 (1996)CrossRef
74.
go back to reference P. Wesolowski, Y. Lyutovich, F. Banhart, H.D. Carstanjen, H. Kronmüller, Formation of diamond in carbon onions under MeV ion irradiation. Appl. Phys. Lett. 71, 1948–1951 (1997)CrossRef P. Wesolowski, Y. Lyutovich, F. Banhart, H.D. Carstanjen, H. Kronmüller, Formation of diamond in carbon onions under MeV ion irradiation. Appl. Phys. Lett. 71, 1948–1951 (1997)CrossRef
75.
go back to reference T.L. Daulton, M.A. Kirk, R.S. Lewis, L.E. Rehn, Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Methods Phys. Res. B 175, 12–18 (2001)CrossRef T.L. Daulton, M.A. Kirk, R.S. Lewis, L.E. Rehn, Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Methods Phys. Res. B 175, 12–18 (2001)CrossRef
76.
go back to reference T. Meguro, M. Hida, M. Suzuki, Y. Koguchi, H. Takai, Y. Yamamoto, K. Maeda, Y. Aoyagi, Creation of nanodiamonds by single impacts of highly charged ions upon graphite. Appl. Phys. Lett. 79, 3866–3870 (2001)CrossRef T. Meguro, M. Hida, M. Suzuki, Y. Koguchi, H. Takai, Y. Yamamoto, K. Maeda, Y. Aoyagi, Creation of nanodiamonds by single impacts of highly charged ions upon graphite. Appl. Phys. Lett. 79, 3866–3870 (2001)CrossRef
77.
go back to reference C.E. Chapter, Brennen: Cavitation and Bubble Dynamics (Oxford Univ, Oxford, 1995) C.E. Chapter, Brennen: Cavitation and Bubble Dynamics (Oxford Univ, Oxford, 1995)
78.
go back to reference Yury Gogotsi, Sascha Welz, Daniel A. Ersoy, Michael J. McNallan, Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature 411(6835), 283–287 (2001)CrossRef Yury Gogotsi, Sascha Welz, Daniel A. Ersoy, Michael J. McNallan, Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature 411(6835), 283–287 (2001)CrossRef
79.
go back to reference K.J. Grannen, R.P.H. Chang, Diamond growth on carbide surfaces using a selective etching technique. J. Mater. Res. 9, 2154–2163 (1994)CrossRef K.J. Grannen, R.P.H. Chang, Diamond growth on carbide surfaces using a selective etching technique. J. Mater. Res. 9, 2154–2163 (1994)CrossRef
80.
go back to reference J.M.J. Lannon, J.S. Gold, C.D. Stinespring, Hydrogen ion interactions with silicon carbide and the nucleation of diamond thin films. J. Appl. Phys. 77, 3823–3830 (1995)CrossRef J.M.J. Lannon, J.S. Gold, C.D. Stinespring, Hydrogen ion interactions with silicon carbide and the nucleation of diamond thin films. J. Appl. Phys. 77, 3823–3830 (1995)CrossRef
81.
go back to reference V. Heera, W. Skorupa, B. Pecz, L. Dobos, Ion beam synthesis of graphite and diamond in silicon carbide. Appl. Phys. Lett. 76, 2847–2849 (2000)CrossRef V. Heera, W. Skorupa, B. Pecz, L. Dobos, Ion beam synthesis of graphite and diamond in silicon carbide. Appl. Phys. Lett. 76, 2847–2849 (2000)CrossRef
82.
go back to reference N. Nunn, T. Marco, G. McGuire, O. Shenderova, Nanodiamond: a high impact nanomaterial. Curr. Opin. Solid State Mater. Sci. 21(1), 1–9 (2016)CrossRef N. Nunn, T. Marco, G. McGuire, O. Shenderova, Nanodiamond: a high impact nanomaterial. Curr. Opin. Solid State Mater. Sci. 21(1), 1–9 (2016)CrossRef
83.
go back to reference X. Liu, X. Xu. Ultra-fine polishing of glass-ceramics by disaggregated and fractionated detonation nanodiamond. Ceramics International (2017) X. Liu, X. Xu. Ultra-fine polishing of glass-ceramics by disaggregated and fractionated detonation nanodiamond. Ceramics International (2017)
84.
go back to reference K.B. Holt, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Phil. Trans. Roy. Soc. A 365, 2845–2861 (2007)CrossRef K.B. Holt, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Phil. Trans. Roy. Soc. A 365, 2845–2861 (2007)CrossRef
85.
go back to reference Khosro A. Shirvani, Mohsen Mosleh, Sonya T. Smith, Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication. J. Nanopart. Res. 18(8), 248 (2016)CrossRef Khosro A. Shirvani, Mohsen Mosleh, Sonya T. Smith, Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication. J. Nanopart. Res. 18(8), 248 (2016)CrossRef
86.
go back to reference A. Stravato, R. Knight, V. Mochalin, S.C. Picardi, HVOF-sprayed nylon-11 + nanodiamond composite coatings: Production and characterization. J. Therm. Spray Technol. 17, 812–817 (2008)CrossRef A. Stravato, R. Knight, V. Mochalin, S.C. Picardi, HVOF-sprayed nylon-11 + nanodiamond composite coatings: Production and characterization. J. Therm. Spray Technol. 17, 812–817 (2008)CrossRef
87.
go back to reference O. Shenderova et al., Detonation nanodiamond and onion-like carbon: applications in composites. Phys. Status Solidi A 205, 2245–2251 (2008)CrossRef O. Shenderova et al., Detonation nanodiamond and onion-like carbon: applications in composites. Phys. Status Solidi A 205, 2245–2251 (2008)CrossRef
88.
go back to reference J.Y. Lee, D.P. Lim, D.S. Lim, Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles. Composites B 38, 810–816 (2007)CrossRef J.Y. Lee, D.P. Lim, D.S. Lim, Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles. Composites B 38, 810–816 (2007)CrossRef
89.
go back to reference I. Neitzel, V. Mochalin, I. Knoke, G.R. Palmese, Y. Gogotsi, Mechanical properties of epoxy composites with high contents of nanodiamond. Compos. Sci. Technol. 71, 710–716 (2011)CrossRef I. Neitzel, V. Mochalin, I. Knoke, G.R. Palmese, Y. Gogotsi, Mechanical properties of epoxy composites with high contents of nanodiamond. Compos. Sci. Technol. 71, 710–716 (2011)CrossRef
90.
go back to reference U. Maitra, K.E. Prasad, U. Ramamurty, C.N.R. Rao, Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Commun. 149, 1693–1697 (2009)CrossRef U. Maitra, K.E. Prasad, U. Ramamurty, C.N.R. Rao, Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Commun. 149, 1693–1697 (2009)CrossRef
91.
go back to reference Q. Zhang, K. Naito, Y. Tanaka, Y. Kagawa, Grafting polyimides from nanodiamonds. Macromolecules 41, 536–538 (2008)CrossRef Q. Zhang, K. Naito, Y. Tanaka, Y. Kagawa, Grafting polyimides from nanodiamonds. Macromolecules 41, 536–538 (2008)CrossRef
92.
go back to reference O. Shenderova et al., Nanodiamond and onion-like carbon polymer nanocomposites. Diamond Relat. Mater. 16, 1213–1217 (2007)CrossRef O. Shenderova et al., Nanodiamond and onion-like carbon polymer nanocomposites. Diamond Relat. Mater. 16, 1213–1217 (2007)CrossRef
93.
go back to reference Fan Zhang, Qingxin Song, Xuan Huang, Fengning Li, Kun Wang, Yixing Tang, Canglong Hou, Hongxing Shen, A novel high mechanical property PLGA composite matrix loaded with nanodiamond-phospholipid compound for bone tissue engineering. ACS Appl. Mater. Interfaces. 8(2), 1087–1097 (2016)CrossRef Fan Zhang, Qingxin Song, Xuan Huang, Fengning Li, Kun Wang, Yixing Tang, Canglong Hou, Hongxing Shen, A novel high mechanical property PLGA composite matrix loaded with nanodiamond-phospholipid compound for bone tissue engineering. ACS Appl. Mater. Interfaces. 8(2), 1087–1097 (2016)CrossRef
94.
go back to reference Y. Zhang, K.Y. Rhee, S.-J. Park, Nanodiamond nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability. Compos. Part B Eng. 114, 111–120 (2017)CrossRef Y. Zhang, K.Y. Rhee, S.-J. Park, Nanodiamond nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability. Compos. Part B Eng. 114, 111–120 (2017)CrossRef
95.
go back to reference E.-Y.Choi, K. Kim, C.-K. Kim, E. Kang. Reinforcement of nylon 6, 6/nylon 6, 6 grafted nanodiamond composites by in situ reactive extrusion. Sci. Rep. 6 (2016) E.-Y.Choi, K. Kim, C.-K. Kim, E. Kang. Reinforcement of nylon 6, 6/nylon 6, 6 grafted nanodiamond composites by in situ reactive extrusion. Sci. Rep. 6 (2016)
96.
go back to reference Ayesha Kausar, Thermal and rheological properties of waterborne polyurethane/nanodiamond composite. Nanosci. Nanotechnol. 6(1), 6–10 (2016) Ayesha Kausar, Thermal and rheological properties of waterborne polyurethane/nanodiamond composite. Nanosci. Nanotechnol. 6(1), 6–10 (2016)
97.
go back to reference V. Borjanović, L. Bistričić, I. Pucić, L. Mikac, R. Slunjski, M. Jakšić, G. McGuire, A.T. Stanković, O. Shenderova, Proton-radiation resistance of poly (ethylene terephthalate)–nanodiamond–graphene nanoplatelet nanocomposites. J Mater. Sci. 51(2), 1000–1016 (2016)CrossRef V. Borjanović, L. Bistričić, I. Pucić, L. Mikac, R. Slunjski, M. Jakšić, G. McGuire, A.T. Stanković, O. Shenderova, Proton-radiation resistance of poly (ethylene terephthalate)–nanodiamond–graphene nanoplatelet nanocomposites. J Mater. Sci. 51(2), 1000–1016 (2016)CrossRef
98.
go back to reference A. Nieto, J. Kim, O. Penkov, D.-E. Kim, J.M. Schoenung, Elevated temperature wear behavior of thermally sprayed WC-Co/nanodiamond composite coatings. Surf. Coat. Technol. 315, 283–293 (2017)CrossRef A. Nieto, J. Kim, O. Penkov, D.-E. Kim, J.M. Schoenung, Elevated temperature wear behavior of thermally sprayed WC-Co/nanodiamond composite coatings. Surf. Coat. Technol. 315, 283–293 (2017)CrossRef
99.
go back to reference S. Yin, Y. Xie, J. Cizek, E. Ekoi, T. Hussain, D. Dowling, R. Lupoi, Advanced diamond-reinforced metal matrix composites via cold spray: properties and deposition mechanism. Compos. Part B Eng. 113(15), 44–54 (2017)CrossRef S. Yin, Y. Xie, J. Cizek, E. Ekoi, T. Hussain, D. Dowling, R. Lupoi, Advanced diamond-reinforced metal matrix composites via cold spray: properties and deposition mechanism. Compos. Part B Eng. 113(15), 44–54 (2017)CrossRef
100.
go back to reference S. Murugesan, O.R. Monteiro, V.N. Khabashesku, Extending the Lifetime of Oil and Gas Equipment with Corrosion and Erosion-Resistant Ni-B-Nanodiamond Metal-Matrix-Nanocomposite Coatings. Offshore Technology Conference. (2016). doi:10.4043/26934-MS S. Murugesan, O.R. Monteiro, V.N. Khabashesku, Extending the Lifetime of Oil and Gas Equipment with Corrosion and Erosion-Resistant Ni-B-Nanodiamond Metal-Matrix-Nanocomposite Coatings. Offshore Technology Conference. (2016). doi:10.​4043/​26934-MS
101.
go back to reference H. Huang, E. Pierstorff, E. Osawa, D. Ho, Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–3314 (2007)CrossRef H. Huang, E. Pierstorff, E. Osawa, D. Ho, Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–3314 (2007)CrossRef
102.
go back to reference Chow et al., Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011) Chow et al., Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011)
103.
go back to reference Xianfeng Chen, Wenjun Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing.” Chemical Society Reviews (2017), R. Lam, D. Ho., Nanodiamonds as vehicles for systemic and localized drug delivery. Expert Opin. Drug Deliv. 6(9), 883–895 (2009)CrossRef Xianfeng Chen, Wenjun Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing.” Chemical Society Reviews (2017), R. Lam, D. Ho., Nanodiamonds as vehicles for systemic and localized drug delivery. Expert Opin. Drug Deliv. 6(9), 883–895 (2009)CrossRef
104.
go back to reference X. Chen, W. Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46, 734–760 (2017)CrossRef X. Chen, W. Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46, 734–760 (2017)CrossRef
105.
go back to reference M. Chen, E.D. Pierstorff, R. Lam, S.-Y. Li, H. Huang, E. Osawa, D. Ho, ACS Nano 3, 2016–2022 (2009)CrossRef M. Chen, E.D. Pierstorff, R. Lam, S.-Y. Li, H. Huang, E. Osawa, D. Ho, ACS Nano 3, 2016–2022 (2009)CrossRef
106.
go back to reference Z. Zhang, B. Niu, J. Chen, X. He, X. Bao, J. Zhu, H. Yu, Y. Li, Biomaterials 35, 4565–4572 (2014)CrossRef Z. Zhang, B. Niu, J. Chen, X. He, X. Bao, J. Zhu, H. Yu, Y. Li, Biomaterials 35, 4565–4572 (2014)CrossRef
107.
go back to reference H. Wang, D.-K. Lee, K.-Y. Chen, J.-Y. Chen, K. Zhang, A. Silva, C.-M. Ho, D. Ho, ACS Nano 9, 3332–3344 (2015)CrossRef H. Wang, D.-K. Lee, K.-Y. Chen, J.-Y. Chen, K. Zhang, A. Silva, C.-M. Ho, D. Ho, ACS Nano 9, 3332–3344 (2015)CrossRef
108.
109.
go back to reference Y. Wong, K. Markham, Z.P. Xu, M. Chen, G.Q. Lu, P.F. Bartlett, H.M. Cooper, Biomaterials 31, 8770–8779 (2010)CrossRef Y. Wong, K. Markham, Z.P. Xu, M. Chen, G.Q. Lu, P.F. Bartlett, H.M. Cooper, Biomaterials 31, 8770–8779 (2010)CrossRef
110.
go back to reference M. Ladewig, ZPXu Niebert, P.P. Gray, G.Q.M. Lu, Biomaterials 31, 1821–1829 (2010)CrossRef M. Ladewig, ZPXu Niebert, P.P. Gray, G.Q.M. Lu, Biomaterials 31, 1821–1829 (2010)CrossRef
112.
go back to reference X. Wang, K. Liu, G. Yang, L. Cheng, L. He, Y. Liu, Y. Li, L. Guo, Z. Liu, Nanoscale 6, 9198–9205 (2014)CrossRef X. Wang, K. Liu, G. Yang, L. Cheng, L. He, Y. Liu, Y. Li, L. Guo, Z. Liu, Nanoscale 6, 9198–9205 (2014)CrossRef
113.
go back to reference X.-Q. Zhang, M. Chen, R. Lam, X. Xu, E. Osawa, D. Ho, ACS Nano 3, 2609–2616 (2009)CrossRef X.-Q. Zhang, M. Chen, R. Lam, X. Xu, E. Osawa, D. Ho, ACS Nano 3, 2609–2616 (2009)CrossRef
114.
go back to reference M. Chen, X.-Q. Zhang, H. Man, R. Lam, E.K. Chow, D. Ho, Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. The Journal of Physical Chemistry Letters 1(21), 3167–3171 (2010)CrossRef M. Chen, X.-Q. Zhang, H. Man, R. Lam, E.K. Chow, D. Ho, Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. The Journal of Physical Chemistry Letters 1(21), 3167–3171 (2010)CrossRef
115.
go back to reference L. Zhang, W. Zheng, R. Tang, N. Wang, W. Zhang, X. Jiang, Gene regulation with carbon-based siRNA conjugates for cancer therapy. Biomaterials 104, 269–278 (2016)CrossRef L. Zhang, W. Zheng, R. Tang, N. Wang, W. Zhang, X. Jiang, Gene regulation with carbon-based siRNA conjugates for cancer therapy. Biomaterials 104, 269–278 (2016)CrossRef
116.
go back to reference S. Alwani, R. Kaur, D. Michel, J.M. Chitanda, R.E. Verrall, K. Chithra, I. Badea, Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application. Int. J. Nanomed. 11, 687 (2016) S. Alwani, R. Kaur, D. Michel, J.M. Chitanda, R.E. Verrall, K. Chithra, I. Badea, Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application. Int. J. Nanomed. 11, 687 (2016)
117.
go back to reference G. Balasubramanian, A. Lazariev, S.R. Arumugam, D.-W. Duan, Curr. Opin. Chem. Biol. 20, 69–77 (2014)CrossRef G. Balasubramanian, A. Lazariev, S.R. Arumugam, D.-W. Duan, Curr. Opin. Chem. Biol. 20, 69–77 (2014)CrossRef
118.
go back to reference P.G. Baranov, A.A. Soltamova, D.O. Tolmachev, N.G. Romanov, R.A. Babunts, F.M. Shakhov, S.V. Kidalov, A.Y. Vul, G.V. Mamin, S.B. Orlinskii, N.I. Silkin, Small 7, 1533–1537 (2011)CrossRef P.G. Baranov, A.A. Soltamova, D.O. Tolmachev, N.G. Romanov, R.A. Babunts, F.M. Shakhov, S.V. Kidalov, A.Y. Vul, G.V. Mamin, S.B. Orlinskii, N.I. Silkin, Small 7, 1533–1537 (2011)CrossRef
119.
go back to reference M.S. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R.L. Walsworth, S. Hong, P. Maletinsky, A. Yacoby, Nat. Nanotechnol. 9, 279–284 (2014)CrossRef M.S. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R.L. Walsworth, S. Hong, P. Maletinsky, A. Yacoby, Nat. Nanotechnol. 9, 279–284 (2014)CrossRef
120.
go back to reference L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Nat. Nanotechnol. 6, 358–363 (2011)CrossRef L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Nat. Nanotechnol. 6, 358–363 (2011)CrossRef
121.
go back to reference F.C. Ziem, N.S. Goetz, A. Zappe, S. Steinert, J. Wrachtrup, Nano Lett. 13, 4093–4098 (2013)CrossRef F.C. Ziem, N.S. Goetz, A. Zappe, S. Steinert, J. Wrachtrup, Nano Lett. 13, 4093–4098 (2013)CrossRef
122.
go back to reference S. Steinert, F. Ziem, L.T. Hall, A. Zappe, M. Schweikert, N. Goetz, A. Aird, G. Balasubramanian, L. Hollenberg, J. Wrachtrup, Nat. Commun. 4, 1607 (2013)CrossRef S. Steinert, F. Ziem, L.T. Hall, A. Zappe, M. Schweikert, N. Goetz, A. Aird, G. Balasubramanian, L. Hollenberg, J. Wrachtrup, Nat. Commun. 4, 1607 (2013)CrossRef
123.
go back to reference L.T. Hall, G.C.G. Beart, E.A. Thomas, D.A. Simpson, L.P. McGuinness, J.H. Cole, J.H. Manton, R.E. Scholten, F. Jelezko, J. Wrachtrup, S. Petrou, L.C.L. Hollenberg, Sci. Rep. 2, 401 (2012)CrossRef L.T. Hall, G.C.G. Beart, E.A. Thomas, D.A. Simpson, L.P. McGuinness, J.H. Cole, J.H. Manton, R.E. Scholten, F. Jelezko, J. Wrachtrup, S. Petrou, L.C.L. Hollenberg, Sci. Rep. 2, 401 (2012)CrossRef
124.
go back to reference G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nature 500, 54–58 (2013)CrossRef G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nature 500, 54–58 (2013)CrossRef
125.
go back to reference S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu, J. Am. Chem. Soc. 127, 17604–17605 (2005)CrossRef S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu, J. Am. Chem. Soc. 127, 17604–17605 (2005)CrossRef
126.
go back to reference R. Schirhagl, K. Chang, M. Loretz and C.L. Degen, in Ann. Rev. Phys. Chem. ed. by M.A. Johnson, T.J. Martinez, vol. 65 (2014), pp. 83–105 R. Schirhagl, K. Chang, M. Loretz and C.L. Degen, in Ann. Rev. Phys. Chem. ed. by M.A. Johnson, T.J. Martinez, vol. 65 (2014), pp. 83–105
127.
go back to reference X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, F. Sun, Light. Sci Appl. 4, e230 (2015) X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, F. Sun, Light. Sci Appl. 4, e230 (2015)
128.
go back to reference C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann, Proc. Natl. Acad. Sci. U. S. A. 104, 727–732 (2007)CrossRef C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann, Proc. Natl. Acad. Sci. U. S. A. 104, 727–732 (2007)CrossRef
129.
go back to reference O. Faklaris, D. Garrot, V. Joshi, J.-P. Boudou, T. Sauvage, P.A. Curmi, F. Treussart, J. Eur. Opt. Soc. Rapid 4, 09035 (2009)CrossRef O. Faklaris, D. Garrot, V. Joshi, J.-P. Boudou, T. Sauvage, P.A. Curmi, F. Treussart, J. Eur. Opt. Soc. Rapid 4, 09035 (2009)CrossRef
130.
go back to reference C.P. Epperla, N. Mohan, C.-W. Chang, C.-C. Chen, H.-C. Chang, Small 11, 6097–6105 (2015)CrossRef C.P. Epperla, N. Mohan, C.-W. Chang, C.-C. Chen, H.-C. Chang, Small 11, 6097–6105 (2015)CrossRef
Metadata
Title
Nanodiamonds: Synthesis and Applications
Authors
Mohd Bilal Khan
Zishan H. Khan
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6214-8_1

Premium Partners