Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2022

04-03-2022 | Technical Article

Nanoindentation Hardness and Corrosion Studies of Additively Manufactured 316L Stainless Steel

Authors: Jennifer England, Mohammad J. Uddin, Erick Ramirez-Cedillo, Darshan Karunarathne, Seifollah Nasrazadani, Teresa D. Golden, Hector R. Siller

Published in: Journal of Materials Engineering and Performance | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, micro-mechanical properties and corrosion resistance of laser powder bed fusion (L-PBF) processed AM 316L stainless steel parts were jointly investigated for different combinations of processing parameters, following a methodology that could be used in product qualification. Various laser powers were employed for the fabrication of all AM 316L stainless steel parts. Nanoindentation, areal roughness, and electron backscattered diffraction (EBSD) characterization were used to characterize the surface of the AM samples prior to corrosion testing. Open circuit potential (OCP), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization tests were done to compare additively manufactured laser powder bed fusion (L-PBF) 316L stainless steels with different processing parameters. Overall, it was observed that the AM part having 56.67 J/mm3 VED exhibits the best micro-mechanical characteristics. This sample also had the lowest areal surface roughness and smallest grain size. Consequently, this parameter combination had better corrosion resistance compared to the other AM processed 316L parts. The results are useful in process calibration when fabricating for corrosion-resistance applications and provide insights into the relationship among nano-mechanical, crystallography, and long-term corrosion performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference P. Krakhmalev, I. Yadroitsava, G. Fredriksson and I. Yadroitsev, In Situ Heat Treatment in Selective Laser Melted Martensitic AISI 420 Stainless Steels, Mater. Des., 2015, 87, p 380–385.CrossRef P. Krakhmalev, I. Yadroitsava, G. Fredriksson and I. Yadroitsev, In Situ Heat Treatment in Selective Laser Melted Martensitic AISI 420 Stainless Steels, Mater. Des., 2015, 87, p 380–385.CrossRef
2.
go back to reference E. Ramirez-Cedillo, M.J. Uddin, J.A. Sandoval-Robles, R.A. Mirshams, L. Ruiz-Huerta, C.A. Rodriguez and H.R. Siller, Process Planning of L-PBF of AISI 316L for Improving Surface Quality and Relating Part Integrity with Microstructural Characteristics, Surf. Coatings Technol., 2020, 396, p 125956.CrossRef E. Ramirez-Cedillo, M.J. Uddin, J.A. Sandoval-Robles, R.A. Mirshams, L. Ruiz-Huerta, C.A. Rodriguez and H.R. Siller, Process Planning of L-PBF of AISI 316L for Improving Surface Quality and Relating Part Integrity with Microstructural Characteristics, Surf. Coatings Technol., 2020, 396, p 125956.CrossRef
3.
go back to reference G. Koch, J. Varney, N. Thopson, O. Moghissi, M. Gould, and J. Payer, International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, NACE Int., 2016, p A-19 G. Koch, J. Varney, N. Thopson, O. Moghissi, M. Gould, and J. Payer, International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, NACE Int., 2016, p A-19
4.
go back to reference M.A. Melia, H.D.A. Nguyen, J.M. Rodelas and E.J. Schindelholz, Corrosion Properties of 304L Stainless Steel Made by Directed Energy Deposition Additive Manufacturing, Corros. Sci., 2018, 2019(152), p 20–30. M.A. Melia, H.D.A. Nguyen, J.M. Rodelas and E.J. Schindelholz, Corrosion Properties of 304L Stainless Steel Made by Directed Energy Deposition Additive Manufacturing, Corros. Sci., 2018, 2019(152), p 20–30.
5.
go back to reference S.Y. Tarasov, A.V. Filippov, N.N. Shamarin, S.V. Fortuna, G.G. Maier and E.A. Kolubaev, Microstructural Evolution and Chemical Corrosion of Electron Beam Wire-Feed Additively Manufactured AISI 304 Stainless Steel, J. Alloys Compd., 2019, 803, p 364–370.CrossRef S.Y. Tarasov, A.V. Filippov, N.N. Shamarin, S.V. Fortuna, G.G. Maier and E.A. Kolubaev, Microstructural Evolution and Chemical Corrosion of Electron Beam Wire-Feed Additively Manufactured AISI 304 Stainless Steel, J. Alloys Compd., 2019, 803, p 364–370.CrossRef
6.
go back to reference J. Moloney, Y. De-Abreu and J. Helander, Accelerated Stainless Steel 316L Material Compatibility Assessment of Chemical Products Using Potentiodynamic Polarization, Corrosion, 2016, 72(5), p 692–703.CrossRef J. Moloney, Y. De-Abreu and J. Helander, Accelerated Stainless Steel 316L Material Compatibility Assessment of Chemical Products Using Potentiodynamic Polarization, Corrosion, 2016, 72(5), p 692–703.CrossRef
7.
go back to reference G.T. Gray, V. Livescu, P.A. Rigg, C.P. Trujillo, C.M. Cady, S.R. Chen, J.S. Carpenter, T.J. Lienert and S.J. Fensin, Structure/Property (Constitutive and Spallation Response) of Additively Manufactured 316L Stainless Steel, Acta Mater., 2017, 138, p 140–149.CrossRef G.T. Gray, V. Livescu, P.A. Rigg, C.P. Trujillo, C.M. Cady, S.R. Chen, J.S. Carpenter, T.J. Lienert and S.J. Fensin, Structure/Property (Constitutive and Spallation Response) of Additively Manufactured 316L Stainless Steel, Acta Mater., 2017, 138, p 140–149.CrossRef
8.
go back to reference W.S.W. Harun, R.I.M. Asri, F.R.M. Romlay, S. Sharif, N.H.M. Jan and F. Tsumori, Surface Characterisation and Corrosion Behaviour of Oxide Layer for SLMed-316L Stainless Steel, J. Alloys Compd., 2018, 748, p 1044–1052.CrossRef W.S.W. Harun, R.I.M. Asri, F.R.M. Romlay, S. Sharif, N.H.M. Jan and F. Tsumori, Surface Characterisation and Corrosion Behaviour of Oxide Layer for SLMed-316L Stainless Steel, J. Alloys Compd., 2018, 748, p 1044–1052.CrossRef
9.
go back to reference X. Lou, M.A. Othon and R.B. Rebak, Corrosion Fatigue Crack Growth of Laser Additively-Manufactured 316L Stainless Steel in High Temperature Water, Corros. Sci., 2017, 127(August), p 120–130.CrossRef X. Lou, M.A. Othon and R.B. Rebak, Corrosion Fatigue Crack Growth of Laser Additively-Manufactured 316L Stainless Steel in High Temperature Water, Corros. Sci., 2017, 127(August), p 120–130.CrossRef
10.
go back to reference M.J.K. Lodhi, K.M. Deen, M.C. Greenlee-Wacker and W. Haider, Additively Manufactured 316L Stainless Steel with Improved Corrosion Resistance and Biological Response for Biomedical Applications, Addit. Manuf., 2019, 27(January), p 8–19. M.J.K. Lodhi, K.M. Deen, M.C. Greenlee-Wacker and W. Haider, Additively Manufactured 316L Stainless Steel with Improved Corrosion Resistance and Biological Response for Biomedical Applications, Addit. Manuf., 2019, 27(January), p 8–19.
11.
go back to reference D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng and X. Li, Bio-Functional and Anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101.CrossRef D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng and X. Li, Bio-Functional and Anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101.CrossRef
12.
go back to reference Y. Sun, A. Moroz and K. Alrbaey, Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel, J. Mater. Eng. Perform., 2014, 23(2), p 518–526.CrossRef Y. Sun, A. Moroz and K. Alrbaey, Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel, J. Mater. Eng. Perform., 2014, 23(2), p 518–526.CrossRef
13.
go back to reference G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld and C.R. Hutchinson, On The Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting, J. Electrochem. Soc., 2017, 164(6), p C250–C257.CrossRef G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld and C.R. Hutchinson, On The Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting, J. Electrochem. Soc., 2017, 164(6), p C250–C257.CrossRef
14.
go back to reference P. Murkute, S. Pasebani and O.B. Isgor, Production of Corrosion-Resistant 316L Stainless Steel Clads on Carbon Steel Using Powder Bed Fusion-Selective Laser Melting, J. Mater. Process. Technol., 2019, 273, p 116243.CrossRef P. Murkute, S. Pasebani and O.B. Isgor, Production of Corrosion-Resistant 316L Stainless Steel Clads on Carbon Steel Using Powder Bed Fusion-Selective Laser Melting, J. Mater. Process. Technol., 2019, 273, p 116243.CrossRef
15.
go back to reference K. Lin, D. Gu, L. Xi, L. Yuan, S. Niu, P. Lv and Q. Ge, Selective Laser Melting Processing of 316L Stainless Steel: Effect of Microstructural Differences along Building Direction on Corrosion Behavior, Int. J. Adv. Manuf. Technol., 2019, 104(5), p 2669–2679.CrossRef K. Lin, D. Gu, L. Xi, L. Yuan, S. Niu, P. Lv and Q. Ge, Selective Laser Melting Processing of 316L Stainless Steel: Effect of Microstructural Differences along Building Direction on Corrosion Behavior, Int. J. Adv. Manuf. Technol., 2019, 104(5), p 2669–2679.CrossRef
16.
go back to reference M.J. Uddin, E. Ramirez-Cedillo, R.A. Mirshams and H.R. Siller, Nanoindentation and Electron Backscatter Diffraction Mapping in Laser Powder Bed Fusion of Stainless Steel 316L, Mater. Charact., 2021, 174, p 111047.CrossRef M.J. Uddin, E. Ramirez-Cedillo, R.A. Mirshams and H.R. Siller, Nanoindentation and Electron Backscatter Diffraction Mapping in Laser Powder Bed Fusion of Stainless Steel 316L, Mater. Charact., 2021, 174, p 111047.CrossRef
17.
go back to reference Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza and T. Zhu, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2018, 17(1), p 63–70.CrossRef Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza and T. Zhu, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2018, 17(1), p 63–70.CrossRef
18.
go back to reference L. Chen, B. Richter, X. Zhang, X. Ren and F.E. Pfefferkorn, Modification of Surface Characteristics and Electrochemical Corrosion Behavior of Laser Powder Bed Fused Stainless-Steel 316L after Laser Polishing, Addit. Manuf., 2020, 32, p 101013. L. Chen, B. Richter, X. Zhang, X. Ren and F.E. Pfefferkorn, Modification of Surface Characteristics and Electrochemical Corrosion Behavior of Laser Powder Bed Fused Stainless-Steel 316L after Laser Polishing, Addit. Manuf., 2020, 32, p 101013.
19.
go back to reference Y.D. Im, K.H. Kim, K.H. Jung, Y.K. Lee and K.H. Song, Anisotropic Mechanical Behavior of Additive Manufactured AISI 316L Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2019, 50(4), p 2014–2021.CrossRef Y.D. Im, K.H. Kim, K.H. Jung, Y.K. Lee and K.H. Song, Anisotropic Mechanical Behavior of Additive Manufactured AISI 316L Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2019, 50(4), p 2014–2021.CrossRef
20.
go back to reference X. Qing Ni, D. Cheng Kong, Y. Wen, L. Zhang, W. Heng Wu, B. Bei He, L. Lu and D. Xiang Zhu, Anisotropy in Mechanical Properties and Corrosion Resistance of 316L Stainless Steel Fabricated by Selective Laser Melting, Int. J. Miner. Metall. Mater., 2019, 26(3), p 319–328.CrossRef X. Qing Ni, D. Cheng Kong, Y. Wen, L. Zhang, W. Heng Wu, B. Bei He, L. Lu and D. Xiang Zhu, Anisotropy in Mechanical Properties and Corrosion Resistance of 316L Stainless Steel Fabricated by Selective Laser Melting, Int. J. Miner. Metall. Mater., 2019, 26(3), p 319–328.CrossRef
21.
go back to reference J.M. Jeon, J.M. Park, J.H. Yu, J.G. Kim, Y. Seong, S.H. Park and H.S. Kim, Effects of Microstructure and Internal Defects on Mechanical Anisotropy and Asymmetry of Selective Laser-Melted 316L Austenitic Stainless Steel, Mater. Sci. Eng. A, 2019, 763, p 138152.CrossRef J.M. Jeon, J.M. Park, J.H. Yu, J.G. Kim, Y. Seong, S.H. Park and H.S. Kim, Effects of Microstructure and Internal Defects on Mechanical Anisotropy and Asymmetry of Selective Laser-Melted 316L Austenitic Stainless Steel, Mater. Sci. Eng. A, 2019, 763, p 138152.CrossRef
22.
go back to reference P. Murkute, S. Pasebani and O. Burkan Isgor, Metallurgical and Electrochemical Properties of Super Duplex Stainless Steel Clads on Low Carbon Steel Substrate Produced with Laser Powder Bed Fusion, Sci. Rep., 2020, 10(1), p 1–19.CrossRef P. Murkute, S. Pasebani and O. Burkan Isgor, Metallurgical and Electrochemical Properties of Super Duplex Stainless Steel Clads on Low Carbon Steel Substrate Produced with Laser Powder Bed Fusion, Sci. Rep., 2020, 10(1), p 1–19.CrossRef
23.
go back to reference X. Ni, D. Kong, W. Wu, L. Zhang, C. Dong, B. He, L. Lu, K. Wu, and D. Zhu, Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting Under Different Scanning Speeds. J. Mater. Eng. Perform., 2018, 27(7), 3667–3677.CrossRef X. Ni, D. Kong, W. Wu, L. Zhang, C. Dong, B. He, L. Lu, K. Wu, and D. Zhu, Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting Under Different Scanning Speeds. J. Mater. Eng. Perform., 2018, 27(7), 3667–3677.CrossRef
24.
go back to reference Princeton Applied Research, Application Note AC-1: Basics of Electrochemical Impedance Spectroscopy Introduction, Princet. Applied Res., 1995, p. 15.1-15.5 Princeton Applied Research, Application Note AC-1: Basics of Electrochemical Impedance Spectroscopy Introduction, Princet. Applied Res., 1995, p. 15.1-15.5
25.
go back to reference R.I. Revilla, B. Wouters, F. Andreatta, A. Lanzutti, L. Fedrizzi and I. De Graeve, EIS Comparative Study and Critical Equivalent Electrical Circuit (EEC) Analysis of the Native Oxide Layer of Additive Manufactured and Wrought 316L Stainless Steel, Corros. Sci., 2020, 167, p 108480.CrossRef R.I. Revilla, B. Wouters, F. Andreatta, A. Lanzutti, L. Fedrizzi and I. De Graeve, EIS Comparative Study and Critical Equivalent Electrical Circuit (EEC) Analysis of the Native Oxide Layer of Additive Manufactured and Wrought 316L Stainless Steel, Corros. Sci., 2020, 167, p 108480.CrossRef
26.
go back to reference J. Nie, L. Wei, Y. Jiang, Q. Li and H. Luo, Corrosion Mechanism of Additively Manufactured 316 L Stainless Steel in 3.5 wt.% NaCl Solution, Mater. Today Commun., 2021, 26, p 101648.CrossRef J. Nie, L. Wei, Y. Jiang, Q. Li and H. Luo, Corrosion Mechanism of Additively Manufactured 316 L Stainless Steel in 3.5 wt.% NaCl Solution, Mater. Today Commun., 2021, 26, p 101648.CrossRef
27.
go back to reference C. Man, C. Dong, T. Liu, D. Kong, D. Wang and X. Li, The Enhancement of Microstructure on the Passive and Pitting Behaviors of Selective Laser Melting 316L SS in Simulated Body Fluid, Appl. Surf. Sci., 2019, 467, p 193–205.CrossRef C. Man, C. Dong, T. Liu, D. Kong, D. Wang and X. Li, The Enhancement of Microstructure on the Passive and Pitting Behaviors of Selective Laser Melting 316L SS in Simulated Body Fluid, Appl. Surf. Sci., 2019, 467, p 193–205.CrossRef
28.
go back to reference N. Haghdadi, M. Laleh, M. Moyle and S. Primig, Additive Manufacturing of Steels: A Review of Achievements and Challenges, J. Mater. Sci., 2021, 56(1), p 64-107.CrossRef N. Haghdadi, M. Laleh, M. Moyle and S. Primig, Additive Manufacturing of Steels: A Review of Achievements and Challenges, J. Mater. Sci., 2021, 56(1), p 64-107.CrossRef
29.
go back to reference Gamry Instruments, Getting Started with Electrochemical Corrosion Measurement, Acta Math. Hungarica, 2010, 57(3–4), p 341–348. Gamry Instruments, Getting Started with Electrochemical Corrosion Measurement, Acta Math. Hungarica, 2010, 57(3–4), p 341–348.
30.
go back to reference 1999 ASTM Standard G102-89, “Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements,” (West Conshohoken, PA.), 2015 1999 ASTM Standard G102-89, “Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements,” (West Conshohoken, PA.), 2015
31.
go back to reference D.P. Abraham, J.J. Peterson, N.K. Katyal, D.D. Keiser, and B.A. Hilton, “Electrochemical Corrosion Testing of Metal Waste Forms,” 2000. D.P. Abraham, J.J. Peterson, N.K. Katyal, D.D. Keiser, and B.A. Hilton, “Electrochemical Corrosion Testing of Metal Waste Forms,” 2000.
Metadata
Title
Nanoindentation Hardness and Corrosion Studies of Additively Manufactured 316L Stainless Steel
Authors
Jennifer England
Mohammad J. Uddin
Erick Ramirez-Cedillo
Darshan Karunarathne
Seifollah Nasrazadani
Teresa D. Golden
Hector R. Siller
Publication date
04-03-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06703-w

Other articles of this Issue 8/2022

Journal of Materials Engineering and Performance 8/2022 Go to the issue

Premium Partners