Skip to main content
Top

2018 | OriginalPaper | Chapter

6. Nanomaterials

Author : Bradley D. Fahlman

Published in: Materials Chemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Imagine how much control over resultant properties you would have if you were able to deposit and maneuver individual atoms into predefined arrangements, en route toward a new material. This is fast becoming a reality, and is the realization of the ultimate in “bottom-up” materials design. Thus far, one is able to easily fabricate materials comprised of a small number of atoms, with features on the nanometer scale (10−9 m)—one-billionth of a meter. To put this into perspective, think of a material with dimensions approximately 1000 times smaller than the diameter of a human hair follicle!

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
A sampling of some intriguing applications that are already possible using nanomaterials include: self-cleaning fabrics (via TiO2 nanoparticles), automobile clearcoats that prevent scratches (PPG nanoparticle-based coatings), car wash solutions that prevent dirt from adhering to a painted surface, bandages that kill bacteria, drug-release agents and time-release biocidal coatings, and tennis balls that bounce twice as long as conventional balls.
 
5
Nafisi, S.; Maibach, H. I. “Nanotechnology in Cosmetics” in Cosmetic Science and Technology: Theoretical Principles and Applications, Elsevier: New York, pp. 337–169, 2017.
 
6
A review of nanoparticle-based drugs that may be inhaled for lung cancer treatment: Lee, W. H.; Loo, C. Y.; Traini, D.; Young, P. M. Asian J. Pharm. Sci. 2015, 10, 481.
 
8
These include liposomes (e.g., Doxil, a PEGylated liposome), polymers (e.g., BIND-014, PEGylated polymer), metal (e.g., CYT-6091, PEGylated nano Au) and metal oxides (e.g., Ferumoxtran-10, iron oxide nanoparticles), and composite materials (e.g., Abraxane, albumin particles). For more information, see: Wang, Y.; Santos, A.; Evdokiou, A.; Losic, D. J. Mater. Chem. B 2015, 3, 7153.
 
9
The global market for products that contain nanomaterials was valued at $26B USD in 2014 and is expected to reach ca. $64.2B USD by 2019—an annual growth rate of 19.8% from 2014. The value of manufactured finished goods that contain nanomaterials is difficult to ascertain; however, estimates are between $3 trillion and $4.4 trillion USD by 2018 (up from $731B in 2012). For more details, see: https://​www.​munichre.​com/​site/​mram-mobile/​get/​documents_​E-1220058942/​mram/​assetpool.​mr_​america/​PDFs/​3_​Publications/​Nanotechnology_​2016.​pdf
 
10
“Discussion draft: Addressing nanomaterials as an issue of global concern”, May 2009, Center for International Environmental Law (CIEL). Found online at: http://​www.​ciel.​org/​Publications/​CIEL_​NanoStudy_​May09.​pdf
 
11
a) De Jong, W. H.; Borm, P. J. A. Int. J. Nanomed. 2008, 3, 133. b) Donaldson K, Stone V, Tran CL, Kreyling W and Borm PJA. Nanotoxicology. Occup Environ Med 2004, 61, 727–728. c) http://​www.​ciel.​org/​wp-content/​uploads/​2015/​07/​Nano_​ToxicRisks_​Nov2014.​pdf
 
12
; For details on the biological effects of CNTs, see: Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. Nat. Nanotechnol. 2007, 2, 47, and references therein. The biological effects of dendritic polymers is described in Boas, U.; Heegaard, P. M. H. Chem. Soc. Rev. 2004, 33, 43, and references therein. Some websites that have information regarding the toxicological effects of nanostructures include:a) http://​orise.​orau.​gov/​ihos/​Nanotechnology/​nanotech_​OSHrisks.​htmlb) http://​www.​cdc.​gov/​niosh/​topics/​nanotechc) http://​www.​bnl.​gov/​cfn
 
13
An example of such a database: Vriens, H.; Mertens, D.; Regret, R.; Lin, P.; Locquet, J. P.; Hoet, P. in “Advances in Experimental Medicine and Biology”, Springer: New York, vol. 947, 2017.
 
14
Shelley, M. L.; Wagner, A. J.; Hussain, S. M.; Bleckmann, C. Int. J. Toxicol. 2008, 27, 359.
 
15
For more information regarding the risk assessment of nanomaterials in a regulatory context, see: http://​www.​ciel.​org/​wp-content/​uploads/​2016/​12/​NanoRiskAssessme​ntFactsheetFinal​_​6dec2016.​pdf
 
16
One of the most recent sources of nanotoxicity data is from the European Union Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), Risk Assessment of Products of Nanotechnologies, Jan. 19, 2009. May be accessed online at: http://​ec.​europa.​eu/​health/​ph_​risk/​committees/​04_​scenihr/​docs/​scenihr_​o_​023.​pdf.The main website of the SCENIHR, that houses other reports, such as the dangers associated with nanomaterials for cosmetics applications, may be found at: http://​ec.​europa.​eu/​health/​ph_​risk/​committees/​04_​scenihr/​04_​scenihr_​en.​htm
 
17
Cross, S. E.; Innes, B.; Roberts, M. S.; Tsuzuki, T.; Robertson, T. A.; McCormich, P. Skin Pharmacol. Physiol. 2007, 20, 148.
 
18
Zhu, S.; Oberdorster, E.; Haasch, M. L. Marine Environ. Res. 2006, 62, S5, and references therein.
 
19
Henry, T. B.; Petersen, E. J.; Compton, R. N. Curr. Opin. Biotechnol. 2011, 22, 533.
 
20
a) Henry, T. B.; Menn, F. M.; Fleming, J. T.; Wilgus, J.; Compton, R. N.; Sayler, G. S. Environ. Health Perspect. 2007, 115, 1059. b) Kovochich, M.; Epinasse, B.; Auffan, M.; Hotze, E. M.; Wessel, L.; Xia, T.; Nel, A. E.; Weisner, M. R. Environ. Sci. Technol. 2009, 43, 6378. c) Spohn, P.; Hirsch, C.; Hasler, F.; Bruinink, A.; Krug, H. F.; Wick. P. Environ. Pollut. 2009, 157, 1134. d) Zhang, B.; Cho, M.; Fortner, J. D.; Lee, J.; Huang, C. H.; Hughes, J. B.; Kim, J. H. Environ. Sci. Technol. 2009, 43, 108.
 
21
Tinkle, S. S, Antonini, J. M., Rich, B. A., Roberts, J. R., Salmen, R., DePree, K., Adkijns, E. J. Environ. Health Perspect. 2003, 111, 1202.
 
22
Watkinson, A.C.; Bunge, A. L.; Hadgraft, J.; Lane, M. E. Pharm. Res. 2013, 30, 1943.
 
23
For instance, see:a) Monteiro-Riviere, N. A.; Larese Filon, F. in “Adverse Effects of Engineered Nanoparticles”, Chap. 11, Elevier: New York, 2012.b) Labouta, H. I.; Schneider, M. Nanomedicine 2013, 9, 39.
 
24
Holsapple, M. P.; Farland, W. H.; Landry, T. D.; Monteiro-Riviere, N. A.; Carter, J. M.; Walker, N. J.; Thomas, K. V. Toxicol. Sci. 2005, 88, 12.
 
25
Lademann, J.; Patzelt, A.; Richter, H.; Antoniou, C.; Sterry, W.; Knorr, F. J. Biomed. Opt. 2009, 14, 021014.
 
26
For instance, see: Yang, X.; Fan, C.; HS, Z. Toxicol. In Vitro 2002, 16, 41, and references therein.
 
27
Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.; Ausman, K. D.; Tao, Y. J.; Sitharaman, B.; Wilson, L. J.; Hughes, J. B.; West, J. L.; Colvin, V. L. Nano Lett. 2004, 4, 1881, and references therein.
 
28
a) Rouse, J. G.; Yang, J.; Ryman-Rasmussen, J. P.; Barron, A. R.; Monteiro-Riviere, N. A. Nano Lett. 2007, 7, 155. b) Rouse, J. G.; Yang, J.; Barron, A. R.; Monteiro-Riviere, N. A. Toxicol. In Vitro 2006, 20, 1313. c) Yang, J.; Barron, A. R. Chem. Commun. 2004, 2884 (Article describing the synthesis of amino-acid functionalized fullerenes).
 
29
a) Blundell, G.; Henderson, W. J.; Price, E. W. Ann. Trop. Med. Parasitol. 1989, 83, 381–385.b) Corachan, M.; Tura, J. M.; Campo, E.; Soley, M.; Traveria, A. Trop. Geogr. Med. 1988, 40, 359–364.c) Tinkle, S. S.; Antonini, J. M.; Rich, B. A.; Roberts, J. R.; Salmen, R.; DePree, K.; Adkins, E. J. EnViron. Health Perspect. 2003, 111, 1202–1208.
 
30
a) Monteiro-Riviere, N. A.; Nemanich, R. A.; Inman, A. O.; Wang, Y. Y.; Riviere, J. E. Toxicol Lett 2005, 155, 377. b) Degim, I. T.; Burgess, D. J.; Papadimitrakopoulos, F. J. Microencapsul. 2010, 27, 669.
 
31
Ryman-Rasmussen, J. P., Riviere, J. E., Monteiro-Riviere, N. A. Toxicol. Sci. 2006, 91, 159.
 
32
Lademann, J.; Weigmann, H.; Rickmeyer, C.; Barthelmes, H.; Schaefer, H.; Mueller, G.; Sterry, W. Skin Pharmacol Appl Skin Physiol 1999, 12, 247.
 
33
Kreilgaard, M. Adv Drug Deliv Rev. 2002, 54, S77.
 
34
Ryman-Rasmussen, J. P.; Riviere, J. E.; Monteiro-Riviere, N. A. Toxicol. Sci. 2006, 91, 159.
 
35
Menon, G. K.; Elias, P. M. Skin Pharmacol 1997, 10, 235.
 
36
Tang, L.; Zhang, C.; Song, G.; Jin, X.; Xu, Z. Sci. Chin. Life Sci. 2013, 56, 181.
 
37
Hirai, T.; Yoshikawa, T.; Nabeshi, H.; Yoshida, T.; Akase, T.; Yoshioka, Y.; Itoh, N.; Tsutsumi, Y. Pharmazie 2012, 67, 742.
 
38
Ostrowski, A.; Nordmeyer, D.; Boreham, A.; Brodwolf, R.; Mundhenk, L.; Fluhr, J. W.; Lademann, J.; Graf, C.; Ruhl, E.; Alexiev, U.; Gruber, A. D. Nanomedicine 2014, 10, 1571.
 
39
It is not known whether Zn was absorbed as ZnO or as soluble Zn. Also, hand-to-mouth contamination could also play a role in these studies. Gulson, B.; McCall, M.; Korsch, M.; Gomez, L.; Casey, P.; Oytam, Y.; Taylor, A.; McCulloch, M.; Trotter, J.; Kinsley, L.; Greenoak, G. Toxicol. Sci. 2010, 118, 140.
 
40
For a thorough review related to the skin absorption and toxicity of nanoparticles, see: Filon, F. L.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Regul. Toxic. Pharmacol. 2015, 72, 310.
 
41
Trop, M.; Novak, M.; Rodl, S.; Hellbom, B.; Kroell, W.; Goessler, W. J. Trauma 2006, 60, 648.
 
42
For instance, see:a) Frampton, M. W. Environ. Health Perspect. 2001, 109, 529. b) Ruckerl, R.; Schneider, A.; Breitner, S.; Cyrys, J.; Peters, A. Inhal. Toxicol. 2011, 23, 555. c) Nawrot, T. S.; Alfaro-Moreno, E.; Nemery, B. Am. J. Respir. Crit. Care Med. 2008, 177, 696. d) Kan, H.; London, S. J.; Chen, G.; Zhang, Y.; Song, G.; Zhao, N.; Jiang, L.; Chen, B. Environ. Health Perspect. 2008, 116, 1183.
 
43
Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), March 10, 2006. May be accessed online at: http://​ec.​europa.​eu/​health/​ph_​risk/​committees/​04_​scenihr/​docs/​scenihr_​o_​003b.​pdf
 
44
a) Kittelson, D. B.; Watts, W. F.; Johnson, J. P. On-Road Nanoparticle Measurements, 8th International Conference on Environmental Science and Technology, Lemnos, Greece, September, 2003. b) Kittelson, D. B.; Watts, W. F.; Johnson, J. P.; Zarling, D.; Schauer, J.; Kasper, A.; Baltensperger, U.; Burtscher, H. Gasoline vehicle exhaust particle sampling study, Proc. U. S. Department of Energy 9th Diesel Engine Emissions Reduction Conference, Newport, RI, 2003.
 
45
Schwotzer, D.; Ernst, H.; Schaudien, D.; Kock, H.; Pohlmann, G.; Dasenbrock, C.; Creutzenberg, O. Particle Fibre Toxicol. 2017, 14, 23.
 
46
Bakand, S.; Hayes, A.; Dechsakulthorn, F. Inhal. Toxicol. 2012, 24, 125.
 
47
Donaldson, K.; Poland, C. A. Curr. Opin. Biotechnol. 2013, 24, 724.
 
48
a) Oberdörster G.; Sharp, Z.; Atudorei, V.; Elder, A. C. P.; Gelein, R.; Lunts, A.; Kreyling, W.; Cox, C. J. Toxicol. Environ. Health 2002, 65A, 1531. b) Kreyling, W. G.; Semmler, M.; Erbe F.; Mayer, P.; Takenaka, S.; Schulz, H.; Oberdörster, G.; Ziesenis, A. J. Toxicol. Environ. Health 2002, 65A, 1513. c) MacNee, W.; Li, X. Y.; Gilmour, P.; Donaldson K. Inhal. Toxicol. 2000, 12, 233. d) Bakand, S.; Hayes, A. Int. J. Mol. Sci. 2016, 17, 929.
 
49
For example, see:a) Hillyer, J. F.; Albrecht, R. M. J Pharm Sci 2001, 90, 1927. b) Kim, Y. S.; Kim, J. S.; Cho, H. S.; Rha, D. S.; Kim, J. M.; Park, J. D. Inhal Toxicol 2008, 20, 575.
 
50
a) Shrivastava, R.; Raza, S.; Yadav, A.; Kushwaha, P.; Flora, S. J. Drug Chem. Toxicol. 2014, 37, 336. b) Liu, Y.; Xu, Z.; Li, X. Brain Inj. 2013, 27, 934. c) Li, T.; Shi, T.; Li, X.; Zeng, S.; Yin, L.; Pu, Y. Int. J. Environ. Res. Public Health 2014, 11, 7918.
 
51
For instance, see:a) Semmler-Behnke, M.; Kreyling, W. G.; Lipka, J.; Fertsch, S.; Wenk, A.; Takenaka, S. Small 2008, 71, 616. b) Takenaka, S.; Karg, E.; Kreyling, W. G.; Lentner, B.; Möller, W.; Behnke-Semmler, M. Inhal Toxicol 2006, 18, 733.
 
52
Kwon, J. T.; Hwang, S. K.; Jin, H.; Kim, D. S.; Minai-Tehrani, A.; Yoon, H. J. J Occup Health 2008, 50, 1.
 
53
For example, see:Yu, L. E.; Yung, L. Y.; Ong, C. N.; Tan, Y. L.; Balasubramaniam, S.; Hartono, D. Nanotoxicology 2007, 1, 235.
 
54
Semmler, M.; Seitz, J.; Erbe, F.; Mayer, P.; Heyder, J.; Oberörster, G. Inhal Toxicol 2004, 16, 453.
 
55
Crüts, B.; Van Etten, L.; Törnqvist, H.; Blomberg, A.; Sandström, T.; Mills, N. L. Part Fibre Toxicol 2008, 5, 4.
 
56
a) Takagi, A.; Hirose, A.; Nishimura, T.; Fukumori, N.; Ogata, A.; Ohashi, N.; Kitajima, S.; Kanno, J. J. Toxicol. Sci. 2008, 33, 105. b) Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Nature Nanotechnol. 2008, 3, 423.
 
57
Pacurari, M.; Yin, X. J.; Zhao, J.; Ding, M.; Leonard, S. S.; Schwegler-Berry, D. Environ Health Perspect 2008, 116, 1211.
 
58
Magrez, A.; Kasas, S.; Salicio, V.; Pasquier, N.; Seo, J. W.; Celio, M.; Catsicas, S.; Schwaller, B.; Forro, L. Nano Lett. 2006, 6, 1121.
 
59
Renwick, L. C.; Brown, D.; Clouter, A.; Donaldson, K. Occup Environ Med 2004, 61, 442.
 
60
Arnaud, C. H. Chem. Eng. News 2010, 88, 32.
 
61
Wilson, M. R.; Lightbody J. H.; Donaldson, K.; Sales, J.; Stone V. Toxicol Appl Pharmacol 2002, 184, 172.
 
62
a) Jordan, A.; Scholz, R.; Wust, P.; Schirra, H.; Thomas, S.; Schmidt, H.; Felix, R. J. Magn. Magn. Mater. 1999, 194, 185. b) Zhang, Y., Kohler, N., and Zhang, M. Biomaterials 2002, 23, 1553.
 
63
For instance, see:a) Rouse, J. G.; Yang, J.; Barron, A. R.; and Monteiro-Riviere, N. A. Toxicol. In Vitro. 2006, 8, 1313. b) Zhang, L. W.; Zeng, L.; Barron, A. R.; Monteiro-Riviere, N. A. Int. J. Toxicol. 2007, 26, 103.
 
64
For example:a) Michalet, X.; Pinaud, F. F.; Bentolila; L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538. b) Derfus, A. M.; Chan, W. C. W.; Bhatia, S. Nano Lett. 2004, 4, 11. c) Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W.; Nie, S. Nat. Biotechnol. 2004, 22, 969. d) Xing, Y.; Chaudry, Q.; Shen, C.; Kong, K. Y.; Zhau, H. E.; Chung, L. W.; Petros, J. A.; O’Regan, R. M.; Yezhelyev, M. V.; Simons, J. W. Nat. Protoc. 2007, 2, 1152.
 
65
For instance, see:a) A review that summarizes in vitro and in vivo testing of QDs: Yong, K. T.; Law, W. C.; Hu, R.; Ye, L.; Liu, L.; Swihart, M. T.; Prasad, P. N. Chem. Soc. Rev. 2013, 42, 1236. b) Duan, H.; Nie, S. J. Am. Chem. Soc. 2007, 129, 3333. c) Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nat. Biotechnol. 2003, 21, 47. d) Zhang, L. W.; Yu, W. W.; Colvin, V. L.; Monteiro-Riviere, N. A. Toxicol. Appl. Pharmacol. 2008, 228, 200. e) Ryman-Rasmussen, J. P.; Riviere, J. E.; Monteiro-Riviere, N. A. J. Invest. Dermatol. 2007, 127, 143.
 
66
Zhang, L. W.; Monteiro-Riviere, N. A. Toxicol. Sci. 2009, 110, 138.
 
67
Radomski, A.; Jurasz, P.; Alonso-Escolano, D.; Drews, M.; Morandi, M.; Malinski, T.; Radomski, M. W. Br. J. Pharm. 2005, 146, 882.
 
68
a) Younes, N. R.; Amara, S.; Mrad, I.; Ben-Slama, I.; Jeljeli, M.; Omri, K.; El Ghoul, J.; El Mir, L.; Rhouma, K. B.; Abdelmelek, H. Environ. Sci. Pollut. Res. Int. 2015, 22, 8728. b) Almeida, J. P. M.; Chen, A. L.; Foster, A.; Drezek, R. Nanomedicine 2011, 6, 815.
 
69
Biswas P.; Wu, C. -Y. J. Air & Waste Manage. Assoc. 2005, 55, 708.
 
70
USEPA Nanotechnology White Paper, Science Policy Council, Feb. 2007. May be accessed online at: https://​www.​epa.​gov/​sites/​production/​files/​2015-01/​documents/​nanotechnology_​whitepaper.​pdf
 
71
Zhang et al. Chemosphere, 2007, 67, 160.
 
72
Takeda et al. J. Health Sci., 2009, 55, 1.
 
73
For a thorough review of the genotoxicity of nanoparticles, see: Gonzalez, L.; Lison, D.; Kirsch-Volders, M. Nanotoxicology 2008, 2, 252.
 
74
Li, Y.; Zhang, Y.; Yan, B. Int. J. Mol. Sci. 2014, 15, 3671.
 
75
Khanna, P.; Ong, C.; Bay, B. H.; Baeg, G. H. Nanomaterials 2015, 5, 1163.
 
76
Misawa, M.; Takahashi, J. Nanomedicine 2011, 7, 604.
 
77
Park, E. -J.; Park, K. Toxicol. Lett. 2009, 184, 18.
 
78
a) Singh, N.; Manshian, B.; Jenkins, G. J. S.; Griffiths, S. M.; Williams, P. M.; Maffeis, T. G. G.; Wright, C. J.; Doak, S. H. Biomaterials 2009, 30, 3891. b) Alarifi, S.; Ali, D.; Alkahtani, S. Int. J. Nanomed. 2015, 10, 3751. c) Al Gurabi, M. A.; Ali, D.; Alkahtani, S.; Alarifi, S. Onco Targets Ther. 2015, 8, 295. d) Sliwinska, A.; Kwiatkowski, D.; Czarny, P.; Milczarek, J.; Toma, M.; Korycinska, A.; Szemraj, J.; Sliwinski, T. Toxicol. Mech. Methods 2015, 25, 176. e) Lin, W.; Xu, Y.; Huang, C. C.; Ma, Y.; Shannon, K. B.; Chen, D. R.; Huang, Y. W. J. Nanopart. Res. 2009, 11, 25. f) Karlsson, H. L.; Cronholm, P.; Gustafsson, J.; Moller, J. Chem. Res. Toxicol. 2008, 21, 1726.
 
79
Jeng, H. A.; Swanson, J. J. Environ. Sci. Health A 2006, 41, 2699.
 
80
Turabekova, M.; Rasulev, B.; Theodore, M.; Jackman, J.; Leszcynska, D.; Leszcynski, J. Nanoscale 2014, 6, 3488.
 
81
a) Dobrovolskaia, M. A.; Aggarwal, P.; Hall, J. B.; McNeil, S. E. Mol. Pharm. 2008, 5, 487. b) Chanan-Khan, A.; Szebeni, J.; Savay, S.; Liebes, L.; Rafique, N. M.; Alving, C. R.; Muggia, F. M. Ann. Ancol. 2003, 14, 1430.
 
82
For instance, see: Song, Y.; Li, X.; Du, X. Eur. Respir. J. 2009, 34, 559.
 
83
Lam, C. W.; James, J. T.; McCluskey, R.; Hunter, R. L. Toxicol. Sci. 2004, 77, 126.
 
84
For instance, see: Trouiller, B.; Reliene, R.; Westbrook, A.; Solaimani, P.; Schiestl, R. H. Cancer Res. 2009, 69, 8784.
 
85
a) Blum, J. L.; Xiong, J. Q.; Hoffman, C.; Zelikoff, J. T. Toxicol. Sci. 2012, 126, 478. b) Austin, C. A.; Umbreit, T. H.; Brown, K. M.; Barber, D. S.; Dair, B. J.; Francke-Carroll, S.; Feswick, A.; Saint-Louis, M. A.; Hikawa, H.; Seibein, K. N. Nanotoxicology 2012, 6, 912. c) Pietroiusti, A.; Massimiani, M.; Fenoglio, I.; Colonna, M.; Valentini, F.; Palleschi, G.; Camaioni, A.; Magrini, A.; Siracusa, G.; Bergamaschi, A. ACS Nano 2011, 5, 4624. d) Zalgeviciene, V.; Kulvietis, V.; Bulotiene, D.; Didziapetriene, J.; Rotmskis, R. Medicina (Kaunas) 2012, 48, 256. e) Noori, A.; Parivar, K.; Modaresi, M.; Messripour, M.; Yousefi, M. H.; Amiri, G. R. Afr. J. Biotechnol. 2011, 10, 1221. f) Umezawa, M.; Kudo, S.; Yanagita, S.; Shinkai, Y.; Niki, R.; Oyabu, T.; Takeda, K.; Ihara, T.; Sugamata, M. J. Toxicol. Sci. 2011, 36, 461. g) Jackson, P.; Hougaard, K. S.; Vogel, U.; Wu, D.; Casavant, L.; Williams, A.; Wade, M.; Yauk, C. L.; Wallin, H.; Halappanavar, S. Mutat. Res. 2012, 745, 73. h) Barton, H. A.; Cogliano, V. J.; Flowers, L.; Valcovic, L.; Setzer, R. W.; Woodruff, T. J. Environ. Health Perspect. 2005, 113, 1125.
 
86
Bhabra, G.; Sood, A.; Fisher, B.; Cartwright, L.; Saunders, M.; Evans, W. H.; Surprenant, A.; Lopez-Castejon, G.; Mann, S.; Davis, S. A.; Hails, L. A.; Ingham, E.; Verkade, P.; Lane, J.; Heesom, K.; Newson, R.; Case, C. P. Nature Nanotechnol. 2009, 4, 876.
 
87
For a thorough review of the effects of metal nanoparticles on plants and their possible effects in the food chain, see: Ma, C.; White, J. C.; Dhankher, O. M.; Xing, B. Environ. Sci. Technol. 2015, 49, 7109.
 
88
Dimkpa, C.; McLean, J.; Latta, D.; Manangon, E.; Britt, D.; Johnson, W.; Boyanov, M.; Anderson, A. J. Nanopart. Res. 2012, 14, 1.
 
89
Dimkpa, C. O.; Latta, D. E.; McLean, J. E.; Britt, D. W.; Boyanov, M. I.; Anderson, A. J. Environ. Sci. Technol. 2013, 47, 4734.
 
90
For example, see:a) Yin, L.; Cheng, Y.; Espinasse, B.; Colman, B. P.; Auffan, M.; Wiesner, M.; Rose, J.; Liu, J.; Bernhardt, E. S. Environ. Sci. Technol. 2011, 45, 2360. b) Priester, J. H.; Ge, Y.; Mielke, R. E.; Horst, A. M.; Moritz, S. C.; Espinosa, K.; Gelb, J.; Walker, S. L.; Nisbet, R. M.; An, Y. J.; Schimel, J. P.; Palmer, R. G.; Hernandez-Viezcas, J. A.; Zhao, L.; Gardea-Torresdey, J. L.; Holden, P. A. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, E2451.
 
91
For instance, see:a) Panda, K. K.; Achary, V. M. M.; Krishnaveni, R.; Padhi, B. K.; Sarangi, S. N.; Sahu, S. N.; Panda, B. B. Toxicol. In Vitro 2011, 25, 1097. b) Faisal, M.; Saquib, Q.; Alatar, A. A.; Al-Khedhairy, A. A.; Hegazy, A. K.; Musarrat, J. J. Hazard Mater. 2013, 250, 318. c) Ghosh, M.; Bandyopadhyay, M.; Mukherjee, A. Chemosphere 2010, 81, 1253.
 
92
Some reports for no biomagnification: a) Mielke, R. E.; Priester, J. H.; Werlin, R. A.; Gelb, J.; Horst, A. M.; Orias, E.; Holden, P. A. Appl. Environ. Microbiol. 2013, 79, 5616. b) Zhu, X.; Wang, J.; Zhang, X.; Chang, Y.; Chen, Y. Chemosphere 2010, 79, 928. c) Lewinski, N. A.; Zhu, H.; Ouyang, C. R.; Conner, G. P.; Wagner, D. S.; Colvin, V. L.; Drezek, R. A. Nanoscale 2011, 3, 3080. d) Holbrook, R. D.; Murphy, K. E.; Morrow, J. B.; Cole, K. D. Nat. Nanotechnol. 2008, 3, 352.Some examples that show biomagnification:a) Werlin, R.; Priester, J. H.; Mielke, R. E.; Kramer, S.; Jackson, S.; Stoimenov, P. K.; Stucky, G. D.; Cherr, G. N.; Orias, E.; Holden, P. A. Nat. Nanotechnol. 2011, 6, 65. b) Judy, J. D.; Unrine, J. M.; Bertsch, P. M. Environ. Sci. Technol. 2010, 45, 776. c) Unrine, J. M.; Shoults-Wilson, W. A.; Zhurbich, O.; Bertsch. P. M.; Tsyusko, O. V. Environ. Sci. Technol. 2012, 46, 9753. d) Hawthorne, J.; De la Torre Roche, R.; Xing, B.; Newman, L. A.; Ma, X.; Majumdar, S.; Gardea-Torresdey, J.; White, J. C. Environ. Sci. Technol. 2014, 48, 13,102.
 
93
Tervonen, T.; Linkov, I.; Figueira, J. R.; Steevens, J.; Chappell, M.; Merad, M. J. Nanopart. Res. 2009, 11, 757.
 
94
a) For a comprehensive roadmap for research strategies needed to evaluate the safety of nanomaterials, see: Holsapple, M. P.; Farland, W. H.; Landry, T. D.; Monteiro-Riviere, N. A.; Carter, J. M.; Walker, N. J.; Thomas, K. V. Toxicol. Sci. 2005, 88, 12. b) For a recent review of test guidelines that should be used to assess the properties and toxicity of engineered nanostructures, see: http://​www.​olis.​oecd.​org/​olis/​2009doc.​nsf/​43bb6130e5e86e5f​c12569fa005d004c​/​fc3f70281e7640a5​c12575ef002eb46b​/​$FILE/​JT03267900.​PDF (Organisation for Economic Co-Operation and Development, Paris, 2009).
 
96
For example, commercial products such as iPod Nano, and Hollywood movies (e.g., “nanomites” in G.I. Joe, “nanobots” in iRobot, etc.).
 
97
Taniguchi, N. On the Basic Concept of NanoTechnology. Proc. ICPE 1974.
 
99
For example, see Pishko, V. V.; Gnatchenko, S. L.; Tsapenko, V. V.; Kodama, R. H.; Makhlouf, S. A. J. Appl. Phys. 2003, 93, 7382.
 
100
For a recent review of nanoparticle melting models, see: Nanda, K. K. PRAMANA J. Phys. 2009, 72, 617.
 
101
Although quantum dots are typically thought of as 0-D nanostructures, quantum confinement effects are also exhibited in 1-D nanowires and nanorods. Buhro and coworkers have studied the effect on both size and shape on quantum confinement (Yu, H.; Li, J.; Loomis, R. A.; Wang, L.-W.; Buhro, W. E. Nature Mater. 2003, 2, 517). Their work provides empirical data to back up the theoretical order of increasing quantum confinement effects: dots (3-D confinement) > rods > wires (2-D confinement) > wells (1-D confinement). For an example of an interesting nanostructure comprised of both a nanorod and nanodot, see: Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Nature Mater. 2005, 4, 855.
 
102
For example, see: Dinu, M.; Rapaport, R.; Chen, G.; Stuart, H. R.; Giles, R. Bell Labs Techn. J. 2005, 10, 215.
 
103
It should be noted that while nanoparticulate films are generally transparent to light due to minimal scattering, films that contain nanoporous structures may not be optically transparent due to significant light scattering from interconnected/agglomerated pores.
 
104
Ruhle, S.; Shalom, M.; Zaban, A. ChemPhysChem 2010, 11, 2290.
 
105
For instance, see: Lee, J. W.; Son, D. Y.; Ahn, T. K.; Shin, H. W.; Kim, I. Y.; Hwang, S. J.; Ko, M. J.; Sul, S.; Han, H.; Park, N. G. Sci. Rep. 2013, 3(1050), 1.
 
106
For example, see:a) Duan, J.; Tang, Q.; He, B.; Chen, H. RSC Adv. 2015, 5, 33,463. b) Lee, H.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nuesch, F.; Geiger, T.; Zakeeruddin, S. M.; Gratzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735. c) Feng, W.; Zhao, L.; Du, J.; Li, Y.; Zhong, X. J. Mater. Chem. A 2016, 4, 14,849. d) Jumabekov, A. N.; Siegler, T. D.; Cordes, N.; Medina, D. D.; Bohm, D.; Garbus, P.; Meroni, S.; Peter, L. M.; Bein, T. J. Phys. Chem. C 2014, 118, 25,853.
 
107
Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Nano Lett. 2008, 8, 3488.
 
108
Kim, M. R.; Ma, D. J. Phys. Chem. Lett. 2015, 6, 85, and references therein.
 
109
a) Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 2001, 78, 841. b) Barkhouse, D. A.; Debnath, R.; Kramer, I. J.; Zhitomirsky, D.; Pattantyus-Abraham, A. G.; Levina, L.; Etgar, L.; Gratzel, M.; Sargent, E. H. Adv. Mater. 2011, 23, 3134.
 
110
Carey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Chem. Rev. 2015, 115, 12,732.
 
111
Lan, X.; Voznyy, O.; Garcia de Arquer, F. P.; Liu, M.; Xu, J.; Proppe, A. H.; Walters, G.; Fan, F.; Tan, H.; Liu, M.; Yang, Z.; Hoogland, S.; Sargent, E. H. Nano Lett. 2016, 16, 4630.
 
112
Some recent high-efficiency reports for QD solar cells include: a) Chuang, C. H. M.; Brown, P. R.; Bulovic, V.; Bawendi, M. G. Nat. Mater. 2014, 13, 796. b) Du, J.; Du, Z.; Hu, J. S.; Pan, Z.; Shen, Q.; Sun, J.; Long, D.; Dong, H.; Sun, L.; Zhong, X.; Wan, L. J. Am. Chem. Soc. 2016, 138, 4201.
 
113
A related phenomenon to MEG, denoted as electron-hole pair multiplication (EHPM), may also occur in bulk semiconductors. However, this effect is too inefficient in bulk semiconductors since both energy and momentum must be conserved; in contrast, the conservation of momentum is relaxed in QDs. For more information, see: Beard, M. C.; Luther, J. M.; Semonin, O. E.; Nozik, A. J. Acc. Chem. Res. 2012, 46, 1252.
 
114
The original report by NREL: https://​www.​nrel.​gov/​docs/​fy06osti/​38992.​pdfThe discovery of MEG has been quite controversial within the optoelectronic research community. For a summary, see: Beard, M. C. Phys. Chem. Lett. 2011, 2, 1282.
 
115
Schaller, R. D.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186,601.
 
116
Compton, D.; Comish, L.; van der Lingen, E. Gold Bull. 2003, 36, 10.
 
117
For a thorough review of surface plasmon resonance, see Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
 
118
Faraday was the first to assert that the red color of gold nanoparticle solutions was due to the interaction of light with particulates of varying morphologies. Mie explained the red color in 1908 by solving Maxwell’s equations based on spheres with sizes comparable to the wavelength of light; however, Raleigh solved the problem for spheres smaller than wavelengths of light. For more details on the interaction of light with metallic nanoparticles and the influence of inter-particle agglomeration, see: Ghosh, S. K.; Pal, T. Chem. Rev. 2007 , 107, 4797.
 
119
Haes, A. J.; Stuart, D. A.; Nie, S.; Duyne, R. P. V. J. Fluoresc. 2004, 14, 355.
 
120
For instance, one is able to vary the plasmonic properties of Au nanorods by incorporating Cu: Henkel, A.; Jakab, A.; Brunklaus, G.; Sonnichsen, C. J. Phys. Chem. C 2009, 113, 2200.
 
122
For a nice review of metal nanoparticles and their electronic properties, see: a) Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J. Chem. Soc. Rev. 2000, 29, 27. b) Eustis, S.; El-Sayed, A.; Chem. Soc. Rev. 2006, 35, 209.
 
123
Busani, R.; Folker, M.; Cheshnovsky, O. Phys. Rev. Lett. 1998, 81, 3836.
 
124
Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Chem. Soc. Rev. 2000, 29, 27.
 
125
For more information/precedents on quantum confinement effects for metallic nanoclusters, see: (a) Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Chem. Soc. Rev. 2000, 29, 27. (b) Mohamed, M. B.; Volkov, V.; Link, S.; El-Sayed, M. A. Chem. Phys. Lett. 2000, 317, 517. (c) Huang, T.; Murray, R. W. J. Phys. Chem. B 2001, 105, 12,498. (d) Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. J. Phys. Chem. B 2002, 106, 3410. (e) Empedocles, S.; Bawendi, M. Acc. Chem. Res. 1999, 32, 389. (f) El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257. (g) Zheng, J.; Petty, J. T.; Dickson, R. M. J. Am. Chem. Soc. 2003, 125, 7780. (h) Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W. G.; First, P. N.; Gutierrez-Wing, C.; Ascensio, J.; Jose-Yacaman, M. J. J. Phys. Chem. B 1997, 101, 7885.
 
126
Ferrofluids are a class of important ternary ferrite spinels are of the formula MFe2O4 (M = Co, Mn, Ni), synthesized as nano-sized particulates dispersed in a solvent. These solutions have applications that include electronic devices (e.g., forming seals around spinning drive shafts in computer hard drives; heat conduction in speaker tweeters), automotive (magnetorheological damping for tunable shock absorption), to medicine (hyperthermia-based cancer treatment; i.e., directing nanoparticles to a cancerous area and raising their temperature via an external magnetic field). For a review of ferrofluids, see: Odenbach, S. J. Phys.: Condens. Matter 2004, 16, R1135.
 
127
With areal densities in excess of 1.7 Tb in−2, NAND flash memory now surpasses that of hard disk drive (HDD) technology, which are typically in the range 850 Gb in−2 to 1.3 Tb in−2 However, with developments in it is likely that areal densities greater than 3 Tb in−2 are possible within the next few years. A nice website that provides details about trends in the areal densities of magnetic storage devices: http://​digitalpreservat​ion.​gov/​meetings/​documents/​storage13/​GaryDecad_​Technology.​pdf
 
128
a) Ge, J.; Hu, Y.; Diasini, M.; Beyermann, W. P.; Yin, Y. Angew. Chem. Int. Ed. 2007, 46, 4342. b) Esteban-Cubillo, A.; Pina-Zapardiel, R.; Moya, J. S.; Pecharroman, C. J. Nanop. Res. 2009, ASAP. c) Yang, C.; Xing, J.; Guan, Y.; Liu, J.; Liu, H. J. Alloys Compounds 2004, 385, 283.For more details regarding superparamagnetism, see: http://​lmis1.​epfl.​ch/​webdav/​site/​lmis1/​shared/​Files/​Lectures/​Nanotechnology%20​for%20​engineers/​Archives/​2004_​05/​Superparamagneti​sm.​pdf
 
129
For examples, see: a) Monson, T. C.; Venturini, E. L.; Petkov, V.; Ren, Y.; Lavin, J. M.; Huber, D. L. J. Magn. Magn. Mater. 2013, 331, 156. b) Duarte, E. L.; Itri, R.; Lima, E.; Baptista, M. S.; Berguo, T. S.; Goya, G. F. Nanotechnology 2006, 17, 1. c) Oyarzun, S.; Tamion, A.; Tournus, F.; Dupuis, V.; Hillenkamp, M. Sci. Reports 2015, 5, 14,749. d) Gambardella, P.; Rusponi, S.; Veronese, M.; Dhesi, S. S.; Grazioli, C.; Dallmeyer, A.; Cabria, I.; Zeller, R.; Dederichs, P. H.; Kern, K.; Carbone, C.; Brune, H. Science 2003, 300, 1130.
 
130
For more details on next-generation materials for magnetic storage devices, see: a) Bandic, Z. Z.; Litvinov, D.; Rooks, M. MRS Bull. 2008, 33, 831. b) Liao, J. W.; Zhang, H. W.; Lai, C. H. “Magnetic Nanomaterials for Data Storage” in Magnetic Nanomaterials: Fundamentals, Synthesis, and Applications. Wiley: New York, 2017.
 
131
For more information about HAMR, see: Chen, Y. J.; Yang, H. Z.; Leong, S. H.; Wu, B. L.; Asbahi, M.; YuY u Ko, H.; Yang, J. K. W.; Ng, V. Appl Phys. Lett. 2014, 105, 162,402, and references therein.
 
132
a) Skumryev, V.; Stoyanov, S.; Zhang, Y.; Hadjipanayis, G.; Givord, D.; Nogues, J. Nature, 2003, 423, 850. b) Eisenmenger, J.; Schuller, I. K. Nat. Mater. 2003, 2, 437. c) Fullerton, E. E.; Margulies, D. T.; Schabes, M. E.; Carey, M.; Gurney, B.; Moser, A.; Best, M.; Zeltzer, G.; Rubin, K.; Rosen, H.; Doerner, M. Appl. Phys. Lett. 2000, 77, 3806.
 
133
a) Vopson, M. M.; Zemaityte, E.; Spreitzer, M.; Namvar, E. J. Appl. Phys. 2014, 116, 113,910. b) Kim, H. K. D.; Schelhas, L. T.; Keller, S.; Hockel, J. L.; Tolbert, S. H.; Carman, G. P. Nano Lett. 2013, 13, 884.
 
134
Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
 
135
Smalley and Curl named this structure after Buckminster Fuller, for his discovery of geodesic domes.
 
136
The irradiation of C60 with light in the presence of O2 causes the formation of reactive singlet oxygen (1O2); for example, see Jensen, A. W.; Daniels, C. J. Org. Chem. 2003, 68, 207.
 
137
Andreoli, E.; Barron, A. R. Energy & Fuels 2015, 29, 4479.
 
138
Heimann, J.; Morrow, L.; Anderson, R. E.; Barron, A. R. Dalton Trans. 2015, 44, 4380.
 
139
Shirai, Y.; Osgood, A. J.; Zhao, Y.; Kelly, K. F.; Tour, J. M. Nano Lett. 2005, 11, 2330. The difference between nanocars and nanotrucks has been described as the former is only able to transport itself, whereas a nanotruck is able to accommodate a load. More recently, “nanodragsters” have been synthesized that have a shorter axle with smaller wheels in the front and a larger axle with larger wheels in the back: Vives, G.; Kang, J.; Kelly, K. F.; Tour, J. M. Org. Lett. 2009, 11, 5602.
 
140
a) Shirai, Y.; Osgood, A. J.; Zhao, Y.; Kelly, K. F.; Tour, J. M. Nano Lett. 2005, 5, 2330. b) Shirai, Y.; Osgood, A. J.; Zhao, Y.; Yao, Y.; Saudan, L.; Yang, H.; Chiu, Y.-H.; Alemany, L. B.; Sasaki, T.; Morin, J.-F.; Guerrero, J. M.; Kelly, K. F.; Tour, J. M. J. Am. Chem. Soc. 2006, 126, 4854.
 
141
For an interesting book on the history of other serendipitous discoveries in science, see Roberts, R. M. Serendipity: Accidental Discoveries in Science, Wiley: New York, 1989. Note: Exxon first obtained mass spectra of fullerenes during their analysis of coke build-up on a reforming catalyst. However, subsequent work by Smalley, Curl and Kroto yielded larger concentrations of gaseous carbon clusters, of which mass spectra more clearly showed the existence of stable, even-numbered clusters with the intensity of the C60 species being 20% greater than neighbors (Figure 6.27). For more information, see: Smalley, R. E. Discovering the Fullerenes, Nobel Lecture, Dec. 1996, may be accessed online at: http://​nobelprize.​org/​nobel_​prizes/​chemistry/​laureates/​1996/​smalley-lecture.​pdf
 
142
Kroto, H. Nanotechnology 1992, 3, 111. A lecture given in the same title is also available as an audio file from: http://​www.​learnoutloud.​com/​Catalog/​Science/​Scientists/​C60-The-Celestial-Sphere-That-Fell-to-Earth/​15201
 
143
For instance, see: a) Morales, A. M.; Lieber, C. M. Science 1998, 279, 208. b) Itina, T. E.; Sentis, M.; Marine, V. Appl. Surf. Sci. 2006, 252, 4433. c) Saitow, K. J. Phys. Chem. B 2005, 109, 3731. d) Marine, W.; Patrone, L.; Lukyanchuk, B.; Sentis, M. Appl. Surf. Sci. 2000, 154–155, 345. e) Ozerov, I.; Bulgakov, A. V.; Nelson, D. K.; Castell, R.; Marine, W. Appl. Surf. Sci. 2005, 247, 677.
 
144
For a review of fullerene production methods, see: Lamb, L. D.; Huffman, D. R. J. Phys. Chem. Solids 1993, 54, 1635.
 
145
a) Kriitschmer. W.; Lamb. L. D.; Fostiropoulos, K.; Huffman. D. R. Nature 1990, 347, 354. b) Kratschmer, W.; Fostiropoulos, K.; Huffman, D. R. Chem. Phys. Lett. 1990, 170, 167.
 
146
Ewels, C. P. Nano Lett. 2006, 6, 890.
 
147
Smalley, R. E. Acc. Chem. Res. 1992, 25, 98.
 
148
Heath, J. R. ACS Symp. Ser. 1992, 481, 1.
 
149
a) V. Z. Mordkovich, V. Z.; Umnov, A. G.; Inoshita, T.; Endo, M. Carbon 1999, 37, 1855. b) Mordkovich, V. Z. Chem. Mater. 2000, 12, 2813.
 
150
Sygula, A.; Rabideau, P. W. J. Am. Chem. Soc. 1999, 121, 7800.
 
151
a) Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. Science 2002, 295, 1500.b) Scott, L. T. Angew. Chem. Int. Ed. Eng. 2004, 43, 4994.
 
152
Kabdulov, M.; Jansen, M.; Amsharov, K. Chem. Eur. J. 2013, 19, 17,262.
 
153
Otero, G.; Biddau, G.; Sanchez, C.; Caillard, R.; Lopez, M. F.; Rogero, C.; Palomares, F. J.; Cabello, N.; Basanta, M. A.; Ortega, J.; Mendez, J.; Echavarren, A. M.; Perez, R.; Gomez, B.; Martin-Gago, J. A. Nature 2008, 454, 865.
 
154
For a review of surface-assisted syntheses of fullerenes, Buckybowls, and single-walled carbon nanotubes, see: Amsharov, K. “From Polyphenylenes to Nanographenes and Graphene Nanoribbons” in Advances in Polymer Science, vol. 278, 2017 (https://​doi.​org/​10.​1007/​12_​2017_​7)
 
155
a) Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. b) Lopez-Gejo, J.; Marti, A. A.; Ruzzi, M.; Jockusch, S.; Komatsu, K.; Tanabe, F.; Murata, Y.; Turro, N. J. J. Am. Chem. Soc. 2007, 129, 14,554.
 
156
Gluch, K.; Feil, S.; Matt-Laubner, S. M.; Echt, O.; Scheier, P.; Mark, T. D. J. Phys. Chem. A 2004, 108, 6990.
 
157
Wang, C.-R.; Shi, Z.-Q.; Wan, L.-J.; Lu, X.; Dunsch, L.; Shu, C.-Y.; Tang, Y.-L.; Shinohara, H. J. Am. Chem. Soc., 2006, 128, 6605.
 
158
Gan, L.-H.; Wang, C.-R. J. Phys. Chem. A 2005, 109, 3980.
 
159
Tillmann, J.; Wender, J. H.; Bahr, U.; Bolte, M.; Lerner, H. W.; Holthausen, M. C.; Wagner, M. Angew. Chem. Int. Ed. Eng. 2015, 54, 5429.
 
160
Pichierri, F.; Kumar, V. J. Molec. Struct.: THEOCHEM 2009, 900, 71.
 
161
Bapat, P. V.; Kraft, R.; Camata, R. P. J. Nanopart. Res. 2012, 14, 1163.
 
162
Glaspell, G.; Abdelsayed, V.; Saoud, K. M.; El-Shall, M. S. Pure Appl. Chem. 2006, 78, 1667.
 
163
For example, see: Shimada, M.; Azuma, Y.; Okuyama, K.; Hayashi, Y.; Tanabe, E. Jpn. J. Appl. Phys. 2006, 45, 328.
 
164
Bapat, A.; Gatti, M.; Ding, Y. -P.; Campbell, S. A.; Kortshagen, U. J. Phys. D.: Appl. Phys. 2007, 40, 2247.
 
165
Aktas, S.; Thornton, S. C.; Binns, C.; Lari, L.; Pratt, A.; Kroger, R.; Horsfield, M. A. Mater. Res. Express 2015, 2, 1.
 
166
Vemury, S.; Pratsinis, S. E.; Kibbey, L. J. Mater. Res. 1997, 12, 1031.
 
167
For example, see: a) Shoutian, L.; Igor, N.; Germanenko, N.; El-Shall, M. S. J. Cluster Sci. 1999, 10, 533. b) Ayers, T. M.; Fye, J. L.; Li, Q.; Duncan, M. A. J. Cluster Sci. 2003, 14, 97. c) El-Shall, M. S.; Si, S. T.; Graiver, D.; Pernisz, U. Nanotech ACS Symp. Series 1996, 622, 79.
 
168
a) Belouet, C. Appl. Surf. Sci. 1996, 96–98, 630.
 
169
Ahonen, P. P.; Joutsensaari, J.; Richard O. J. Aerosol Sci. 2001, 32, 615.
 
170
For instance, see: a) Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. Angew. Chem. Int. Ed. 2006, 45, 7824, and references therein. b) Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Science 1996, 272, 1924.
 
171
Glaspell, G.; Abdelsayed, V.; Saoud, K. M.; El-Shall, M. S. Pure Appl. Chem. 2006, 78, 1667.
 
172
(a) Yonezawa, T.; Onoue, S.-Y.; Kimizuka, N. Langmuir 2000, 16, 5218. (b) Yonezawa, T.; Onoue, S.-Y.; Kimizuka, N. Chem. Lett. 2002, 528.
 
173
Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem. Res. 2001, 34, 181, and references therein. The first precedent for the use of poly(propylene imine) (PPI) dendrimers is: Floriano, P. N.; Noble, C. O.; Schoonmaker, J. M.; Poliakoff, E. D.; McCarley, R. L. J. Am. Chem. Soc. 2001, 123, 10,545. This also contains many useful references for early precedents for metal@PAMAM nanocomposites.
 
174
For an example of trimetallic nanoparticle synthesis (using a nondendritic host), see: Henglein, A. J. Phys. Chem. B 2000, 104, 6683.
 
175
Schaak, R. E.; Sra, A. K.; Leonard, B. M.; Cable, R. E.; Bauer, J. C.; Han, Y.-F.; Means, J.; Teizer, W.; Vasquez, Y.; Funck, E. S. J. Am. Chem. Soc. 2005, 127, 3506.
 
176
a) Kim, C.; Lee, H. Catalysis Commun. 2009, 10, 1305. b) Siekkinen, A. R.; McLellan, J. M.; Chen, J.; Xia, Y. Chem. Phys. Lett. 2006, 432, 491. c) Patel, K.; Kapoor, S.; Dave, D. P.; Mukherjee, T. Res. Chem. Intermed. 2006, 32, 103. d) Mallik, K.; Mandal, M.; Pradhan, N.; Pal, T. Nano Lett. 2001, 1, 319. e) Tsuji, M.; Matsuo, R.; Jiang, P.; Miyamae, N.; Hikino, S.; Kumagae, H.; Sozana, K.; Kamarudin, N.; Tang, X. -L. Cryst. Growth Des. 2008, 8, 2528.
 
177
Kim, J. -H.; Bryan, W. W.; Lee, T. R. Langmuir 2008, 24, 11,147, and references therein.
 
178
Chen, L.; Zhang, D.; Chen, J.; Zhou, H.; Wan, H. Mater. Sci. Engin. A 2006, 415, 156, and references therein.
 
179
For example, see: a) Saleh, N.; Sarbu, T.; Sirk, K.; Lowry, G. V.; Matyjaszewski, K.; Tilton, R. D. Langmuir 2005, 21, 9873. b) Herrera, A. P.; Resto, O.; Briano, J. G.; Rinaldi, C. Nanotechnol. 2005, 16, S618.
 
180
Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M. Langmuir 2005, 21, 11,981.
 
181
For instance, see: a) Thurmond, K. B.; Kowalewski, T.; Wooley, K. L. J. Am. Chem. Soc. 1996, 118, 7239. b) Butun, V.; Billingham, N. C.; Armes, S. P. J. Am. Chem. Soc. 1998, 120, 12,135. c) Zhou, Y.; Jiang, K.; Chen, Y.; Liu, S. J. Polym. Sci. A 2008, 46, 6518. d) O’Reilly, R. K.; Joralemon, M. J.; Wooley, K. L.; Hawker, C. J. Chem. Mater. 2005, 17, 5976.
 
182
Deepagan, V. G.; Kwon, S.; You, D. G.; Nguyen, V. Q.; Um, W.; Ko, H.; Lee, H.; Jo, D. G.; Kang, Y. M.; Park, J. H. Biomaterials 2016, 103, 56.
 
183
(a) Garcia-Martinez, J. C.; Crooks, R. M. J. Am. Chem. Soc. 2004, 126, 16,170–16,178. (b) Garcia-Martinez, J. C.; Scott, R. W. J.; Crooks, R. M. J. Am. Chem. Soc. 2003, 125, 11,190–11,191. (c) Kim, Y.-G.; Garcia-Martinez, J. C.; Crooks, R. M. Langmuir 2005, 21, 5485–5491.
 
184
Finke, R. G. in Metal Nanoparticles: Synthesis, Characterization, and Applications, Feldheim, D. L.; Foss, C. A. ed., Marcel-Dekker: New York, 2002.
 
185
For instance, see:a) Nayak, R.; Galsworthy, J.; Dobson, P.; Hutchison, J. J. Mater. Res. 1998, 3, 905ff.b) Trindade, T. et al. Chem. Mater. 2001, 13, 3843.
 
186
For a review of polymer brush syntheses via surface-initiated controlled radical polymerization, see: Barbey, R.; Lavanant, L.; Paripovic, D.; Schuwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H. -A. Chem. Rev. 2009, 109, 5437.
 
187
For examples of nanoparticles grown via the polyol route, see: a) Elkins, K. E.; Chaubey, G. S.; Nandwana, V.; Liu, J. P. J. Nano Res. 2008, 1, 23. b) Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Nano Lett. 2004, 4, 2057, and references therein.
 
188
Sun, S.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204. Other examples of solution-phase growth of oxide, and other compound 0D nanostructures (including quantum dots) are: (a) Strable, E.; Bulte, J. W. M.; Moskowitz, B.; Vivekanandan, K.; Allen, M.; Douglas, T.Chem. Mater. 2001, 13, 2201. (b) Frankamp, B. L.; Boal, A. K.; Tuominen, M. T.; Rotello, V. M. J. Am. Chem. Soc. 2005, 127, 9731. (c) Lemon, B. I.; Crooks, R. M. J. Am. Chem. Soc. 2000, 122, 12,886. (d) Hanus, L. H.; Sooklal, K.; Murphy, C. J.; Ploehn, H. J. Langmuir 2000, 16, 2621.
 
189
Redi, F. X.; Cho, K. -S.; Murray, C. B.; O’Brien, S. Nature 2003, 423, 968.
 
190
Nandwana, V.; Elkins, K. E.; Poudyal, N.; Chaubey, G. S.; Yano, K.; Liu, J. P. J. Phys. Chem. C 2007, 111, 4185.
 
191
Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
 
192
Also known as ‘coarsening’. For more information, see:Ratke, L.; Voorhees, P. W. Growth and Coarsening: Ostwald Ripening in Material Processing (Engineering Materials), Springer: New York, 2002.
 
193
a) Hines, M. A.; Scholes, G. D. Adv. Mater. 2003, 15, 1844. b) Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. J. Am. Chem. Soc. 2013, 135, 5278. c) Cademartiri, L.; Bertolotti, J.; Sapienza, R.; Wiersma, D. S.; von Freymann, G.; Ozin, G. A. J. Phys. Chem. B 2005, 110, 671.
 
194
Juttukonda, V.; Paddock, R. L.; Raymond, J. E.; Denomme, D.; Richardson, A. E.; Slusher, L. E.; Fahlman, B. D. J. Am. Chem. Soc. 2006, 128, 420.
 
195
Vacassy, R.; Flatt, R. J.; Hofmann, H.; Choi, K. S.; Singh, R. K. J. Coll. Interf. Sci. 2000, 227, 302.
 
196
Jolivet, J. -P.; Chaneac, C.; Trone, E. Chem. Commun. 2004, 481.
 
197
A clever way to generate H2S gas in situ from thiacetamide rather than having to handle a cylinder of the dangerous nerve gas: H3CC(S)NH2 + H2O → H2S + CH3COO + NH4 +.
 
198
It should be noted that in addition to solution-phase methods, quantum dots are frequently synthesized using molecular-beam epitaxy or other vapor-phase technique. For example, see: Wang, X. Y.; Ma, W. Q.; Zhang, J. Y.; Salamo, G. J.; Xiao, M.; Shih, C. K. Nano Lett. 2005, 5, 1873, and references therein.
 
199
A review of core-shell nanoparticles: Chaudhuri, R. G.; Paria, S. Chem. Rev. 2012, 112, 2373.
 
200
For a review of nanoshell synthesis, properties, and applications, see: Kalele, S.; Gosavi, S. W.; Urban, J.; Kulkarni, S. K. Curr. Sci. 2006, 91, 1038.
 
201
For a review of gold nanoshells and applications, see: a) Bardhan, R.; Chen, W.; Perez-Torres, C.; Bartels, M.; Huschka, R. M.; Zhao, L.; Morosan, E.; Pautler, R.; Joshi, A.; Halas, N. J. Adv. Func. Mater. 2009, 19, 3901. b) Barhoumi, A.; Huschka, R. M.; Bardhan, R.; Knight, M. W.; Halas, N. J. Chem. Phys. Lett. 2009, 482, 171. c) Lal, S.; Clare, S. E.; Halas, N. J. Acc. Chem. Res. 2008, 41, 1842. d) Westcott, S.; Oldenburg, S.; Lee, T. R.; Halas, N. J. Langmuir, 1998, 14, 5396 (& 7378).
 
202
(a) Kamata, K.; Lu, Y.; Xia, Y. J. Am. Chem. Soc. 2003, 125, 2384. (b) Marinakos, S. M.; Shultz, D. A.; Feldheim, D. L. Adv. Mater. 1999, 11, 34. (c) Chah, S.; Fendler, J. H.; Yi, J. J. Colloid Interface Sci. 2002, 250, 142. (d) Marinakos, S. M.; Novak, J. P.; Brousseau, L. C., III; House, A. B.; Edeki, E. M.; Feldhaus, J. C.; Feldheim, D. L. J. Am. Chem. Soc. 1999, 121, 8518.
 
203
Chen, M.; Gao, L. Inorg. Chem. 2006, 45, 5145.
 
204
Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711.
 
205
a) Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I. J. Am. Chem. Soc. 2007, 129, 11,708. b) Ning, Z.; Tian, H.; Yuan, C.; Fu, Y.; Qin, H.; Sun, L.; Agren, H. Chem. Commun. 2011, 47, 1536.
 
206
Carey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Chem. Rev. 2015, 115, 12,732.
 
207
Some review articles related to organic-based core-shell nanoparticles: a) Kirsch, S.; Doerk, A.; Bartsch, E.; Sillescu, H.; Landfester, K.; Spiess, H. W.; Maechtle, W. Macromolecules 1999, 32, 4508. b) Chan, J. M.; Zhang, L.; Yuet, K. P.; Liao, G.; Rhee, J. W.; Langer, R.; Farokhzad, O. C. Biomaterials 2009, 30, 1627. c) Nah, J. W.; Jeong, Y. I.; Cho, C. S. J. Polym. Sci., Polym. Phys. 1998, 36, 415.
 
208
For example: Dresco, P. A.; Zaitsev, V. S.; Gambino, R. J.; Chu, B. Langmuir 1999, 15, 1945.
 
209
(a) Synthesis of the Iridium complex is reported in: Finke, R. G.; Lyon, D. K.; Nomiya, K.; Sur, S.; Mizuno, N. Inorg. Chem. 1990, 29, 1784. (b) Aiken, J. D.; Lin, Y.; Finke, R. G. J. Mol. Catal. A 1996, 114, 29.
 
210
For a detailed discussion of the mechanistic steps, see: Besson, C.; Finney, E. E.; Finke, R. G. J. Am. Chem. Soc. 2005, 127, 8179, and references therein.
 
211
For a thorough recent review on nanostructural growth via coprecipitation of multiple species (and ways to synthesize/stabilize 0D nanostructures), consult: Cushing, B. L.; Kolesnichenko, V. L.; O’Connor, C. J. Chem. Rev. 2004, 104, 3893.
 
212
a) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545. b) LaMer, V. K. J. Am. Chem. Soc. 1950, 72, 4847. c) Saraiva, S. M.; de Oliveira, J. F. J. Dispersion Sci. Technol. 2002, 23, 837.
 
213
For example, see: a) Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. J. Phys. Chem. B 2006, 110, 15,700. b) Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Yeng, X. J. Am. Chem. Soc. 2007, 129, 13,939.
 
214
Pong, B. -K.; Elim, H. I.; Chong, J. -X.; Ji, W.; Trout, B. L.; Lee, J. -Y. J. Phys. Chem. C 2007, 111, 6281.
 
215
For more details regarding proposed mechanisms for Au/Ag nanoparticle growth via citrate reduction/stabilization, see: a) Rodriguez-Gonzalez, B.; Mulvaney, P.; Liz-Marzan, L. M. Z. Phys. Chem. 2007, 221, 415. b) Pillai, Z. S.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 945.
 
216
L. Colombi Ciacchi, W. Pompe, A. De Vita, J. Phys. Chem. B 2003, 107, 1755.
 
217
Emerson, S. C. Synthesis of Nanometer-size Inorganic Materials for the Examination of Particle Size Effects on Heterogeneous Catalysis, Ph.D. thesis, Worcester Polytechnic Institute, 2000. May be accessed online at: http://​www.​wpi.​edu/​Pubs/​ETD/​Available/​etd-0503100-105634/​unrestricted/​emerson.​pdf
 
218
J. M. Montejano-Carrizales and J. L. Morán-López. Nanostructured Mate- rials, 1:397–409, 1992.
 
219
Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428.
 
220
Finke, R. G. in Metal Nanoparticles: Synthesis, Characterization, and Applications, Feldheim, D. L.; Foss, C. A. eds., Dekker: New York, 2002. Crooks and coworkers determined that a closed-shell metallic nanocluster of Au55 has a diameter of 1.2 nm: Kim, Y.-G.; Oh, S.-K.; Crooks, R. M. Chem. Mater. 2004, 16, 167.
 
221
a) Yu, J. H.; Joo, J.; Park, H. M.; Baik, S. L.; Kim, Y. W.; Kim, S. C.; Hyeon, T. J. Am. Chem. Soc. 2005, 127, 5662. b) Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B.; J. Am. Chem. Soc. 2005, 127, 7140.
 
222
For a thorough review of shape control for nanocrystals, see: Xie, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Adv. Mater. 2009, 48, 60.
 
223
For instance, see: a) Using focused-ion beam (FIB): McMahon, M. D.; Hmelo, A. B.; Lopez, R.; Ryle, W. T.; Newton, A. T.; Haglund, R. F.; Feldman, L. C.; Weller, R. A.; Magruder, R. H. Mat. Res. Soc. Symp. Proc. 2003, 739, H2.7.1. b) Liu, K.; Ho, C. -L.; Aouba, S.; Zhao, Y. -Q.; Lu, Z. -H.; Petrov, S.; Coombs, N.; Dube, P.; Ruda, H. E.; Wong, W. -Y. Angew. Chem. 2008, 120, 1275. c) Yonezawa, T.; Itoh, T.; Shirahata, N.; Masuda, Y.; Koumoto, K. Appl. Surf. Sci. 2007, 254, 621. d) Resch, R.; Baur, C.; Bugacov, A.; Koel, B. E.; Madhukar, A.; Requicha, A. A. G.; Will, P. Langmuir, 1998, 14, 6613.
 
224
Tsai, D. -H.; Kim, S. H.; Corrigan, T. D.; Phaneuf, R. J.; Zachariah, M. R. Nanotechnology 2005, 16, 1856.
 
225
Redi, F. X.; Cho, K. -S.; Murray, C. B.; O’Brien, S. Nature 2003, 423, 968.
 
226
(a) Decher, G.; Hong, J. D. Makromol. Chem. Macromol. Symp. 1991, 46, 321. (b) Decher, G.; Hong, J. D.; Schmitt, J. Thin Solid Films 1992, 210, 831. For a recent review of electrostatic LbL growth, see: Hammond, P. T. Adv. Mater. 2004, 16, 1271.
 
227
Adamantyl groups were used on the periphery of the dendrimers since they strongly interact with cyclodextrins. For example, see: Rekharsky, M. V.; Inoue, Y. Chem. Rev. 1998, 98, 1880–1901.
 
228
(a) Iijima, S. Nature 1991, 354, 56 (first report of MWNTs). (b)Iijima, S. Nature 1993, 363, 603 (SWNT co-precedent). (c) Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605 (SWNT co-precedent).
 
229
The term graphene designates a single layer of carbon atoms packed into hexagonal units. Though this structure is used to describe properties of many carbonaceous materials (e.g., CNTs, graphite, fullerenes, etc.), this planar structure is thermodynamically unstable relative to curved structures such as fullerenes, nanotubes, and other structures found in carbon soot. As such, the isolation of single graphene sheets has only recently been reported through exfoliation from a high purity graphite crystal: Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
 
230
For more information, see: a) Ruoff, R. S.; Qian, D.; Liu, W. K. C. R. Physique 2003, 4, 993. b) Collins, P. G.; Avouris, P. Scientific American 2000, 283, 62. c) Ibrahim, K. S. Carbon Lett. 2013, 14, 131. d) Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer: New York, 2001. e) De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science 2013, 339, 535.
 
231
a) Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Phys. Rev. Lett. 2000, 84, 5552. b) Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. Phys. Rev. Lett. 2001, 87, 215,502.
 
232
a) Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A. G.; Pimenta, M. A.; Saito, R. Acc. Chem. Res. 2002, 35, 1070. b) Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S. Science 1997, 275, 187. c) Weisman, R. B.; Subramoney, S. Electrochem. Soc. Interf. 2006 (summer), 42.
 
233
For extensive reviews of molecular electronics see: (a) Tour, J. M. Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming; World Scientific: River Edge, NJ, 2003. (b) Tour, J. M.; James, D. K. in Handbook of Nanoscience, Engineering and Technology; Goddard, W. A., III; Brenner, D. W.; Lyshevski, S. E.; Iafrate, G. J. eds.,;RC: New York, 2003; pp. 4.1–4.28. (c) Tour, J. M. Acc. Chem. Res. 2000, 33, 791.
 
234
Field emission results from the tunneling of electrons from a metal tip into a vacuum, under an applied strong electric field (Chap. 7 will have more details on this phenomenon, and how it is exploited for high-resolution electron microscopy).
 
236
Current “QLED” televisions feature photo-emissive particles, which use a layer of quantum dots to convert the backlight to emit pure basic colors, thereby improving the brightness and color range. In contrast, next-generation electro-emissive QD displays are similar to active-matrix OLEDs, in which light is produced directly by each pixel by applying electrical current to QDs. As seen earlier in this chapter, the color emitted by a QD is related to its size and composition.a) https://​www.​soundandvision.​com/​content/​connecting-dots-0b) https://​www.​cnet.​com/​news/​how-qled-tv-could-help-samsung-finally-beat-lgs-oleds/​
 
237
a) Wang, Q. H.; Setlur, A. A.; Lauerhaas, J. M.; Dai, J. Y.; Seelig, E. W.; Chang, R. P. H. Appl. Phys. Lett. 1998, 72, 2912. b) http://​imechanica.​org/​files/​FinalProject_​12_​9_​Group2.​pdf c) Choi, Y. S.; Kang, J. H.; Park, Y. J.; Choi, W. B.; Lee, C. J.; Jo, S. H.; Lee, C. G.; You, J. H.; Jung, J. E.; Lee, N. S.; Kim, J. M. Diam. Rel. Mater. 2001, 10, 1705.
 
238
a) Liang, X.; Xia, J.; Dong, G.; Tian, B.; Peng, L. Top. Curr. Chem. 2016, 374, 80. b) https://​www.​chemistryworld.​com/​news/​carbon-nanotubes-in-large-panel-displays/​3000744.​article
 
239
a) Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Nat. Nanotechnol. 2011, 6, 156. b) McCarthy, M. A. Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Finzler, A. G. Science 2011, 332, 570. c) Wang, C.; Zhang, J.; Ryu, K.; Badmaev, A.; Gomez, L.; Zhou, C. Nano Lett. 2009, 12, 4285. d) Chen, P.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J.; Wang, K.; Galatsis, K.; Zhou, C. Nano Lett. 2011, 11, 5301.
 
242
(a) Avouris, P. Acc. Chem. Res. 2002, 35, 1026. (b) Wind, S. J.; Appenzeller, J.; Martel, R.; Derycke, V.; Avouris, P. Appl Phys. Lett. 2002, 80, 3817. A recent strategy for the bottom-up design of CNT interconnects: Li, J.; Ye, Q.; Cassel, A.; Ng, H. T.; Stevens, R.; Han, J.; Meyyappan, M. Appl. Phys. Lett. 2003, 82, 2491.
 
243
Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Nature 2013, 501, 526.
 
244
Yakabson, B. I. Appl. Phys. Lett. 1998, 72, 918.
 
245
Micro-Raman spectroscopy has shown that during tension, only the outer layers of MWNTs are loaded, whereas during compression, the load is transferred to all layers.
 
246
Salvetat, J.-P.; Briggs, G. A. D.; Bonard, J.-M.; Basca, R. R.; Kulik, A. J.; Stöckli, T.; Burnham, N. A.; Forró, L. Phys. Rev. Lett. 1999, 82, 944.
 
247
Filleter, T.; Espinosa, H. D. Carbon 2013, 56, 1.
 
248
For a review of nanotube-reinforced polymers, see:Schulte, K.; Gojny, F. H.; Fiedler, B.; Sandler, J. K. W.; Bauhofer, W. in Polymer Composites, Springer: New York, 2005.
 
249
In 2005, the winner of the Tour de France used a bicycle composed of a CNT composite: https://​www.​cnet.​com/​news/​carbon-nanotubes-enter-tour-de-france/​
 
250
Zhang, Y.; Zou, G.; Doorn, S. K.; Htoon, H.; Stan, L.; Hawley, M. E.; Sheehan, C. J.; Zhu, Y.; Jia, Q. ACS Nano 2009, 3, 2157.
 
251
This work is being developed by the U.S. Army Research Laboratory, through collaboration with the MIT Institute of Soldier Nanotechnology:a) http://​isnweb.​mit.​edub) https://​www.​arl.​army.​mil/​www/​pages/​510/​TAB_​ISN-2_​2012_​for_​print.​pdf
 
253
For a very nice summary of specific stiffness/specific strength regions for various materials classes see: http://​www-materials.​eng.​cam.​ac.​uk/​mpsite/​interactive_​charts/​spec-spec/​basic.​html
 
254
Fluorination has recently been used to attach amine-terminated polymers to the sidewalls of carbon nanotubes; for instance, see:a) Dillon, E. P.; Crouse, C. A.; Barron, A. R. ACS Nano 2008, 2, 156.b) Direct polymerization of poly(amidoamine), PAMAM, dendrimers directly from chlorocarbonyl- functionalized (-COCl) carbon nanotubes: Pan, B.; Cui, D.; Gao, F.; He, R. Nanotechnol. 2006, 17, 2483.
 
255
For a nice review regarding defect sites in CNTs, see Charlier, J.-C. Acc. Chem. Res. 2002, 35, 1063.
 
256
For a thorough recent review of the surface chemistry (noncovalent and covalent) of CNTs, see Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
 
257
A interesting recent precedent related to the reversibly tunable exfoliation of SWNTs using poly(acrylic acid) at varying pH levels is reported by Grunlan, J. C.; Liu, L.; Kim, Y. S. Nano Lett. 2006, 6, 911.
 
258
Knupfer, M.; Reibold, M.; Bauer, H.-D.; Dunsch, L.; Golden, M. S.; Haddon, R. C.; Scuseria, G. E.; Smalley, R. E. Chem. Phys. Lett. 1997, 272, 38.
 
259
a) Itami, K. Pure Appl. Chem. 2012, 84, 907, and references therein. b) Nevius, M. S.; Wang, F.; Mathieu, C.; Barrett, N.; Sala, A.; Mentes, T. O.; Locatelli, A.; Conrad, E. H. Nano Lett. 2014, 14, 6080. c) Han, P.; Akagi, K.; Canova, F. F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. ACS Nano 2014, 8, 9181. d) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Mullen, K.; Fasel, R. Nature 2010, 466, 470. e) Narita, A.; Verzhbitskly, I. A.; Frederickx, W.; Mall, K. S.; Jensen, S. A.; Hansen, M. R.; Bonn, M.; De Feyter, S.; Casiraghi, C.; Feng, X.; Mullen, K. ACS Nano 2014, 8, 11,622. f) Wang, W.; Wang, Y. X.; Yang, H. B. Org. Chem. Front. 2014, 1, 1005.
 
260
Although these metals have been confirmed to be suitable for CNT growth, it is now accepted that most any metal should catalyze the growth of carbon nanotubes. Hong, G.; Chen, Y.; Li, P.; Zhang, J. Carbon 2012, 50, 2067.
 
261
For a description of methods used to form surface-bound nanosized catalysts, see: a) Kind, H.; Bonard, J. –M.; Emmeneggar, C.; Nilsson, L. –O.; Hernadi, K.; Maillard-Schaller, E.; Schlapbach, L.; Forro, L.; Kern, K. Adv. Mat. 1999, 11, 1285. b) Huang, Z. P.; Xu, J. W.; Ren, Z. F.; Wang, J. H.; Siegal, M. P.; Provencio, P. Appl. Phys. Lett. 1998, 73, 3845. c) Bower, C.; Zhou, O.; Zhu, W.; Werder, D. J.; Jin, S. Appl. Phys. Lett. 2000, 77, 2767 d) Geng, J. et al. J. Phys. Chem. B 2004, 108, 18,447.
 
262
Rummeli, M. H.; Bachmatiuk, A.; Bornert, F.; Schaffel, F.; Ibrahim, I.; Cendrowski, K.; Simha-Martynkova, G.; Placha, D.; Borowiak-Palen, E.; Cuniberti, G.; Buchner, B. Nanosc. Res. Lett. 2011, 6:303, 1 (open access: https://​nanoscalereslett​.​springeropen.​com/​articles/​10.​1186/​1556-276X-6-303
 
263
Smalley, R. E. Discovering the Fullerenes, Nobel Lecture, 1996. May be found online at: http://​nobelprize.​org/​chemistry/​laureates/​1996/​smalley-lecture.​pdf (along with the Nobel lectures from Curl and Kroto).
 
264
The National Institute of Standards and Technology (NIST) has been recently focused on the development of standard synthesis, purification, and characterization techniques for CNTs (and other nanomaterials). To date, there are a number of competing methods for SWNTs/MWNTs, all citing percent purity values that appear rather arbitrary. Indeed, purchasing a “90% pure SWNT” sample from multiple vendors will result in very different products! In order to continue the rapid progress in CNT synthesis/applications, it is essential that we set up a “gold standard” for CNTs that will immediately tell us what a certain purity level means. That is, if a “60% purity” value is cited, clarifying what the remaining 40% consists of (amorphous carbon, remaining catalytic metal, other nanotube diameters/morphologies, etc.)
 
265
Dai, H. Acc. Chem. Res. 2002, 35, 1035.
 
266
For a nice review of strategies used for superhydrophobic coatings, see: Ma, M.; Hill, R. M. Curr. Opin. Coll. Interf. Sci. 2006, 11, 193.
 
267
Zhang, R.; Zhang, Y.; Zhang, Q.; Xie, H.; Qian, W.; Wei, F. ACS Nano 2013, 7, 6156.
 
268
a) Huang, S. M.; Woodson, M.; Smalley, R.; Liu, J. Nano Lett. 2004, 4, 1025. b) Hofmann, M.; Nezich, D.; Reina, A.; Kong, J. Nano Lett. 2008, 8, 4122. c) Huang, S.; Maynor, B.; Cai, X.; Liu, J. Adv. Mater. 2003, 15, 1651.
 
269
For a recent review of horizontally aligned carbon nanotube arrays, see: Zhang, R.; Zhang, Y.; Wei, F. Chem. Soc. Rev. 2017, 46, 3661.
 
270
Zhang, M.; Li, J. Mater. Today 2009, 12, 12.
 
271
a) Zhong, G.; Hofmann, S.; Fan, F.; Telg, H.; Warner, J. H.; Eder, D.; Thomsen, C.; Milne, W. I.; Robertson, J. J. Phys. Chem. C, 2009, 113, 17,321. b) Meshot, E. R.; Plata, D. L.; Tawfick, S.; Zhang, Y.; Verploegen, E. A.; Hart, A. J. ACS Nano, 2009, 3, 2477.
 
272
Burt, D. P.; Whyte, W. M.; Weaver, J. M. R.; Glidle, A.; Edgeworth, J. P.; Macpherson, J. V.; Dobson, P. S. J. Phys. Chem. C 2009, 113, 15,133, and references therein.
 
273
Nessim, G. D.; Acquaviva, D.; Seita, M.; O’Brien, K. P.; Thompson, C. V. Adv. Funct. Mater. 2010, 20, 1306.
 
274
Rao, C. N. R.; Govindaraj, A. Acc. Chem. Res. 2002, 35, 998, and references therein. For recent information regarding the role of alumina on the yield/morphology of supported CNT catalysts, see: Jodin, L.; Dupuis, A.-C.; Rouviere, E.; Reiss, P. J. Phys. Chem. B 2006, 110, 7328. It should be noted that the supported nanoclusters may reside within nanochannels to facilitate 1D growth, examples of these methods, which include both template and “closed space sublimation” (CSS) are (and references therein): (a) Li, J.; Papadopoulos, C.; Xu, J. M.; Moskovits, M. Appl. Phys. Lett. 1999, 75, 367. (b) Kyotani, T.; Tsai, L. F.; Tomita, A. Chem. Mater. 1996, 8, 2109. (c) Hu, Z. D.; Hu, Y. F.; Chen, Q.; Duan, X. F.; Peng, L.-M. J. Phys. Chem. B 2006, 110, 8263.
 
275
Yu, D.; Xue, Y.; Dai, L. J. Phys. Chem. Lett. 2012, 3, 2863.
 
276
Choi, H. C.; Kim, W.; Wang, D.; Dai, H. J. Phys. Chem. B 2002, 106, 12,361. The first precedent for SWNT growth from gold nanoclusters has been recently reported: Bhaviripudi, S.; Mile, E.; Steiner, S. A.; Zare, A. T.; Dresselhaus, M. S.; Belcher, A. M.; Kong, J. J. Am. Chem. Soc. 2007, 129, 1516.
 
277
a) Lolli, G.; Zhang, L.; Balzano, L.; Sakulchaicharoen, N.; Tan, Y.; Resasco, D. E. J. Phys. Chem. B 2006, 110, 2108. b) Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. J. Am. Chem. Soc. 2003, 125, 11,186.
 
278
Chiang, W. H.; Sankaran, R. M. Nat. Mater. 2009, 8, 882.
 
279
Wang, B.; Poa, C. H. P.; Wei, L.; Li, L. J.; Yang, Y. H.; Chen, Y. J. Am. Chem. Soc. 2007, 129, 9014.
 
280
In 2009, researchers in China reported the longest SWNT, over 18.5 cm in length, grown using CVD from a CNT catalytic film: Wang, X.; Li, Q.; Xie, J.; Jin, Z.; Wang, J.; Li, Y.; Jiang, K.; Fan, S. Nano Lett. 2009, 9, 3137.
 
281
Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89. For a recent review of the solid–liquid–solid (SLS) and supercritical fluid–liquid–solid (SFLS) mechanisms for semiconductor nanowire growth, see: Wang, F.; Dong, A.; Sun, J.; Tang, R.; Yu, H.; Buhro, W. E. Inorg. Chem. 2006, 45, 7511. A recent precedent for the epitaxial growth of ZnO nanowires at the junction of nanowalls: Ng, H. T.; Li, J.; Smith, M. K.; Nguyen, P.; Cassell, A.; Han, J.; Meyyappan, M. Science 2003, 300, 1249.
 
282
A recent in situ TEM study of Si nanowire growth has been reported by Hofmann, S.; Sharma, R.; Wirth, C. T.; Cervantes-Sodi, F.; Ducati, C.; Kasama, T.; Dunin-Borkowski, R. E.; Drucker, J.; Bennett, P.; Robertson, J. Nature Mater. 2008, 7, 372.
 
283
Kharlamova, M. V. Beilstein J. Nanotechnol. 2017, 8, 826.
 
284
An example for Au-Ge nanoalloys: Lu, H.; Meng, X. Sci. Rep. 2015, 5:11263, 1.
 
285
The word “generally” is used, since there are reports of nanowire growth at temperatures below the eutectic. For example, see: Adhikari, H.; Marshall, A. F.; Chidsey, E. D.; McIntyre, P. C. Nano Lett. 2006, 6, 318.
 
286
A 25th anniversary review article on semiconductor nanowires: Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H.; Yan, R.; Yang, P. Adv. Mater. 2014, 26, 2137.
 
287
The first precedent of solution-liquid-solid (SLS) growth of nanowires: Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Science, 1995, 270, 1791.
 
288
For instance, see: Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Nanosci. Technol. 2003, 3, 341.
 
289
Lu, J.; Miao, J. Nanosc. Res. Lett. 2012, 7:356, 1.
 
290
Marchand, M. L.; Journet, C.; Guillot, D.; Benoit, J. M.; Yakobson, B. L.; Purcell, S. T. Nano Lett. 2009, 9, 2961.
 
291
a) Harris, P. J. F. Carbon 2007, 45, 229. b) Gavillet, J.; Thibault, J.; Stephan, O.; Amara, H.; Loiseau, A.; Gaspard, J. P.; Ducastelle, F. J. Nanosci. Nanotechnol. 2004, 4, 346. c) Irle, S.; Ohta, Y.; Okamoto, Y.; Page, A. J.; Wang, Y.; Morokuma, K. Nano Res. 2009, 2, 755.
 
293
Hofmann, S.; Csanyi, G.; Ferrari, A. C.; Payne, M. C.; Robertson, J. Phys. Rev. Lett. 2005, 95, 036101.
 
294
a) Huang, S.; Cai, Q.; Chen, J.; Qian, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 2094, and references therein. b) Liu, B.; Ren, W.; Gao, L.; Li, S.; Pei, S.; Liu, C.; Jiang, C.; Cheng, H. -M. J. Am. Chem. Soc. 2009, 131, 2082.
 
295
Cantoro, M.; Hofmann, S.; Pisana, S.; Scardaci, V.; Parvez, A.; Ducati, C.; Ferrari, A. C.; Blackburn, A. M.; Wang, K.-Y.; Robertson, J. Nano Lett. 2006, 6, 1107.
 
296
Page, A. J.; Chandrakumar, K. R. S.; Irle, S.; Morokuma, K. J. Am. Chem. Soc. 2011, 133, 621.
 
297
Persson, A. I.; Larsson, M. W.; Stenstrom, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R. Nat. Mater. 2004, 3, 677.
 
298
Deng, W.-Q.; Xu, X.; Goddard, W. A. Nano Lett. 2004, 4, 2331.
 
299
It has been shown that reducing the catalyst size causes an increase in the growth rate, whereas varying the catalyst composition affects the growth rate, activation energy, and onset temperature for CNT growth: Chiang, W. -H.; Sankaran, R. M. Diam. Rel. Mater. 2009, 18, 946.
 
300
Considering a VLS growth mechanism, the catalyst nanocluster must be molten during nucleation. However, the growth temperature of carbonaceous nanostructures is much lower than the melting point of binary C/M systems (M = catalytic metals such as Fe, Ni, Co, etc.), which lends credence to the existence of “liquid-like” deformable nanoclusters during growth.
 
301
Graphite-encapsulated metal nanostructures are of increasing importance for magnetic applications such as high-density magnetic recording media; for example, see: Flahaut, E.; Agnoli, F.; Sloan, J.; O’Connor, C.; Green, M. L. H. Chem. Mater. 2002, 14, 2553, and references therein. Encapsulation dominates over CNT growth at low temperatures since the kinetic energy is not sufficient for graphitic islands to lift off the catalyst surface. Hence, encapsulation may easily be limited, which enhances CNT growth, by maintaining elevated temperatures. Experimental results also show that small catalyst nanoclusters (diameters <2 nm) are free of graphite encapsulation since they do not contain a sufficient number of dissolved C atoms. However, for metal nanostructures >3 nm in diameter, calculations suggest that graphite encapsulation is thermodynamically preferred over SWNT growth. This is confirmed by the empirical observation that SWNTs form only on catalyst particles with diameters <2 nm.
 
302
For example, see:a) Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. -L. Nano Lett. 2006, 6, 449. b) Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Nano Lett. 2008, 8, 2082.
 
303
Ding, F.; Harutyunyan, A. R.; Yakobson, B. I. Proc. Nat’l Acad. Sci. 2009, 106, 2506.
 
304
Using field-emission microscopy (FEM) to observe axial rotation and preferential adsorption of dimeric C2 units during growth: Marchand, M.; Journet, C.; Guillot, D.; Benoit, J. -M.; Yakobson, B. I.; Purcell, S. T. Nano Lett. 2009, 9, 2961.
 
305
Jin, S.; Bierman, M. J.; Morin, S. A. J. Phys. Chem. Lett. 2010, 1, 1472, and references therein.
 
306
Hofmann, S.; Sharma, R.; Ducati, C.; Du, G.; Mattevi, C.; Cepek, C.; Cantoro, M.; Pisana, S.; Parvez, A.; Cervantes-Sodi, F.; Ferrari, A. C.; Dunin-Borkowski, R.; Lizzit, S.; Petaccia, L.; Goldoni, A.; Robertson, J. Nano Lett. 2007, 602.
 
307
Lee, Y. H.; Kim, S. G.; Jund, P.; Tomanek, D. Phys. Rev. Lett. 1997, 78, 2393.
 
308
A recent paper by Hata et al. discusses the variables that govern highly-efficient carbon nanotube growth— an oxygen-containing “growth enhancer” (e.g., water, alcohols), and a carbon source not containing oxygen: Futaba, D. N.; Goto, J.; Yasuda, S.; Yamada, T.; Yumura, M.; Hata, K. Adv. Mater. 2009, 21, 4811.
 
309
Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362. Some additional recent precedents for millimeter-tall SWNT carpets: a) Almkhelfe, H.; Li, X.; Rao, R.; Amama, P. B. Carbon, 2017, 116, 181. b) Chen, G.; Sakurai, S.; Yumura, M.; Hata, K.; Futaba, D. N. Carbon 2016, 107, 433.
 
310
Rummeli, M. H.; Borowiak-Palen, E.; Gemming, T.; Pichler, T.; Knupfer, M.; Kalbac, M.; Dunsch, L.; Jost, O.; Silva, S. R. P.; Pompe, W.; Buchner, B. Nano Lett. 2005, 5, 1209.
 
311
Wang, Y.; Song, W.; Jiao, M.; Wu, Z.; Irle, S. Carbon 2017, 121, 292.
 
312
a) Visic, B.; Panchakarla, L. S.; Tenne, R. J. Am. Chem. Soc. 2017, 139, 12,865.b) Goldberger, J.; Fan, R.; Yang, P. Acc. Chem. Res. 2006, 39, 239, and references therein.c) https://​link.​springer.​com/​content/​pdf/​10.​1007/​s11467-013-0326-8.​pdfd) Remskar, M. Adv. Mater. 2004, 16, 1497.
 
313
Lu, J. G.; Chang, P. C.; Fan, Z. Y. Mater. Sci. Eng. Rep. 2006, 52, 49.
 
314
a) Hulteen, J. C.; Martin, C. R. J. Mater. Chem. 1997, 7, 1075. b) Sander, M. S.; Cote, M. J.; Gu, W.; Kile, B. M.; Tripp, C. P. Adv. Mater. 2004, 16, 2052.
 
315
a) Kmentova, H.; Kment, S.; Wang, L.; Pausova, S.; Vaclavu, T.; Kuzel, R.; Han, H.; Hubicka, Z.; Zlamal, M.; Olejnicek, J.; Cada, M.; Krysa, J.; Zboril, R. Catal. Today 2017, 287, 130. b) Roy, P.; Berger, S.; Schmuki, P. Angew. Chem. Int. Ed. 2011, 50, 2904.
 
316
For example, see: a) Wang, J. M.; Gao, L. J. Mater. Chem. 2003, 13, 2551. b) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. c) Jia, C. J.; Sun, L. D.; Yan, Z. G.; You, L. P.; Luo, F.; Han, X. D.; Pang, Y. C.; Zhang, Z.; Yan, C. H. Angew. Chem. 2005, 117, 4402. d) Sander, M. S.; Cote, M. J.; Gu, W.; Kile, B. M.; Tripp, C. P. Adv. Mater. 2004, 16, 2052.e) Meng, F.; Gong, J.; Fan, Z.; Li, H.; Yuan, J. Ceram. Int. 2016, 42, 4700.f) Niu, X.; Li, M.; Wu, B.; Li, H. J. Mater. Sci.: Mater. Electron. 2016, 27, 10,198.
 
317
For instance, see: Levard, C.; Rose, J.; Masion, A.; Doelsch, E.; Borschneck, D.; Olivi, L.; Dominici, C.; Grauby, O.; Woicik, J. C.; Bottero, J. Y. J. Am. Chem. Soc. 2008, 130, 5862.
 
318
For reviews of halloysite nanotubes, see:a) Kamble, R.; Ghag, M.; Gaikawad, S.; Panda, B. K. J. Adv. Scient. Res. 2012, 3, 25. b) Du, M.; Guo, B.; Jia, D. Polym. Int. 2010, 59, 574. c) http://​www.​tandfonline.​com/​doi/​full/​10.​1080/​03602559.​2017.​1329436 d) Yuan, P.; Tan, D.; Annabi-Bergaya, F. Appl. Clay Sci. 2015, 112, 75.
 
319
a) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. b) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10,451.
 
321
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A Nature 2005, 438, 197.
 
322
Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science 2006, 312, 1191.
 
323
Graphite intercalation compounds and applications, Endo, M., Ed.; Oxford University Press: Oxford, U.K., 2003.
 
324
Bulk graphite oxide is best prepared from purified natural graphite using the Hummers method: Hummers, W. S. & Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
For the mechanical exfoliation of bulk graphene oxide into sheets within an aqueous medium, see: Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
 
325
a) He, H., Klinowski, J., Forster, M. & Lerf, A. Chem. Phys. Lett. 1998, 287, 53. b) Lerf, A.; He, H.; Forster, M.; Klinowski, J. J. Phys. Chem B 1998, 102, 4477.
 
326
For example, see: a) Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2009, 4, 25. b) Allen, M. J.; Fowler, J. D.; Tung, V. C.; Yang, Y.; Weiller, B. H.; Kaner, R. B. Appl. Phys. Lett. 2008, 93, 193,119. c) Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. ACS Nano 2009, 3, 301.
 
327
a) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30. b) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Nature 2009, 457, 706.
 
328
a) Kobayashi, T.; Bando, M.; Kimura, N.; Shimizu, K.; Kadono, K.; Umezu, N.; Miyahara, K.; Hayazaki, S.; Nagai, S.; Mizuguchi, Y.; Murakami, Y.; Hobara, D. Appl. Phys. Lett. 2013, 102, 023112. b) Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Nat. Nanotechnol. 2010, 5, 574.
 
329
Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. J. Am. Chem. Soc. 2008, 130, 5856.
 
330
Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. J. Mater. Chem. 2006, 16, 155.
 
331
Bon, S. B.; Valentini, L.; Verdejo, R.; Garcia Fierro, J. L.; Peponi, L.; Lopez-Manchado, M. A.; Kenny, J. M. Chem. Mater. 2009, 21, 3433.
 
332
The October 2014 issue of Nature Nanotechnology was focused on the applications for graphene: http://​www.​nature.​com/​nnano/​focus/​graphene-applications/​index.​html. Graphene is even being placed in sports footwear: https://​www.​inov-8.​com/​us/​?​_​_​_​store=​us
 
333
The quantum Hall effect is the integer quantization of the Hall conductance for a 2-D system subjected to low temperatures and strong magnetic fields. However, for graphene, an anomalous fractional quantization is observed in which electrons exhibit much smaller effective masses. This corresponds to extremely facile transport through graphene, which is analogous to the mobility of relativistic particles such as photons.
For example, see:a) http://​icmt.​illinois.​edu/​ICMT-talks/​20080114-Abanin-Talk.​pdf b) Toke, C.; Lammert, P. E.; Crespi, V. H.; Jain, J. K. Phys. Rev. B 2006, 74, 235,417. c) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379. d) Ozyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Abanin, D. A.; Levitov, L. S.; Kim, P. Phys. ReV. Lett. 2007, 99, 186,804.
 
334
For instance, see: Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146, 351.
 
335
Li, D.; Kaner, R. B. Science 2008, 320, 1170.
 
336
The term ‘zero-bandgap semiconductor’ should be distinguished from a metal, even though both of these materials exhibit zero bandgaps. Within a graphene sheet, the Dirac point represents the sole electronic state responsible for its electrical conductivity; in contrast, electrons in many other states within the vicinity of the Fermi level may participate in electrical conductivity.
 
337
http://​www-mtl.​mit.​edu/​researchgroups/​palacios/​graphene/​palacios.​htmlAmbipolarity is also shared by organic semiconductors: a) Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194. b) Meijer, E. J.; De Leeuw, D. M.; Setayesh, S.; van Veenendaal, E.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.; Klapwijk, T. M. Nat. Mater. 2003, 2, 678.
 
338
Zhang, Y.; Tang, T. -T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820.
 
339
Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.
 
340
a) Son, Y. -W.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2006, 97, 216,803. b) Han, M. Y.; Ozyilmaz, B.; Zhang, Y.; Kim, P. Phys. Rev. Lett. 2007, 98, 206,805.
 
342
Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature 2009, 458, 872.
 
343
Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Nature 2009, 458, 877.
 
344
a) Han, M. Y.; Oezyilmaz, B.; Zhang, Y.; Kim, P. Phys. Rev. Lett. 2007, 98, 206,805. b) Chen, Z.; Lin, Y. -M.; Rooks, M. J.; Avouris, P. Physica E 2007, 40, 228.
 
345
Campos-Delgado, J. et al. Nano Lett. 2008, 8, 2773.
 
346
Yang, X.; Dou, X.; Rouhanipour, A.; Zhi, L.; Joachim Rader, H.; Mullen, K. J. Am. Chem. Soc. 2008, 130, 4216.
 
347
A special issue of Acc. Chem. Res. was devoted to 2-D nanomaterials, beyond graphene: Acc. Chem. Res. 2015, 48, 1.
 
348
Mak, K. F.; Lee, C.; Hone, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136,805.
 
349
Liu, H.; Neal, A. T.; Ye, P. D. ACS Nano 2012, 6, 8563.
 
350
Mas-Balleste, R.; Gomez-Navarro, C.; Gomez-Herrero, J.; Zamora, F. Nanoscale 2011, 3, 20.
 
351
Feng, B.; Ding, Z.; Meng, S.; Yao, Y.; He, X.; Cheng, P.; Chen, L.; Wu, K. Nano Lett. 2012, 12, 3507.
 
352
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Biacometti, V.; Kis, A. Nature Nanotechnol. 2011, 6, 147.
 
353
Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Nat. Nanotechnol. 2015, 10, 227.
 
354
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Nat. Acad. Sci. 2005, 102, 10,451.
 
355
Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tomanek, D.; Ye, P. D. ACS Nano 2014, 8, 4033.
 
356
Naguib, M.; Gogotsi, Y. Acc. Chem. Res. 2015, 48, 128.
 
357
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992.
 
358
For example, a battery rated at 3 V, when at 50% charge would still output a voltage close to 3 V; in contrast, a supercapacitor rated at 3 V would output exactly half of its maximum charge voltage, 1.5 V at 50% charge.
 
360
Energy density is defined as the energy stored in a battery per unit volume. Although this term may also be used for an energy storage device per unit mass, the term specific energy is preferred.
 
361
Although LiBs are currently popular for automotive and portable electronic applications, the research community is now shifting its focus to more Earth-abundant and sustainable materials such as Na-ion (NaB), Mg-ion, Al-ion, and their metal-air varieties, to address concerns with the worldwide availability of lithium reserves. For instance, see: a) Masse, R. C.; Uchaker, E.; Cao, G. Sci. China Mater. 2015, 58, 715. b) Larcher, D.; Tarascon, J. M. Nature Chem. 2015, 7, 19. c) Kim, S. W.; Seo, D. H.; Ma, X.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710. d) Choi, J. W.; Aurbach, D. Nature Rev. Mater. 2016, 1, 16,013.
 
362
The performance specifications of the Tesla P100D are simply amazing: 0–60 mph in 2.3 seconds (“Ludicrous Mode”!); 680 hp. and 791 lb-ft of torque. However, the purported specs of the 2019 Tesla roadster are even more incredible: 0–60 in <2 s!
 
363
For detailed photos of the interior of the Tesla 100 kWh battery pack, see: https://​teslamotorsclub.​com/​tmc/​threads/​pics-info-inside-the-battery-pack.​34934/​
 
364
The “18,650” (i.e., 18 mm x 65 mm) Li-ion cell is larger than a typical AA alkaline cell: http://​s32.​postimg.​org/​usovzv16t/​Battery_​Comparison1.​jpg
 
365
Interestingly, a full charge would take 40 h using a standard 3 kW 3-pin plug (not even an option for these vehicles!); however, other charging options are available such as 9.5 h (240 V/48 A), 6.3 h (240 V/72 A), or even a 120 kW “supercharger” feature that allows for 1-h charging.
 
366
It should be noted that the current density (mA g−1) is important to compare reported capacities of electrode materials. The lower the current density, the more time the Li+ ions have to intercalate/insert into the electrode material, resulting in a higher overall capacity. Whereas most research studies utilize current densities in the 50–500 mA g−1 range, commercial rechargeable batteries must typically cycle in the A g−1 range. The battery industry also most often refers to current densities as “C”; for instance, a 1C rate refers to the discharge current necessary to fully discharge the battery in 1 h, and so on.
 
367
The capacity of some alloying materials such as MXy (M = Fe, Co, Cu, Ni, Bi; X = F, Cl; y = 2, 3), AgCl, LiCl, S, Se, Te, or I is expected to be much higher than intercalation compounds, with theoretical capacities >1000 mAh g−1. For some recent reviews of materials being investigated for LiB and Na-ion battery cathodes, see:a) Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Mater. Today 2015, 18, 252.b) Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691.c) Demirocak, D. E.; Srinivasan, S. S.; Stafanakos, E. K. Appl. Sci. 2017, 7, 731.
 
368
For a review of nanostructured materials for LiB anode applications, see: Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. J. Power Sources 2014, 257, 421.
 
369
Chen, K. S.; Xu, R.; Luu, N. S.; Secor, E. B.; Hamamoto, K.; Li, Q.; Kim, S.; Sangwan, V. K.; Balla, I.; Guiney, L. M.; Seo, J. W. T.; Yu, X.; Liu, W.; Wu, J.; Wolverton, C.; Dravid, V. P.; Barnett, S. A.; Lu, J.; Amine, K.; Hersam, M. C. Nano Lett. 2017, 17, 2539.
 
370
Xiong, Z.; Yun, Y. S.; Jin, H. J. Materials 2013, 6, 1138.
 
371
For instance, see:a) Verma, P.; Maire, P.; Novak, P. Electrochim. Acta 2010, 55, 6332.b) Tasaki, K.; Goldberg, A.; Lian, J. J.; Walker, M.; Timmons, A.; Harris, S. J. J. Electrochem. Soc. 2009, 156, A1019.
 
372
a) An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. Carbon 2016, 105, 52.b) https://​arxiv.​org/​pdf/​1210.​3672.​pdf
 
373
a) Xue, J. S.; Dahn, J. R. J. Electrochem. Soc. 1995, 142, 3668.b) Yazami, R.; Deschamps, M. J. Power Sources 1995, 54, 411.
 
374
Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Nano Lett. 2008, 8, 2277.
 
375
Mo, Y. F.; Zhang, H. T.; Guo, Y. N. Mater. Lett. 2017, 205, 118.
 
376
Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V.; Scrosati, B. Nano Lett. 2014, 14, 4901.
 
377
The Coulombic efficiency is the ratio of charging and discharging capacities for a particular cycle, reflecting the amount of Li that has been lost due to SEI formation. For instance, if the cell has a charging capacity of 850 mAh g−1 and a discharging capacity of 620 mAh g−1, the Coulombic efficiency would be 73% for that cycle.
 
378
Chen, J.; Yao, B.; Li, C.; Shi, G. Carbon 2013, 64, 225.
 
379
Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Adv. Funct. Mater. 2009, 19, 2577.
 
380
a) Uthaisar, C.; Barone, V.; Peralta, J. E. J. Appl. Phys. 2009, 106, 113,715.b) Uthaisar, C.; Barone, V. Nano Lett. 2010, 10, 2838.
 
381
Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. J. Am. Chem. Soc. 2010, 132, 12,556.
 
382
Uthaisar, C.; Barone, V.; Fahlman, B. D. Carbon 2013, 61, 558.
 
383
Another recent report that shows the effect of oxygen-based functional groups on the interlayer spacing of graphene sheets, and enhanced Li capacity: Cheng, Q.; Okamoto, Y.; Tamura, N.; Tsuji, M.; Maruyama, S.; Matsuo, Y. Sci. Rep. 2017, 7:14782, 1
 
384
Chen, J. S.; Archer, L.; Lou, X. W. “SnO2 Hollow Structures and TiO2 Nanosheets for lithium-ion batteries.” J. Mater. Chem. 2011, 21, 9912.
 
385
McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. Adv. Mater. 2013, 25, 4966.
 
386
Some recent reviews: a) Du, F. H.; Wang, K. X.; Chen, J. S.; J. Mater. Chem. A 2016, 4, 32. b) Mazouzi, D.; Karker, Z.; Reale, C.; Hernandez, C. R.; Manero, P. J.; Guyomard, D.; Roue, L. J. Power Sources 2015, 280, 533.
 
387
For instance: a) Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Nano Lett. 2009, 9, 3844. b) Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. Adv. Mater. 2012, 24, 5452.
 
388
For example, see: a) Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y. Nano Lett. 2011, 11, 2949. b) Chen, D.; Mei, X.; Ji, G.; Lu, M.; Xie, J.; Lu, J.; Lee, J. Y. Angew. Chem. Int. Ed. Eng. 2012, 51, 2409.
 
389
For example, see: a) Ge, M.; Rong, J.; Fang, X.; Zhang, A.; Lu, Y.; Zhou, C. Nano Res. 2013, 6, 174. b) Bang, B. M.; Lee, J. I.; Kim, H.; Cho, J.; Park, S. Adv. Energy Mater. 2012, 2, 878.
 
390
For instance, see: a) Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W.; Cui, Y. Nat. Nanotechnol. 2014, 9, 187. b) Su, L.; Xie, J.; Xu, Y.; Wang, L.; Wang, Y.; Ren, M. Phys. Chem. Chem. Phys. 2015, 17, 17,562. c) Lee, W. H.; Kang, D. Y.; Kim, J. S.; Lee, J. K.; Moon, J. H. RSC Adv. 2015, 5, 17,424. d) Pan, L.; Wang, H.; Gao, D.; Chen, S.; Tan, L.; Li, L. Chem. Commun. 2014, 50, 5878. e) Park, Y.; Choi, N. S.; Park, S.; Woo, S. H.; Sim, S.; Jang, B. Y.; Oh, S. M.; Park, S.; Cho, J.; Lee, K. T. Adv. Energy Mater. 2013, 3, 206.
 
391
For example: a) Hwang, T. H.; Lee, Y. M.; Kong, B. S.; Seo, J. S.; Choi, J. W. Nano Lett. 2012, 12, 802. b) Li, Y.; Guo, B.; Ji, L.; Lin, Z.; Xu, G.; Liang, Y.; Zhang, S.; Toprakci, O.; Hu, Y.; Alcoutlabi, M.; Zhang, X. Carbon 2013, 51, 185. c) Lee, B. S.; Son, S. B.; Park, K. M.; Seo, J. H.; Lee, S. H.; Choi, I. S.; Oh, K. H.; Yu, W. R. J. Power Sources 2012, 206, 267.
 
392
For instance, see: a) Wang, W.; Kumta, P. N. ACS Nano 2010, 4, 2233. b) Martin, C.; Crosnier, O.; Retoux, R.; Belanger, D.; Schleich, D. M.; Brousse, T. Adv. Funct. Mater. 2011, 21, 3524. c) Fan, Y.; Zhang, Q.; Xiao, Q.; Wang, X.; Huang, K. Carbon, 2013, 59, 264.
 
393
For example, see: a) Tang, H.; Zhang, J.; Zhang, Y. J.; Xiong, Q. Q.; Tong, Y. Y.; Li, Y.; Wang, X. L.; Gu, C. D.; Tu, J. P. J. Power Sources 2015, 286, 431. b) Xu, B.; Wu, H.; Lin, C. X.; Wang, B.; Zhang, Z.; Zhao, X. S. RSC Adv. 2015, 5, 30,624. c) Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H. Adv. Energy Mater. 2011, 1, 1079. d) Xiang, H.; Zhang, K.; Ji, G.; Lee, J. Y.; Zou, C.; Chen, X.; Wu, J. Carbon 2011, 49, 1787.
 
394
For instance, see: a) Murugesan, S.; Harris, J. T.; Korgel, B. A.; Stevenson, K. J. Chem. Mater. 2012, 24, 1306. b) Yoo, S.; Lee, J. I.; Ko, S.; Park, S. Nano Energy 2013, 2, 1271.
 
395
For example, see: a) Guo, Z. P.; Wang, J. Z.; Liu, H. K.; Dou, S. X. J. Power Sources 2005, 146, 448. b) Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Nat. Cummun. 2013, 4, 1943. c) Gu, M.; Xiao, X. C.; Liu, G.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G.; Liu, J.; Browning, N. D.; Wang, C. M. Sci. Rep. 2014, 4, 3684.
 
396
Bhushan, B. in Nanotribology and Nanomechanics: Springer: New York, 2017.
 
397
Chaste, J.; Eichler, A.; Moser, J.; Ceballos, G.; Rurali, R.; Bachtold, A. Nature Nanotechnol. 2012, 7, 301.
 
398
Ginger, D. S.; Zhang, H.; Mirkin, C. A. Angew. Chem. Int. Ed. 2004, 43, 30. This review contains all of the references for the various experimental conditions.
 
399
Yang, Y. T.; Callegari, C.; Feng, X. L.; Ekinci, K. L.; Roukes, M. L. Nano Lett. 2006, 6, 583.
 
400
Collin, J.-P.; Dietrich-Buchecker, C.; Gavina, P.; Jimenez-Molero, M.; Sauvage, J.-P. Acc. Chem. Res. 2001, 34, 477.
 
401
Geeves, M. A. Nature 2002, 415, 129.
 
402
Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop, B. H.; Tseng, H.-R.; Jeppesen, J. O.; Huang, T. J.; Brough, B.; Baller, M.; Magonov, S.; Solares, S. D.; Goddard, W. A.; Ho, C.-M.; Stoddart, J. F. J. Am. Chem. Soc. 2005, 127, 9745.
 
Literature
3.
go back to reference Bhushan B, editor. Springer handbook of nanotechnology. 2nd ed. New York: Springer; 2007. Bhushan B, editor. Springer handbook of nanotechnology. 2nd ed. New York: Springer; 2007.
4.
go back to reference Sutariya VB, Pathak Y. Biointeractions of nanomaterials. New York: CRC Press; 2014.CrossRef Sutariya VB, Pathak Y. Biointeractions of nanomaterials. New York: CRC Press; 2014.CrossRef
5.
go back to reference Saquib Q, Faisal M, Al-Khedhairy AA, Alatar AA. Cellular and molecular toxicology of nanoparticles. New York: Springer; 2018.CrossRef Saquib Q, Faisal M, Al-Khedhairy AA, Alatar AA. Cellular and molecular toxicology of nanoparticles. New York: Springer; 2018.CrossRef
6.
go back to reference Kesari KK. Perspectives in environmental toxicology. New York: Springer; 2017.CrossRef Kesari KK. Perspectives in environmental toxicology. New York: Springer; 2017.CrossRef
7.
go back to reference Cao G, Wang Y. Nanostructures and nanomaterials: synthesis, Properties and Applications. 2nd ed. New York: World Scientific Publishing; 2011.CrossRef Cao G, Wang Y. Nanostructures and nanomaterials: synthesis, Properties and Applications. 2nd ed. New York: World Scientific Publishing; 2011.CrossRef
8.
go back to reference Ozin GA, Arsenault AC, Cademartiri L. Nanochemistry: a chemical approach to nanomaterials. 2nd ed. Cambridge, UK: Royal Society of Chemistry Publishing; 2009. Ozin GA, Arsenault AC, Cademartiri L. Nanochemistry: a chemical approach to nanomaterials. 2nd ed. Cambridge, UK: Royal Society of Chemistry Publishing; 2009.
9.
go back to reference Mendelson M, Learning I. Bio-micro-nanotechnology. New York: CRC Press; 2013. Mendelson M, Learning I. Bio-micro-nanotechnology. New York: CRC Press; 2013.
10.
go back to reference Rogers B, Adams J, Pennathur S. Nanotechnology: understanding small systems. 3rd ed. New York: CRC Press; 2014. Rogers B, Adams J, Pennathur S. Nanotechnology: understanding small systems. 3rd ed. New York: CRC Press; 2014.
11.
go back to reference Natelson D. Nanostructures and nanotechnology. Cambridge, UK: Cambridge University Press; 2015.CrossRef Natelson D. Nanostructures and nanotechnology. Cambridge, UK: Cambridge University Press; 2015.CrossRef
12.
go back to reference Prasad PN. Introduction to nanomedicine and nanobioengineering. New York: Wiley; 2012. Prasad PN. Introduction to nanomedicine and nanobioengineering. New York: Wiley; 2012.
13.
go back to reference Burgess R. Understanding nanomedicine: an introductory textbook. New York: Pan Stanford; 2012. Burgess R. Understanding nanomedicine: an introductory textbook. New York: Pan Stanford; 2012.
14.
go back to reference Dresselhaus MS, Dresselhaus G, Eklund PC. Science of fullerenes and carbon nanotubes. New York: Academic; 1996. Dresselhaus MS, Dresselhaus G, Eklund PC. Science of fullerenes and carbon nanotubes. New York: Academic; 1996.
15.
go back to reference Frechet JMJ, Tomalia DA, editors. Dendrimers and dendritic polymers. New York: Wiley; 2001. Frechet JMJ, Tomalia DA, editors. Dendrimers and dendritic polymers. New York: Wiley; 2001.
16.
go back to reference Advanced Materials 2004, 16, 15. Special issue dedicated to George Whitesides. Advanced Materials 2004, 16, 15. Special issue dedicated to George Whitesides.
17.
go back to reference MRS Bulletin 2006, 31, 5 (May 2006). Special issue on materials for magnetic data storage. MRS Bulletin 2006, 31, 5 (May 2006). Special issue on materials for magnetic data storage.
18.
go back to reference MRS Bulletin 2005, 30, 12 (December 2005). Special issue on fabrication of sub-45-nm structures for the next generation of devices. MRS Bulletin 2005, 30, 12 (December 2005). Special issue on fabrication of sub-45-nm structures for the next generation of devices.
19.
go back to reference Madou MJ. Fundamentals of microfabrication and nanotechnology. 3rd ed. New York: CRC Press; 2011. Madou MJ. Fundamentals of microfabrication and nanotechnology. 3rd ed. New York: CRC Press; 2011.
20.
go back to reference Sotomayor-Torres, C. M. ed., Alternative lithography: unleashing the potentials of nanotechnology, Kluwer/Plenum: New York, 2003. Sotomayor-Torres, C. M. ed., Alternative lithography: unleashing the potentials of nanotechnology, Kluwer/Plenum: New York, 2003.
21.
go back to reference Wilson M, Kannangara K, Smith G, Simmons M. Nanotechnology: basic science and emerging technologies. Boca Raton: CRC Press; 2002.CrossRef Wilson M, Kannangara K, Smith G, Simmons M. Nanotechnology: basic science and emerging technologies. Boca Raton: CRC Press; 2002.CrossRef
22.
23.
go back to reference Smalley RE, Dresselhaus MS, Dresselhaus G, Avouris P. Carbon nanotubes: synthesis, structure, properties and applications. New York: Springer; 2001. Smalley RE, Dresselhaus MS, Dresselhaus G, Avouris P. Carbon nanotubes: synthesis, structure, properties and applications. New York: Springer; 2001.
24.
go back to reference Jorio A, Dresselhaus G, Dresselhaus MS. Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. New York: Springer; 2008.CrossRef Jorio A, Dresselhaus G, Dresselhaus MS. Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. New York: Springer; 2008.CrossRef
25.
go back to reference Wong HS, Akinwande D. Carbon nanotube and graphene device physics. Cambridge, UK: Cambridge University Press; 2011. Wong HS, Akinwande D. Carbon nanotube and graphene device physics. Cambridge, UK: Cambridge University Press; 2011.
26.
go back to reference Harris PJF. Carbon nanotube science: synthesis, properties and applications. 2nd ed. Cambridge, UK: Cambridge University Press; 2011. Harris PJF. Carbon nanotube science: synthesis, properties and applications. 2nd ed. Cambridge, UK: Cambridge University Press; 2011.
28.
go back to reference Lyshevski SE, Lyshevski SE. MEMS and NEMS: systems, devices, and structures. Boca Raton: CRC Press; 2002.CrossRef Lyshevski SE, Lyshevski SE. MEMS and NEMS: systems, devices, and structures. Boca Raton: CRC Press; 2002.CrossRef
29.
go back to reference Schmid G. Nanoparticles: from theory to application. New York: Wiley; 2004. Schmid G. Nanoparticles: from theory to application. New York: Wiley; 2004.
30.
go back to reference Vollath D. Nanoparticles, nanocomposites, nanomaterials: an introduction for beginners. New York: Wiley; 2013. Vollath D. Nanoparticles, nanocomposites, nanomaterials: an introduction for beginners. New York: Wiley; 2013.
31.
go back to reference Edelstein AS, Cammaratra RC. Nanomaterials: synthesis, properties and applications. 2nd ed. New York: CRC Press; 1998. Edelstein AS, Cammaratra RC. Nanomaterials: synthesis, properties and applications. 2nd ed. New York: CRC Press; 1998.
32.
go back to reference Rotello V. Nanoparticles: building blocks for nanotechnology (nanostructure science and technology). New York: Springer; 2004.CrossRef Rotello V. Nanoparticles: building blocks for nanotechnology (nanostructure science and technology). New York: Springer; 2004.CrossRef
33.
go back to reference Wolf EL. Nanophysics and nanotechnology. 3rd ed. New York: Wiley; 2015. Wolf EL. Nanophysics and nanotechnology. 3rd ed. New York: Wiley; 2015.
Metadata
Title
Nanomaterials
Author
Bradley D. Fahlman
Copyright Year
2018
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-024-1255-0_6

Premium Partners