Skip to main content
Top

2018 | OriginalPaper | Chapter

20. Nanoparticles and Metal Foam in Thermal Control and Storage by Phase Change Materials

Authors : Bernardo Buonomo, Davide Ercole, Oronzio Manca, Sergio Nardini

Published in: Handbook of Thermal Science and Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The solid-liquid phase change process realizes a buffer system to adsorb and then release heat loads. This property can be used in thermal control and in thermal energy storage. In the first case, it allows to have an assigned temperature range where the system works and to reject high heat loads, mainly when they are intermittent. In the second case, it is used to obtain a constant supply compared to a continuous variation of the consumption demand which leads to waste of excess energy. The phase change materials (PCMs) are materials employed for solid-liquid phase change process. They present many advantages such as stability and high stored energy density. Nevertheless, the main drawback of these materials is the small value of the thermal conductivity, and it necessitates a long time for melting and implicates a broad difference of temperature in the system between the solid zone and liquid zone. To overcome this drawback, improvement techniques are implemented to optimize the system like the inserting of metal foam or the addition of highly conductive nanoparticles. The new material created with nanoparticles in the base PCM is called nano-PCM. In the present chapter, the study of these systems will be analyzed numerically after a review of current literature. The governing equation models will be described in the cases of base PCM, nano-PCM, PCM, and nano-PCM in metal foam. Some results related to the main applications of the different systems will be provided in order to underline their advantages and disadvantages.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30:313–332CrossRef Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30:313–332CrossRef
go back to reference Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation of latent heat thermal energy storage systems (LHTESS). Renew Sust Energ Rev 14:615–628CrossRef Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation of latent heat thermal energy storage systems (LHTESS). Renew Sust Energ Rev 14:615–628CrossRef
go back to reference Al-abidi A, Bin Mat S, Sopian K, Sulaiman MY, Mohammed AT (2013) CFD application for latent heat thermal energy storage: a review. Renew Sust Energ Rev 20:353–363CrossRef Al-abidi A, Bin Mat S, Sopian K, Sulaiman MY, Mohammed AT (2013) CFD application for latent heat thermal energy storage: a review. Renew Sust Energ Rev 20:353–363CrossRef
go back to reference Boomsma K, Poulikakos D (2001) On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transf 44:827–836CrossRef Boomsma K, Poulikakos D (2001) On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transf 44:827–836CrossRef
go back to reference Brinkman HC (1949) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res 1:27–34CrossRef Brinkman HC (1949) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res 1:27–34CrossRef
go back to reference Cabeza LF (2014) Advances in thermal energy storage systems: methods and applications. Woodhead publishing series in energy. Woodhead Publishing, Amsterdam Cabeza LF (2014) Advances in thermal energy storage systems: methods and applications. Woodhead publishing series in energy. Woodhead Publishing, Amsterdam
go back to reference Calmidi VV, Mahajan RL (2000) Forced convection in high porosity metal foams. ASME J Heat Transf 122:557–565CrossRef Calmidi VV, Mahajan RL (2000) Forced convection in high porosity metal foams. ASME J Heat Transf 122:557–565CrossRef
go back to reference Chen Z, Gu M, Peng D, Peng C, Wu Z (2010) A numerical study on heat transfer of high efficient solar flat-plate collectors with energy storage. Int J Green Energy 7(3):326–336CrossRef Chen Z, Gu M, Peng D, Peng C, Wu Z (2010) A numerical study on heat transfer of high efficient solar flat-plate collectors with energy storage. Int J Green Energy 7(3):326–336CrossRef
go back to reference Chen Z, Gao D, Shi J (2014) Experimental and numerical study on melting of phase change materials in metal foams at pore scale. Int J Heat Mass Transf 72:646–655CrossRef Chen Z, Gao D, Shi J (2014) Experimental and numerical study on melting of phase change materials in metal foams at pore scale. Int J Heat Mass Transf 72:646–655CrossRef
go back to reference Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, Cabeza LF (2010) State of the art on high temperature thermal energy storage for power generation. Part 1 – concepts, materials and modellization. Renew Sust Energ Rev 14:31–55CrossRef Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, Cabeza LF (2010) State of the art on high temperature thermal energy storage for power generation. Part 1 – concepts, materials and modellization. Renew Sust Energ Rev 14:31–55CrossRef
go back to reference Harikrishnan S, Deepak K, Kalaiselvam S (2014) Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim 115:1563–1571CrossRef Harikrishnan S, Deepak K, Kalaiselvam S (2014) Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim 115:1563–1571CrossRef
go back to reference Hossain R, Mahmud S, Dutta A, Pop I (2015) Energy storage system based on nanoparticle-enhanced phase change material inside porous medium. Int J Therm Sci 91:49–58CrossRef Hossain R, Mahmud S, Dutta A, Pop I (2015) Energy storage system based on nanoparticle-enhanced phase change material inside porous medium. Int J Therm Sci 91:49–58CrossRef
go back to reference Jaworski M (2012) Thermal performance of heat spreader for electronics cooling with incorporated phase change material. Appl Therm Eng 35:212–219CrossRef Jaworski M (2012) Thermal performance of heat spreader for electronics cooling with incorporated phase change material. Appl Therm Eng 35:212–219CrossRef
go back to reference Kalbasi R, Salimpour MR (2015) Constructal design of phase change material enclosures used for cooling electronic devices. Appl Therm Eng 84:339–349CrossRef Kalbasi R, Salimpour MR (2015) Constructal design of phase change material enclosures used for cooling electronic devices. Appl Therm Eng 84:339–349CrossRef
go back to reference Kandasamy R, Wang X, Mujumdar AS (2008) Transient cooling of electronics using phase change material (PCM)-based heat sinks. Appl Therm Eng 28:1047–1057CrossRef Kandasamy R, Wang X, Mujumdar AS (2008) Transient cooling of electronics using phase change material (PCM)-based heat sinks. Appl Therm Eng 28:1047–1057CrossRef
go back to reference Khodadadi JM, Hosseinizadeh SF (2007) Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Comm Heat Mass Trans 34(5):534–543CrossRef Khodadadi JM, Hosseinizadeh SF (2007) Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Comm Heat Mass Trans 34(5):534–543CrossRef
go back to reference Khudhair AM, Mohammed MF (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45:263–275CrossRef Khudhair AM, Mohammed MF (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45:263–275CrossRef
go back to reference Krishnan S, Murthy JY, Garimella SV (2005) A two-temperature model for solid–liquid phase change in metal foams. ASME J Heat Transf 127:995–1004CrossRef Krishnan S, Murthy JY, Garimella SV (2005) A two-temperature model for solid–liquid phase change in metal foams. ASME J Heat Transf 127:995–1004CrossRef
go back to reference Liu Z, Yao Y, Wu H (2013) Numerical modeling for solid–liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage. Appl Energy 112:1222–1232CrossRef Liu Z, Yao Y, Wu H (2013) Numerical modeling for solid–liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage. Appl Energy 112:1222–1232CrossRef
go back to reference Maxwell JC (1873) Treatise on electricity and magnetism. Clarendon, OxfordMATH Maxwell JC (1873) Treatise on electricity and magnetism. Clarendon, OxfordMATH
go back to reference Nithyanandam K, Pitchumani R (2014) Computational studies on metal foam and heat pipe enhanced latent thermal energy storage. J Heat Transf 136:051503CrossRef Nithyanandam K, Pitchumani R (2014) Computational studies on metal foam and heat pipe enhanced latent thermal energy storage. J Heat Transf 136:051503CrossRef
go back to reference Pantankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washingtonm, DC Pantankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washingtonm, DC
go back to reference Sebti SS, Mastiani M, Mirzaei H, Dadvand A, Kashani S, Hosseini SA (2013) Numerical study of melting of nano-enhanced phase change material in a square cavity. JZUS-A 14(5):307–316CrossRef Sebti SS, Mastiani M, Mirzaei H, Dadvand A, Kashani S, Hosseini SA (2013) Numerical study of melting of nano-enhanced phase change material in a square cavity. JZUS-A 14(5):307–316CrossRef
go back to reference Sundarram SS, Li W (2014) The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams. Appl Therm Eng 64:147–154CrossRef Sundarram SS, Li W (2014) The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams. Appl Therm Eng 64:147–154CrossRef
go back to reference Tasnim SH, Hossain R, Mahmud S, Dutta A (2015) Convection effect on the melting process of nano-PCM inside porous enclosure. Int J Heat Mass Transf 85:206–210CrossRef Tasnim SH, Hossain R, Mahmud S, Dutta A (2015) Convection effect on the melting process of nano-PCM inside porous enclosure. Int J Heat Mass Transf 85:206–210CrossRef
go back to reference Voller VR, Prakash C (1987) A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transf 30:1709–1719CrossRef Voller VR, Prakash C (1987) A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transf 30:1709–1719CrossRef
go back to reference Wu S, Wang H, Xiao S, Zhu D (2012) Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs. In: International conference on advances in computational modeling and simulation, vol 31, pp 240–244CrossRef Wu S, Wang H, Xiao S, Zhu D (2012) Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs. In: International conference on advances in computational modeling and simulation, vol 31, pp 240–244CrossRef
go back to reference Xiao X, Zhang P, Li M (2014) Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int J Therm Sci 81:84–105CrossRef Xiao X, Zhang P, Li M (2014) Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int J Therm Sci 81:84–105CrossRef
go back to reference Yang J, Du X, Yang L, Yang Y (2013) Numerical analysis on the thermal behavior of high temperature latent heat thermal energy storage system. Sol Energy 98:543–552CrossRef Yang J, Du X, Yang L, Yang Y (2013) Numerical analysis on the thermal behavior of high temperature latent heat thermal energy storage system. Sol Energy 98:543–552CrossRef
go back to reference Zhao CY, Lu W, Tian Y (2010) Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy 84:1402–1412CrossRef Zhao CY, Lu W, Tian Y (2010) Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy 84:1402–1412CrossRef
go back to reference Zhao W, France DM, Yu W, Kim T, Singh D (2014) Phase Change Material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants. Renew Energy 69:134–146CrossRef Zhao W, France DM, Yu W, Kim T, Singh D (2014) Phase Change Material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants. Renew Energy 69:134–146CrossRef
go back to reference Zhou D, Zhao CY (2011) Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Appl Therm Eng 31:970–977CrossRef Zhou D, Zhao CY (2011) Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Appl Therm Eng 31:970–977CrossRef
go back to reference Zhou D, Zhao CY, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605CrossRef Zhou D, Zhao CY, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605CrossRef
Metadata
Title
Nanoparticles and Metal Foam in Thermal Control and Storage by Phase Change Materials
Authors
Bernardo Buonomo
Davide Ercole
Oronzio Manca
Sergio Nardini
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_39

Premium Partners