Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. Nanoparticles: Preparation, Stabilization, and Control Over Particle Size

Authors : Maryam Razi, Maria Contreras-Mateus, Kotaybah W. Hashlamoun, Nashaat N. Nassar

Published in: Nanoparticles: An Emerging Technology for Oil Production and Processing Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoparticles have emerged enormously as an attractive candidate for enhanced oil recovery (EOR) at laboratory and field scales. Nanoparticles have novel physical properties distinct from both molecular and solid-state matter due to their significant fraction of surface atoms. Study of these physical properties provides a unique way to learn how nanoparticles can be prepared and characterized. Knowledge of application of nanoparticles in different industrial settings dictates nanoparticles preparation techniques and characterization. Appropriate preparation techniques can lead to the formation of diverse types of nanoparticles which are applicable in energy and the environment. In this chapter, different techniques of nanoparticle preparation, categorized as chemical (bottom-up) and physical (top-down) along with their characterization techniques when necessary, have been discussed. The chapter also addressed the stability and control over nanoparticle size. Nanoparticle preparation applications/challenges have also been briefly introduced. The industrial settings and challenges associated with the urgent advancements of nanotechnology have also been reviewed, and novel pathways to optimize the preparation techniques considering the application of nanomaterials have been briefly discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference National Nanotechnology Initiative (NNI). National Science and Technology Council. Committee on Technology, Subcommittee on Nanoscale Science, National Technology Initiative Strategic Plan, www.nano.gov (2011, Accessed 25 Aug 2015) National Nanotechnology Initiative (NNI). National Science and Technology Council. Committee on Technology, Subcommittee on Nanoscale Science, National Technology Initiative Strategic Plan, www.​nano.​gov (2011, Accessed 25 Aug 2015)
2.
go back to reference S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991) S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)
3.
go back to reference M. Boutonnet, J. Kizling, P. Stenius, Colloids Surf. 5, 209 (1982) M. Boutonnet, J. Kizling, P. Stenius, Colloids Surf. 5, 209 (1982)
5.
go back to reference R. Francis, N. Joy, E.P. Aparna, R. Vijayan, Polymer grafted inorganic nanoparticles, preparation, properties, and applications: A review. Polym. Rev. 54, 268–347 (2014) R. Francis, N. Joy, E.P. Aparna, R. Vijayan, Polymer grafted inorganic nanoparticles, preparation, properties, and applications: A review. Polym. Rev. 54, 268–347 (2014)
6.
go back to reference Y. Zhang, Z. Chen, Z. Dong, M. Zhao, S. Ning, P. He, Preparation of raspberry-like adsorbed silica nanoparticles via miniemulsion polymeri- zation using a glycerol-functionalized silica sol. Int. J. Polym. Mater. Polym. Biomater. 62, 397–401 (2013) Y. Zhang, Z. Chen, Z. Dong, M. Zhao, S. Ning, P. He, Preparation of raspberry-like adsorbed silica nanoparticles via miniemulsion polymeri- zation using a glycerol-functionalized silica sol. Int. J. Polym. Mater. Polym. Biomater. 62, 397–401 (2013)
7.
go back to reference J.P. Rao, K.E. Geckeler, Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 36, 887–913 (2011) J.P. Rao, K.E. Geckeler, Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 36, 887–913 (2011)
8.
go back to reference X. Wang, J.E. Hall, S. Warren, J. Krom, J.M. Magistrelli, M. Rackaitis, G.G.A. Bohm, Synthesis, characterization, and application of novel polymeric nanoparticles. Macromolecules 40, 499–508 (2007) X. Wang, J.E. Hall, S. Warren, J. Krom, J.M. Magistrelli, M. Rackaitis, G.G.A. Bohm, Synthesis, characterization, and application of novel polymeric nanoparticles. Macromolecules 40, 499–508 (2007)
9.
go back to reference N.N. Nassar, Iron oxide nanoadsorbents for removal of various pollutants from wastewater: An overview. Appl. Adsorb. Water Pollut. Control, 81–118 (2012) N.N. Nassar, Iron oxide nanoadsorbents for removal of various pollutants from wastewater: An overview. Appl. Adsorb. Water Pollut. Control, 81–118 (2012)
10.
go back to reference M. Globe, Preparation and Characterization of Monodisperse Magnetite sols in W/O Microemulsion. (1983) M. Globe, Preparation and Characterization of Monodisperse Magnetite sols in W/O Microemulsion. (1983)
11.
go back to reference C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism. J. Am. Chem. Soc. 126(25), 8028–8037 (2004) C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism. J. Am. Chem. Soc. 126(25), 8028–8037 (2004)
12.
go back to reference X. Pang, L. Zhao, W. Han, X. Xin, Z. Lin, A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 8(6), 426–431 (2013) X. Pang, L. Zhao, W. Han, X. Xin, Z. Lin, A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 8(6), 426–431 (2013)
13.
go back to reference M.M. Husein, N.N. Nassar, Nanoparticle preparation using the single microemulsions scheme. Curr. Nanosci. 4(4), 370–380 (2008) M.M. Husein, N.N. Nassar, Nanoparticle preparation using the single microemulsions scheme. Curr. Nanosci. 4(4), 370–380 (2008)
14.
go back to reference F. Sagala, Naturally Derived Silicate-Based Nanoparticles for Enhanced Oil Recovery in Sandstone Reservoirs. (2020) F. Sagala, Naturally Derived Silicate-Based Nanoparticles for Enhanced Oil Recovery in Sandstone Reservoirs. (2020)
15.
go back to reference L.C. Varanda, C.G.S.D. Souza, C.J. Perecin, D.A.D. Moraes, D.F.D. Queiróz, H.R. Neves, et al., Chapter 3 - Inorganic and organic–inorganic composite nanoparticles with potential biomedical applications: synthesis challenges for enhanced performance, in Materials for Biomedical Engineering, ed. by V. Grumezescu, A. M. Grumezescu, (Elsevier, 2019), pp. 47–99 L.C. Varanda, C.G.S.D. Souza, C.J. Perecin, D.A.D. Moraes, D.F.D. Queiróz, H.R. Neves, et al., Chapter 3 - Inorganic and organic–inorganic composite nanoparticles with potential biomedical applications: synthesis challenges for enhanced performance, in Materials for Biomedical Engineering, ed. by V. Grumezescu, A. M. Grumezescu, (Elsevier, 2019), pp. 47–99
16.
go back to reference M.O. Besenhard, A.P. LaGrow, A. Hodzic, M. Kriechbaum, L. Panariello, G. Bais, et al., Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chem. Eng. J. 399, 125740 (2020) M.O. Besenhard, A.P. LaGrow, A. Hodzic, M. Kriechbaum, L. Panariello, G. Bais, et al., Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chem. Eng. J. 399, 125740 (2020)
17.
go back to reference J.W. Mullin, 8 - Industrial techniques and equipment, in Crystallization, ed. by J. W. Mullin, 4th edn., (Butterworth-Heinemann, Oxford, 2001), pp. 315–402 J.W. Mullin, 8 - Industrial techniques and equipment, in Crystallization, ed. by J. W. Mullin, 4th edn., (Butterworth-Heinemann, Oxford, 2001), pp. 315–402
18.
go back to reference M. Lok, Coprecipitation, in Synthesis of Solid Catalysts, (Wiley, 2009), pp. 135–151 M. Lok, Coprecipitation, in Synthesis of Solid Catalysts, (Wiley, 2009), pp. 135–151
19.
go back to reference B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104(9), 3893–3946 (2004) B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104(9), 3893–3946 (2004)
20.
go back to reference Z. Wu, S. Yang, W. Wu, Shape control of inorganic nanoparticles from solution. Nanoscale 8(3), 1237–1259 (2016) Z. Wu, S. Yang, W. Wu, Shape control of inorganic nanoparticles from solution. Nanoscale 8(3), 1237–1259 (2016)
21.
go back to reference A.E. Nielsen, Precipitation. Croat. Chem. Acta 42(2), 319–333 (1970) A.E. Nielsen, Precipitation. Croat. Chem. Acta 42(2), 319–333 (1970)
22.
go back to reference J.-P. Jolivet, M. Henry, J. Livage, Metal Oxide Chemistry and Synthesis: From Solution to Solid State (Wiley-Blackwell, 2000) J.-P. Jolivet, M. Henry, J. Livage, Metal Oxide Chemistry and Synthesis: From Solution to Solid State (Wiley-Blackwell, 2000)
23.
go back to reference D.R. Lide, CRC Handbook of Chemistry and Physics, 87th edn. (Taylor & Francis, 2006) D.R. Lide, CRC Handbook of Chemistry and Physics, 87th edn. (Taylor & Francis, 2006)
24.
go back to reference C. Jia, Y. Cheng, F. Bao, D. Chen, Y. Wang, pH value-dependant growth of α-Fe2O3 hierarchical nanostructures. J. Cryst. Growth 294(2), 353–357 (2006) C. Jia, Y. Cheng, F. Bao, D. Chen, Y. Wang, pH value-dependant growth of α-Fe2O3 hierarchical nanostructures. J. Cryst. Growth 294(2), 353–357 (2006)
25.
go back to reference G. Pandey, S. Singh, G. Hitkari, Synthesis and characterization of polyvinyl pyrrolidone (PVP)-coated Fe3O4 nanoparticles by chemical co-precipitation method and removal of Congo red dye by adsorption process. Int. Nano Lett. 8(2), 111–121 (2018) G. Pandey, S. Singh, G. Hitkari, Synthesis and characterization of polyvinyl pyrrolidone (PVP)-coated Fe3O4 nanoparticles by chemical co-precipitation method and removal of Congo red dye by adsorption process. Int. Nano Lett. 8(2), 111–121 (2018)
26.
go back to reference A. Chitsaz, M. Jalilpour, M. Fathalilou, Effects of PVP and CTAB surfactants on the morphology of cerium oxide nanoparticles synthesized via co-precipitation method. Int. J. Mater. Res. 104(5), 511–514 (2013) A. Chitsaz, M. Jalilpour, M. Fathalilou, Effects of PVP and CTAB surfactants on the morphology of cerium oxide nanoparticles synthesized via co-precipitation method. Int. J. Mater. Res. 104(5), 511–514 (2013)
27.
go back to reference A. Radoń, A. Drygała, Ł. Hawełek, D. Łukowiec, Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Mater. Charact. 131, 148–156 (2017) A. Radoń, A. Drygała, Ł. Hawełek, D. Łukowiec, Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Mater. Charact. 131, 148–156 (2017)
28.
go back to reference D.-H. Chen, Y.-Y. Chen, Synthesis of strontium ferrite nanoparticles by coprecipitation in the presence of polyacrylic acid. Mater. Res. Bull. 37(4), 801–810 (2002) D.-H. Chen, Y.-Y. Chen, Synthesis of strontium ferrite nanoparticles by coprecipitation in the presence of polyacrylic acid. Mater. Res. Bull. 37(4), 801–810 (2002)
29.
go back to reference J. Peng, F. Zou, L. Liu, L. Tang, L. Yu, W. Chen, et al., Preparation and characterization of PEG-PEI/Fe3O4 nano-magnetic fluid by co-precipitation method. Trans. Nonferrous Metals Soc. China 18(2), 393–398 (2008) J. Peng, F. Zou, L. Liu, L. Tang, L. Yu, W. Chen, et al., Preparation and characterization of PEG-PEI/Fe3O4 nano-magnetic fluid by co-precipitation method. Trans. Nonferrous Metals Soc. China 18(2), 393–398 (2008)
30.
go back to reference I. Riva’i, I.O. Wulandari, H. Sulistyarti, A. Sabarudin, Ex-situ synthesis of polyvinyl alcohol(PVA)-coated Fe3O4 nanoparticles by coprecipitation-ultrasonication method. IOP Conf. Ser. Mater. Sci. Eng. 299, 012065 (2018) I. Riva’i, I.O. Wulandari, H. Sulistyarti, A. Sabarudin, Ex-situ synthesis of polyvinyl alcohol(PVA)-coated Fe3O4 nanoparticles by coprecipitation-ultrasonication method. IOP Conf. Ser. Mater. Sci. Eng. 299, 012065 (2018)
31.
go back to reference S. Akbari, S.M. Masoudpanah, S.M. Mirkazemi, N. Aliyan, PVA assisted coprecipitation synthesis and characterization of MgFe2O4 nanoparticles. Ceram. Int. 43(8), 6263–6267 (2017) S. Akbari, S.M. Masoudpanah, S.M. Mirkazemi, N. Aliyan, PVA assisted coprecipitation synthesis and characterization of MgFe2O4 nanoparticles. Ceram. Int. 43(8), 6263–6267 (2017)
32.
go back to reference M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, K. Balamurugan, Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 536–539 (2015) M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, K. Balamurugan, Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 536–539 (2015)
33.
go back to reference Y. Zhang, Z. Nan, Modified magnetic properties of MnFe2O4 by CTAB with coprecipitation method. Mater. Lett. 149, 22–24 (2015) Y. Zhang, Z. Nan, Modified magnetic properties of MnFe2O4 by CTAB with coprecipitation method. Mater. Lett. 149, 22–24 (2015)
34.
go back to reference D. Varghese, C. Tom, C.N. Krishna, Effect of CTAB on structural and optical properties of CuO nanoparticles prepared by coprecipitation route. IOP Conf. Ser. Mater. Sci. Eng. 263, 022002 (2017) D. Varghese, C. Tom, C.N. Krishna, Effect of CTAB on structural and optical properties of CuO nanoparticles prepared by coprecipitation route. IOP Conf. Ser. Mater. Sci. Eng. 263, 022002 (2017)
35.
go back to reference L. Shen, Y. Qiao, Y. Guo, S. Meng, G. Yang, M. Wu, et al., Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram. Int. 40(1, Part B), 1519–1524 (2014) L. Shen, Y. Qiao, Y. Guo, S. Meng, G. Yang, M. Wu, et al., Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram. Int. 40(1, Part B), 1519–1524 (2014)
36.
go back to reference T. Fuchigami, S. Inagi, M. Atobe, Organic Electrode Reactions. Fundamentals and Applications of Organic Electrochemistry. (2014), pp. 1–10 and 45–82 T. Fuchigami, S. Inagi, M. Atobe, Organic Electrode Reactions. Fundamentals and Applications of Organic Electrochemistry. (2014), pp. 1–10 and 45–82
37.
go back to reference A. Serrà, E. Vallés, Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: Fundamentals and applications. Appl. Mater. Today 12, 207–234 (2018) A. Serrà, E. Vallés, Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: Fundamentals and applications. Appl. Mater. Today 12, 207–234 (2018)
38.
go back to reference F. Nasirpouri, Fundamentals and principles of electrode-position, in Electrodeposition of Nanostructured Materials, ed. by F. Nasirpouri, (Springer International Publishing, Cham, 2017), pp. 75–121 F. Nasirpouri, Fundamentals and principles of electrode-position, in Electrodeposition of Nanostructured Materials, ed. by F. Nasirpouri, (Springer International Publishing, Cham, 2017), pp. 75–121
39.
go back to reference U.S. Mohanty, Electrodeposition: A versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J. Appl. Electrochem. 41(3), 257–270 (2011) U.S. Mohanty, Electrodeposition: A versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J. Appl. Electrochem. 41(3), 257–270 (2011)
40.
go back to reference D. Bera, S.C. Kuiry, S. Seal, Synthesis of nanostructured materials using template-assisted electrodeposition. JOM 56(1), 49–53 (2004) D. Bera, S.C. Kuiry, S. Seal, Synthesis of nanostructured materials using template-assisted electrodeposition. JOM 56(1), 49–53 (2004)
41.
go back to reference M.T. Reetz, W. Helbig, Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 116(16), 7401–7402 (1994) M.T. Reetz, W. Helbig, Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 116(16), 7401–7402 (1994)
42.
go back to reference N. Sato, Chapter 7 - electrode reactions, in Electrochemistry at Metal and Semiconductor Electrodes, ed. by N. Sato, (Elsevier Science, Amsterdam, 1998), pp. 213–233 N. Sato, Chapter 7 - electrode reactions, in Electrochemistry at Metal and Semiconductor Electrodes, ed. by N. Sato, (Elsevier Science, Amsterdam, 1998), pp. 213–233
43.
go back to reference F. Nasirpouri, An overview to electrochemistry, in Electrodeposition of Nanostructured Materials, ed. by F. Nasirpouri, (Springer International Publishing, Cham, 2017), pp. 43–73 F. Nasirpouri, An overview to electrochemistry, in Electrodeposition of Nanostructured Materials, ed. by F. Nasirpouri, (Springer International Publishing, Cham, 2017), pp. 43–73
44.
go back to reference A. Takai, Y. Yamauchi, K. Kuroda, Facile formation of single crystalline Pt nanowires on a substrate utilising lyotropic liquid crystals consisting of cationic surfactants. J. Mater. Chem. 19(24), 4205–4210 (2009) A. Takai, Y. Yamauchi, K. Kuroda, Facile formation of single crystalline Pt nanowires on a substrate utilising lyotropic liquid crystals consisting of cationic surfactants. J. Mater. Chem. 19(24), 4205–4210 (2009)
45.
go back to reference Y. Song, R.M. Garcia, R.M. Dorin, H. Wang, Y. Qiu, E.N. Coker, et al., Synthesis of platinum nanowire networks using a soft template. Nano Lett. 7(12), 3650–3655 (2007) Y. Song, R.M. Garcia, R.M. Dorin, H. Wang, Y. Qiu, E.N. Coker, et al., Synthesis of platinum nanowire networks using a soft template. Nano Lett. 7(12), 3650–3655 (2007)
46.
go back to reference Y. Imura, H. Tanuma, H. Sugimoto, R. Ito, S. Hojo, H. Endo, et al., Water-dispersible ultrathin au nanowires prepared using a lamellar template of a long-chain amidoamine derivative. Chem. Commun. 47(22), 6380–6382 (2011) Y. Imura, H. Tanuma, H. Sugimoto, R. Ito, S. Hojo, H. Endo, et al., Water-dispersible ultrathin au nanowires prepared using a lamellar template of a long-chain amidoamine derivative. Chem. Commun. 47(22), 6380–6382 (2011)
47.
go back to reference X. Gao, F. Lu, B. Dong, Y. Liu, Y. Gao, L. Zheng, Facile synthesis of gold and gold-based alloy nanowire networks using wormlike micelles as soft templates. Chem. Commun. 51(5), 843–846 (2015) X. Gao, F. Lu, B. Dong, Y. Liu, Y. Gao, L. Zheng, Facile synthesis of gold and gold-based alloy nanowire networks using wormlike micelles as soft templates. Chem. Commun. 51(5), 843–846 (2015)
48.
go back to reference Q. Zhou, X. Liu, Y. Zhao, N. Jia, L. Liu, M. Yan, et al., Single crystal tin nano-rod arrays electrodeposited by a soft template. Chem. Commun. 39, 4941–4942 (2005) Q. Zhou, X. Liu, Y. Zhao, N. Jia, L. Liu, M. Yan, et al., Single crystal tin nano-rod arrays electrodeposited by a soft template. Chem. Commun. 39, 4941–4942 (2005)
49.
go back to reference A. Serrà, E. Gómez, J.F. López-Barbera, J. Nogués, E. Vallés, Green electrochemical template synthesis of CoPt nanoparticles with Tunable size, composition, and magnetism from microemulsions using an ionic liquid (bmimPF6). ACS Nano 8(5), 4630–4639 (2014) A. Serrà, E. Gómez, J.F. López-Barbera, J. Nogués, E. Vallés, Green electrochemical template synthesis of CoPt nanoparticles with Tunable size, composition, and magnetism from microemulsions using an ionic liquid (bmimPF6). ACS Nano 8(5), 4630–4639 (2014)
50.
go back to reference I. Kaminska, M. Jonsson-Niedziolka, A. Kaminska, M. Pisarek, R. Hołyst, M. Opallo, et al., Electrodeposition of well-adhered multifarious au particles at a solid|toluene|aqueous electrolyte three-phase junction. J. Phys. Chem. C 116(42), 22476–22485 (2012) I. Kaminska, M. Jonsson-Niedziolka, A. Kaminska, M. Pisarek, R. Hołyst, M. Opallo, et al., Electrodeposition of well-adhered multifarious au particles at a solid|toluene|aqueous electrolyte three-phase junction. J. Phys. Chem. C 116(42), 22476–22485 (2012)
51.
go back to reference M. Pérez-Page, E. Yu, J. Li, M. Rahman, D.M. Dryden, R. Vidu, et al., Template-based syntheses for shape controlled nanostructures. Adv. Colloid Interf. Sci. 234, 51–79 (2016) M. Pérez-Page, E. Yu, J. Li, M. Rahman, D.M. Dryden, R. Vidu, et al., Template-based syntheses for shape controlled nanostructures. Adv. Colloid Interf. Sci. 234, 51–79 (2016)
52.
go back to reference D. Bera, S.C. Kuiry, S. Patil, S. Seal, Palladium nanoparticle arrays using template-assisted electrodeposition. Appl. Phys. Lett. 82(18), 3089–3091 (2003) D. Bera, S.C. Kuiry, S. Patil, S. Seal, Palladium nanoparticle arrays using template-assisted electrodeposition. Appl. Phys. Lett. 82(18), 3089–3091 (2003)
53.
go back to reference A.J. Fragoso-Medina, F. López-Saucedo, G.G. Flores-Rojas, E. Bucio, Chapter 11 - Sonochemical synthesis of inorganic nanomaterials, in Green Sustainable Process for Chemical and Environmental Engineering and Science, ed. by B. R. Inamuddin, M. I. Ahamed, A. M. Asiri, (Elsevier, 2021), pp. 263–279 A.J. Fragoso-Medina, F. López-Saucedo, G.G. Flores-Rojas, E. Bucio, Chapter 11 - Sonochemical synthesis of inorganic nanomaterials, in Green Sustainable Process for Chemical and Environmental Engineering and Science, ed. by B. R. Inamuddin, M. I. Ahamed, A. M. Asiri, (Elsevier, 2021), pp. 263–279
54.
go back to reference A. Gedanken, Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 11(2), 47–55 (2004) A. Gedanken, Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 11(2), 47–55 (2004)
55.
go back to reference M. Kamali, R. Dewil, L. Appels, T.M. Aminabhavi, Nanostructured materials via green sonochemical routes – Sustainability aspects. Chemosphere 276, 130146 (2021) M. Kamali, R. Dewil, L. Appels, T.M. Aminabhavi, Nanostructured materials via green sonochemical routes – Sustainability aspects. Chemosphere 276, 130146 (2021)
56.
go back to reference B.M. Teo, Ultrasonic Synthesis of Polymer Nanoparticles. Handbook of Ultrasonics and Sonochemistry (Springer, Singapore, 2016), pp. 365–393 B.M. Teo, Ultrasonic Synthesis of Polymer Nanoparticles. Handbook of Ultrasonics and Sonochemistry (Springer, Singapore, 2016), pp. 365–393
57.
go back to reference H. Xu, B.W. Zeiger, K.S. Suslick, Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42(7), 2555–2567 (2013) H. Xu, B.W. Zeiger, K.S. Suslick, Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42(7), 2555–2567 (2013)
58.
go back to reference A. Gedanken, Ultrasonic Processing to Produce Nanoparticles, in Encyclopedia of Materials: Science and Technology, ed. by B. KHJ, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, et al., (Elsevier, Oxford, 2001), pp. 9450–9456 A. Gedanken, Ultrasonic Processing to Produce Nanoparticles, in Encyclopedia of Materials: Science and Technology, ed. by B. KHJ, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, et al., (Elsevier, Oxford, 2001), pp. 9450–9456
59.
go back to reference A. Gedanken, I. Perelshtein, 18 - Power ultrasound for the production of nanomaterials, in Power Ultrasonics, ed. by J. A. Gallego-Juárez, K. F. Graff, (Woodhead Publishing, Oxford, 2015), pp. 543–576 A. Gedanken, I. Perelshtein, 18 - Power ultrasound for the production of nanomaterials, in Power Ultrasonics, ed. by J. A. Gallego-Juárez, K. F. Graff, (Woodhead Publishing, Oxford, 2015), pp. 543–576
60.
go back to reference J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22(10), 1039–1059 (2010) J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22(10), 1039–1059 (2010)
61.
go back to reference J. Lee, Importance of Sonication and Solution Conditions on the Acoustic Cavitation Activity. Handbook of Ultrasonics and Sonochemistry (Springer, Singapore, 2016), pp. 137–175 J. Lee, Importance of Sonication and Solution Conditions on the Acoustic Cavitation Activity. Handbook of Ultrasonics and Sonochemistry (Springer, Singapore, 2016), pp. 137–175
62.
go back to reference F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: Solvent and surfactant effects. Ultrason. Sonochem. 20(1), 354–365 (2013) F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: Solvent and surfactant effects. Ultrason. Sonochem. 20(1), 354–365 (2013)
63.
go back to reference C.U. Okoli, K.A. Kuttiyiel, J. Cole, J. McCutchen, H. Tawfik, R.R. Adzic, et al., Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts. Ultrason. Sonochem. 41, 427–434 (2018) C.U. Okoli, K.A. Kuttiyiel, J. Cole, J. McCutchen, H. Tawfik, R.R. Adzic, et al., Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts. Ultrason. Sonochem. 41, 427–434 (2018)
64.
go back to reference M. D’Arienzo, R. Scotti, B. Di Credico, M. Redaelli, Chapter 13 - Synthesis and characterization of morphology-controlled TiO2 nanocrystals: Opportunities and challenges for their application in photocatalytic materials, in Studies in Surface Science and Catalysis, ed. by P. Fornasiero, M. Cargnello, (Elsevier, 2017), pp. 477–540 M. D’Arienzo, R. Scotti, B. Di Credico, M. Redaelli, Chapter 13 - Synthesis and characterization of morphology-controlled TiO2 nanocrystals: Opportunities and challenges for their application in photocatalytic materials, in Studies in Surface Science and Catalysis, ed. by P. Fornasiero, M. Cargnello, (Elsevier, 2017), pp. 477–540
65.
go back to reference R.C. Mehrotra, Synthesis and reactions of metal alkoxides. J. Non-Cryst. Solids 100(1), 1–15 (1988) R.C. Mehrotra, Synthesis and reactions of metal alkoxides. J. Non-Cryst. Solids 100(1), 1–15 (1988)
66.
go back to reference T. Athar, Chapter 17 - Smart precursors for smart nanoparticles, in Emerging Nanotechnologies for Manufacturing, ed. by W. Ahmed, M. J. Jackson, 2nd edn., (William Andrew Publishing, Boston, 2015), pp. 444–538 T. Athar, Chapter 17 - Smart precursors for smart nanoparticles, in Emerging Nanotechnologies for Manufacturing, ed. by W. Ahmed, M. J. Jackson, 2nd edn., (William Andrew Publishing, Boston, 2015), pp. 444–538
67.
go back to reference M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 31(5), 3729–3749 (2020) M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 31(5), 3729–3749 (2020)
68.
go back to reference L.L. Hench, J.K. West, The sol-gel process. Chem. Rev. 90(1), 33–72 (1990) L.L. Hench, J.K. West, The sol-gel process. Chem. Rev. 90(1), 33–72 (1990)
69.
go back to reference U. Schubert, Chemistry and Fundamentals of the Sol–Gel Process. The Sol-Gel Handbook. (2015), pp. 1–28 U. Schubert, Chemistry and Fundamentals of the Sol–Gel Process. The Sol-Gel Handbook. (2015), pp. 1–28
70.
go back to reference M. Henry, J.P. Jolivet, J. Livage, Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation, in Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, ed. by R. Reisfeld, C. K. Jjørgensen, (Springer, Berlin/Heidelberg, 1992), pp. 153–206 M. Henry, J.P. Jolivet, J. Livage, Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation, in Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, ed. by R. Reisfeld, C. K. Jjørgensen, (Springer, Berlin/Heidelberg, 1992), pp. 153–206
71.
go back to reference Hydrolysis of Metal Alkoxides and Synthesis of Simple Oxides by The Sol-Gel Method. The Chemistry of Metal Alkoxides, (Springer, Boston, 2002), pp. 107–25 Hydrolysis of Metal Alkoxides and Synthesis of Simple Oxides by The Sol-Gel Method. The Chemistry of Metal Alkoxides, (Springer, Boston, 2002), pp. 107–25
72.
go back to reference D.M. Smith, R. Deshpande, B.C. Jeffrey, Preparation of low-density aerogels at ambient pressure. MRS Proc. 271, 567 (1992) D.M. Smith, R. Deshpande, B.C. Jeffrey, Preparation of low-density aerogels at ambient pressure. MRS Proc. 271, 567 (1992)
73.
go back to reference S.S. Ray, R. Gusain, N. Kumar, Chapter four - Adsorption in the context of water purification, in Carbon Nanomaterial-Based Adsorbents for Water Purification, ed. by S. S. Ray, R. Gusain, N. Kumar, (Elsevier, 2020), pp. 67–100 S.S. Ray, R. Gusain, N. Kumar, Chapter four - Adsorption in the context of water purification, in Carbon Nanomaterial-Based Adsorbents for Water Purification, ed. by S. S. Ray, R. Gusain, N. Kumar, (Elsevier, 2020), pp. 67–100
74.
go back to reference V. Purcar, V. Rădiţoiu, A. Dumitru, C.-A. Nicolae, A.N. Frone, M. Anastasescu, et al., Antireflective coating based on TiO2 nanoparticles modified with coupling agents via acid-catalyzed sol-gel method. Appl. Surf. Sci. 487, 819–824 (2019) V. Purcar, V. Rădiţoiu, A. Dumitru, C.-A. Nicolae, A.N. Frone, M. Anastasescu, et al., Antireflective coating based on TiO2 nanoparticles modified with coupling agents via acid-catalyzed sol-gel method. Appl. Surf. Sci. 487, 819–824 (2019)
75.
go back to reference S. Cai, Y. Zhang, H. Zhang, H. Yan, H. Lv, B. Jiang, Sol–gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis. ACS Appl. Mater. Interfaces 6(14), 11470–11475 (2014) S. Cai, Y. Zhang, H. Zhang, H. Yan, H. Lv, B. Jiang, Sol–gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis. ACS Appl. Mater. Interfaces 6(14), 11470–11475 (2014)
76.
go back to reference S.V. Lazareva, N.V. Shikina, L.E. Tatarova, Z.R. Ismagilov, Synthesis of high-purity silica nanoparticles by sol-gel method. Eurasian Chem. Technol. J. 19(4), 295–302 (2017) S.V. Lazareva, N.V. Shikina, L.E. Tatarova, Z.R. Ismagilov, Synthesis of high-purity silica nanoparticles by sol-gel method. Eurasian Chem. Technol. J. 19(4), 295–302 (2017)
77.
go back to reference S.A. Ibrahim, S. Sreekantan, Effect of pH on TiO2 nanoparticles via sol-gel method. Adv. Mater. Res. 173, 184–189 (2011) S.A. Ibrahim, S. Sreekantan, Effect of pH on TiO2 nanoparticles via sol-gel method. Adv. Mater. Res. 173, 184–189 (2011)
78.
go back to reference S. Hosseini Largani, P.M. Akbarzadeh, The effect of concentration ratio and type of functional group on synthesis of CNT–ZnO hybrid nanomaterial by an in situ sol–gel process. Int. Nano Lett. 7(1), 25–33 (2017) S. Hosseini Largani, P.M. Akbarzadeh, The effect of concentration ratio and type of functional group on synthesis of CNT–ZnO hybrid nanomaterial by an in situ sol–gel process. Int. Nano Lett. 7(1), 25–33 (2017)
79.
go back to reference M.S. Tokumoto, S.H. Pulcinelli, C.V. Santilli, V. Briois, Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol−gel route. J. Phys. Chem. B 107(2), 568–574 (2003) M.S. Tokumoto, S.H. Pulcinelli, C.V. Santilli, V. Briois, Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol−gel route. J. Phys. Chem. B 107(2), 568–574 (2003)
80.
go back to reference K.L. Choy, Chapter 12 - Vapor processing of nanostructured materials, in Handbook of Nanostructured Materials and Nanotechnology, ed. by H. S. Nalwa, (Academic Press, Burlington, 2000), pp. 533–577 K.L. Choy, Chapter 12 - Vapor processing of nanostructured materials, in Handbook of Nanostructured Materials and Nanotechnology, ed. by H. S. Nalwa, (Academic Press, Burlington, 2000), pp. 533–577
81.
go back to reference L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M.H. Gharahcheshmeh, et al., Chemical vapour deposition. Nat. Rev. Methods Primers 1(1), 5 (2021) L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M.H. Gharahcheshmeh, et al., Chemical vapour deposition. Nat. Rev. Methods Primers 1(1), 5 (2021)
82.
go back to reference Chapter 1 Overview of Chemical Vapour Deposition, in Chemical Vapour Deposition: Precursors, Processes and Applications. The Royal Society of Chemistry, ed. by A. C. Jones, M. L. Hitchman, (2009), pp. 1–36 Chapter 1 Overview of Chemical Vapour Deposition, in Chemical Vapour Deposition: Precursors, Processes and Applications. The Royal Society of Chemistry, ed. by A. C. Jones, M. L. Hitchman, (2009), pp. 1–36
83.
go back to reference W. Chang, G. Skandan, S.C. Danforth, B.H. Kear, H. Hahn, Chemical vapor processing and applications for nanostructured ceramic powders and whiskers. Nanostruct. Mater. 4(5), 507–520 (1994) W. Chang, G. Skandan, S.C. Danforth, B.H. Kear, H. Hahn, Chemical vapor processing and applications for nanostructured ceramic powders and whiskers. Nanostruct. Mater. 4(5), 507–520 (1994)
84.
go back to reference A. Tavakoli, M. Sohrabi, A. Kargari, A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Pap. 61(3), 151–170 (2007) A. Tavakoli, M. Sohrabi, A. Kargari, A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Pap. 61(3), 151–170 (2007)
85.
go back to reference Y.M. Manawi, S.A. Ihsanullah, T. Al-Ansari, M.A. Atieh, A review of carbon nanomaterials’ synthesis via the Chemical Vapor Deposition (CVD) method. Materials 11(5) (2018) Y.M. Manawi, S.A. Ihsanullah, T. Al-Ansari, M.A. Atieh, A review of carbon nanomaterials’ synthesis via the Chemical Vapor Deposition (CVD) method. Materials 11(5) (2018)
86.
go back to reference H. Lee, M.Y. Song, J. Jurng, Y.-K. Park, The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technol. 214(1), 64–68 (2011) H. Lee, M.Y. Song, J. Jurng, Y.-K. Park, The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technol. 214(1), 64–68 (2011)
87.
go back to reference M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010) M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010)
88.
go back to reference M. Meyyappan, A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J. Phys. D. Appl. Phys. 42(21), 213001 (2009) M. Meyyappan, A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J. Phys. D. Appl. Phys. 42(21), 213001 (2009)
89.
go back to reference J. Ramanujam, A. Verma, Photovoltaic properties of a-Si:H films grown by plasma enhanced chemical vapor deposition: A review. Mater. Express 2(3), 177–196 (2012) J. Ramanujam, A. Verma, Photovoltaic properties of a-Si:H films grown by plasma enhanced chemical vapor deposition: A review. Mater. Express 2(3), 177–196 (2012)
90.
go back to reference L. Martinu, O. Zabeida, J.E. Klemberg-Sapieha, Chapter 9 - Plasma-enhanced chemical vapor deposition of functional coatings, in Handbook of Deposition Technologies for Films and Coatings, ed. by P. M. Martin, 3rd edn., (William Andrew Publishing, Boston, 2010), pp. 392–465 L. Martinu, O. Zabeida, J.E. Klemberg-Sapieha, Chapter 9 - Plasma-enhanced chemical vapor deposition of functional coatings, in Handbook of Deposition Technologies for Films and Coatings, ed. by P. M. Martin, 3rd edn., (William Andrew Publishing, Boston, 2010), pp. 392–465
91.
go back to reference C.A. Dorval Dion, J.R. Tavares, Photo-initiated chemical vapor deposition as a scalable particle functionalization technology (a practical review). Powder Technol. 239, 484–491 (2013) C.A. Dorval Dion, J.R. Tavares, Photo-initiated chemical vapor deposition as a scalable particle functionalization technology (a practical review). Powder Technol. 239, 484–491 (2013)
92.
go back to reference Y. van de Burgt, Laser-assisted growth of carbon nanotubes—A review. J. Laser Appl. 26(3), 032001 (2014) Y. van de Burgt, Laser-assisted growth of carbon nanotubes—A review. J. Laser Appl. 26(3), 032001 (2014)
93.
go back to reference A.P. Caricato, A. Luches, Applications of the matrix-assisted pulsed laser evaporation method for the deposition of organic, biological and nanoparticle thin films: A review. Appl. Phys. A 105(3), 565–582 (2011) A.P. Caricato, A. Luches, Applications of the matrix-assisted pulsed laser evaporation method for the deposition of organic, biological and nanoparticle thin films: A review. Appl. Phys. A 105(3), 565–582 (2011)
94.
go back to reference M.M. Husein, N.N. Nassar, Nanoparticle preparation using the single microemulsions scheme. Curr. Nanosci. 4(4), 370–380 (2008) M.M. Husein, N.N. Nassar, Nanoparticle preparation using the single microemulsions scheme. Curr. Nanosci. 4(4), 370–380 (2008)
95.
go back to reference A.K. Ganguli, A. Ganguly, S. Vaidya, Microemulsion-based synthesis of nanocrystalline materials. Chem. Soc. Rev. 39(2), 474–485 (2010) A.K. Ganguli, A. Ganguly, S. Vaidya, Microemulsion-based synthesis of nanocrystalline materials. Chem. Soc. Rev. 39(2), 474–485 (2010)
96.
go back to reference S. Wolf, C. Feldmann, Microemulsions: Options to expand the synthesis of inorganic nanoparticles. Angew. Chem. Int. Ed. 55(51), 15728–15752 (2016) S. Wolf, C. Feldmann, Microemulsions: Options to expand the synthesis of inorganic nanoparticles. Angew. Chem. Int. Ed. 55(51), 15728–15752 (2016)
97.
go back to reference M. Sanchez-Dominguez, K. Pemartin, M. Boutonnet, Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach. Curr. Opin. Colloid Interface Sci. 17(5), 297–305 (2012) M. Sanchez-Dominguez, K. Pemartin, M. Boutonnet, Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach. Curr. Opin. Colloid Interface Sci. 17(5), 297–305 (2012)
98.
go back to reference J.-P. Ge, W. Chen, L.-P. Liu, Y.-D. Li, Formation of disperse nanoparticles at the oil/water interface in normal microemulsions. Chem. Eur. J. 12(25), 6552–6558 (2006) J.-P. Ge, W. Chen, L.-P. Liu, Y.-D. Li, Formation of disperse nanoparticles at the oil/water interface in normal microemulsions. Chem. Eur. J. 12(25), 6552–6558 (2006)
99.
go back to reference M. Husein, E. Rodil, J.H. Vera, Formation of silver bromide precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion. J. Colloid Interface Sci. 273(2), 426–434 (2004) M. Husein, E. Rodil, J.H. Vera, Formation of silver bromide precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion. J. Colloid Interface Sci. 273(2), 426–434 (2004)
100.
go back to reference M.M. Husein, E. Rodil, J.H. Vera, Preparation of AgBr nanoparticles in microemulsions via reaction of AgNO3 with CTAB counterion. J. Nanopart. Res. 9(5), 787–796 (2007) M.M. Husein, E. Rodil, J.H. Vera, Preparation of AgBr nanoparticles in microemulsions via reaction of AgNO3 with CTAB counterion. J. Nanopart. Res. 9(5), 787–796 (2007)
101.
go back to reference J. Eastoe, M.J. Hollamby, L. Hudson, Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid Interface Sci. 128–130, 5–15 (2006) J. Eastoe, M.J. Hollamby, L. Hudson, Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid Interface Sci. 128–130, 5–15 (2006)
102.
go back to reference M.A. Malik, M.Y. Wani, M.A. Hashim, Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab. J. Chem. 5(4), 397–417 (2012) M.A. Malik, M.Y. Wani, M.A. Hashim, Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab. J. Chem. 5(4), 397–417 (2012)
103.
go back to reference J.N. Solanki, Z.V.P. Murthy, Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: A topical review. Ind. Eng. Chem. Res. 50(22), 12311–12323 (2011) J.N. Solanki, Z.V.P. Murthy, Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: A topical review. Ind. Eng. Chem. Res. 50(22), 12311–12323 (2011)
104.
go back to reference M.A. López-Quintela, J. Rivas, M.C. Blanco, C. Tojo, Synthesis of nanoparticles in microemulsions, in Nanoscale Materials, ed. by L. M. Liz-Marzán, P. V. Kamat, (Springer, Boston, 2003), pp. 135–155 M.A. López-Quintela, J. Rivas, M.C. Blanco, C. Tojo, Synthesis of nanoparticles in microemulsions, in Nanoscale Materials, ed. by L. M. Liz-Marzán, P. V. Kamat, (Springer, Boston, 2003), pp. 135–155
105.
go back to reference C.M. Niemeyer, Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 40(22), 4128–4158 (2001) C.M. Niemeyer, Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 40(22), 4128–4158 (2001)
106.
go back to reference J. Jiang, G. Oberdörster, P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11(1), 77–89 (2009) J. Jiang, G. Oberdörster, P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11(1), 77–89 (2009)
107.
go back to reference A. Ghadimi, R. Saidur, H. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54(17–18), 4051–4068 (2011) A. Ghadimi, R. Saidur, H. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54(17–18), 4051–4068 (2011)
108.
go back to reference L. Wu, J. Zhang, W. Watanabe, Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev. 63(6), 456–469 (2011) L. Wu, J. Zhang, W. Watanabe, Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev. 63(6), 456–469 (2011)
109.
go back to reference C. Lourenco, M. Teixeira, S. Simões, R. Gaspar, Steric stabilization of nanoparticles: Size and surface properties. Int. J. Pharm. 138(1), 1–12 (1996) C. Lourenco, M. Teixeira, S. Simões, R. Gaspar, Steric stabilization of nanoparticles: Size and surface properties. Int. J. Pharm. 138(1), 1–12 (1996)
110.
go back to reference M. Iijima, H. Kamiya, Surface modification for improving the stability of nanoparticles in liquid media. KONA Powder Particle J. 27, 119–129 (2009) M. Iijima, H. Kamiya, Surface modification for improving the stability of nanoparticles in liquid media. KONA Powder Particle J. 27, 119–129 (2009)
111.
go back to reference H. ShamsiJazeyi, C.A. Miller, M.S. Wong, J.M. Tour, R. Verduzco, Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 131(15) (2014) H. ShamsiJazeyi, C.A. Miller, M.S. Wong, J.M. Tour, R. Verduzco, Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 131(15) (2014)
112.
go back to reference M. Ranka, P. Brown, T.A. Hatton, Responsive stabilization of nanoparticles for extreme salinity and high-temperature reservoir applications. ACS Appl. Mater. Interfaces 7(35), 19651–19658 (2015) M. Ranka, P. Brown, T.A. Hatton, Responsive stabilization of nanoparticles for extreme salinity and high-temperature reservoir applications. ACS Appl. Mater. Interfaces 7(35), 19651–19658 (2015)
113.
go back to reference D.A. Ersenkal, A. Ziylan, N.H. Ince, H.Y. Acar, M. Demirer, N.K. Copty, Impact of dilution on the transport of poly (acrylic acid) supported magnetite nanoparticles in porous media. J. Contam. Hydrol. 126(3), 248–257 (2011) D.A. Ersenkal, A. Ziylan, N.H. Ince, H.Y. Acar, M. Demirer, N.K. Copty, Impact of dilution on the transport of poly (acrylic acid) supported magnetite nanoparticles in porous media. J. Contam. Hydrol. 126(3), 248–257 (2011)
114.
go back to reference C. Barrera, A.P. Herrera, N. Bezares, E. Fachini, R. Olayo-Valles, J.P. Hinestroza, C. Rinaldi, Effect of poly (ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications. J. Colloid Interface Sci. 377(1), 40–50 (2012) C. Barrera, A.P. Herrera, N. Bezares, E. Fachini, R. Olayo-Valles, J.P. Hinestroza, C. Rinaldi, Effect of poly (ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications. J. Colloid Interface Sci. 377(1), 40–50 (2012)
115.
go back to reference N. Jain, Y. Wang, S.K. Jones, B.S. Hawkett, G.G. Warr, Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26(6), 4465–4472 (2009) N. Jain, Y. Wang, S.K. Jones, B.S. Hawkett, G.G. Warr, Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26(6), 4465–4472 (2009)
116.
go back to reference P.L. Golas, S. Louie, G.V. Lowry, K. Matyjaszewski, R.D. Tilton, Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. Langmuir 26(22), 16890–16900 (2010) P.L. Golas, S. Louie, G.V. Lowry, K. Matyjaszewski, R.D. Tilton, Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. Langmuir 26(22), 16890–16900 (2010)
117.
go back to reference A. Tiraferri, K.L. Chen, R. Sethi, M. Elimelech, Reduced aggregation, and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J. Colloid Interface Sci. 324(1–2), 71–79 (2008) A. Tiraferri, K.L. Chen, R. Sethi, M. Elimelech, Reduced aggregation, and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J. Colloid Interface Sci. 324(1–2), 71–79 (2008)
118.
go back to reference D.H. Napper, Steric stabilization. J. Colloid Interface Sci. 58(2), 390–407 (1977) D.H. Napper, Steric stabilization. J. Colloid Interface Sci. 58(2), 390–407 (1977)
119.
go back to reference A.-M. Sung, I. Piirma, Electrosteric stabilization of polymer colloids. Langmuir 10(5), 1393–1398 (1994) A.-M. Sung, I. Piirma, Electrosteric stabilization of polymer colloids. Langmuir 10(5), 1393–1398 (1994)
120.
go back to reference B.S.M. Claudio, L. De Castro, Nanoparticles from mechanical attrition. Synth. Funct. Surf. Treat. Nanoparticles, 1–14 (2002) B.S.M. Claudio, L. De Castro, Nanoparticles from mechanical attrition. Synth. Funct. Surf. Treat. Nanoparticles, 1–14 (2002)
121.
go back to reference Y. Lu, S. Guan, L. Hao, H. Yoshida, Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application, (2015), pp. 425–464 Y. Lu, S. Guan, L. Hao, H. Yoshida, Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application, (2015), pp. 425–464
122.
go back to reference M. Boutonnet Kizling, S.G. Järås, Appl. Catal. A 147, 1–21 (1996) M. Boutonnet Kizling, S.G. Järås, Appl. Catal. A 147, 1–21 (1996)
123.
go back to reference Z.R. Ismagilov, O.Y. Podyacheva, O.P. Solonenko, V.V. Pushkarev, V.I. Kuz’min, V.A. Ushakov, N.A. Rudina, Catal. Today 51, 411–417 (1999) Z.R. Ismagilov, O.Y. Podyacheva, O.P. Solonenko, V.V. Pushkarev, V.I. Kuz’min, V.A. Ushakov, N.A. Rudina, Catal. Today 51, 411–417 (1999)
124.
go back to reference C.-J. Liu, G.P. Vissokov, B.W.L. Jang, Catal. Today 72, 173–184 (2002) C.-J. Liu, G.P. Vissokov, B.W.L. Jang, Catal. Today 72, 173–184 (2002)
125.
go back to reference H. Shim, J. Phillips, I.M. Fonseca, S. Carabinerio, Appl. Catal. A 237, 41–51 (2002) H. Shim, J. Phillips, I.M. Fonseca, S. Carabinerio, Appl. Catal. A 237, 41–51 (2002)
126.
go back to reference S. Hinokuma, K. Murakami, K. Uemura, M. Matsuda, K. Ikeue, N. Tsukahara, M. Machida, Top. Catal. 52, 2108–2111 (2009) S. Hinokuma, K. Murakami, K. Uemura, M. Matsuda, K. Ikeue, N. Tsukahara, M. Machida, Top. Catal. 52, 2108–2111 (2009)
127.
go back to reference S. Hinokuma, M. Okamoto, E. Ando, K. Ikeue, M. Machida, Catal. Today 175, 593–597 (2011) S. Hinokuma, M. Okamoto, E. Ando, K. Ikeue, M. Machida, Catal. Today 175, 593–597 (2011)
128.
go back to reference S. Hinokuma, M. Okamoto, E. Ando, K. Ikeue, M. Machida, Bull. Chem. Soc. Jpn. 85, 144–149 (2012) S. Hinokuma, M. Okamoto, E. Ando, K. Ikeue, M. Machida, Bull. Chem. Soc. Jpn. 85, 144–149 (2012)
129.
go back to reference S. Hinokuma, Y. Katsuhara, E. Ando, K. Ikeue, M. Machida, Catal. Today 201, 92–97 (2013) S. Hinokuma, Y. Katsuhara, E. Ando, K. Ikeue, M. Machida, Catal. Today 201, 92–97 (2013)
130.
go back to reference S. Hinokuma, H. Fujii, Y. Katsuhara, K. Ikeue, M. Machida, Cat. Sci. Technol. 4, 2990–2996 (2014) S. Hinokuma, H. Fujii, Y. Katsuhara, K. Ikeue, M. Machida, Cat. Sci. Technol. 4, 2990–2996 (2014)
131.
go back to reference S. Hinokuma, H. Kogami, N. Yamashita, Y. Katsuhara, K. Ikeue, M. Machida, Catal. Commun. 54, 81–85 (2014) S. Hinokuma, H. Kogami, N. Yamashita, Y. Katsuhara, K. Ikeue, M. Machida, Catal. Commun. 54, 81–85 (2014)
133.
go back to reference Y. Agawa, S. Endo, M. Matsuura, Y. Ishii, ECS Trans. 50, 1271–1276 (2012) Y. Agawa, S. Endo, M. Matsuura, Y. Ishii, ECS Trans. 50, 1271–1276 (2012)
134.
go back to reference T. Fujitani, I. Nakamura, Angew. Chem. Int. Ed. 50, 10144–10147 (2011) T. Fujitani, I. Nakamura, Angew. Chem. Int. Ed. 50, 10144–10147 (2011)
135.
go back to reference K. Qadir, S.H. Kim, S.M. Kim, H. Ha, J.Y. Park, J. Phys, Chem. C 116, 24054–24059 (2012) K. Qadir, S.H. Kim, S.M. Kim, H. Ha, J.Y. Park, J. Phys, Chem. C 116, 24054–24059 (2012)
136.
go back to reference S.H. Kim, C.H. Jung, N. Sahu, D. Park, J.Y. Yun, H. Ha, J.Y. Park, Appl. Catal. A 454, 53–58 (2013) S.H. Kim, C.H. Jung, N. Sahu, D. Park, J.Y. Yun, H. Ha, J.Y. Park, Appl. Catal. A 454, 53–58 (2013)
137.
go back to reference T. Yoshitake, Y. Nakagawa, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, K. Sumitani, Y. Agawa, K. Nagayama, Jpn. J. Appl. Phys. 49, 015503 (2010) T. Yoshitake, Y. Nakagawa, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, K. Sumitani, Y. Agawa, K. Nagayama, Jpn. J. Appl. Phys. 49, 015503 (2010)
138.
go back to reference K. Hanada, T. Yoshida, Y. Nakagawa, T. Yoshitake, Jpn. J. Appl. Phys. 49, 125503 (2010) K. Hanada, T. Yoshida, Y. Nakagawa, T. Yoshitake, Jpn. J. Appl. Phys. 49, 125503 (2010)
139.
go back to reference C. Qin, S. Coulombe, Mater. Lett. 60, 1973–1976 (2006) C. Qin, S. Coulombe, Mater. Lett. 60, 1973–1976 (2006)
140.
go back to reference A.V. Stanishevsky, E.L. Tochitsky, J. Wide Bandgap Mater. 4, 297–310 (1996) A.V. Stanishevsky, E.L. Tochitsky, J. Wide Bandgap Mater. 4, 297–310 (1996)
141.
go back to reference A.S. Chaus, T.N. Fedosenko, A.V. Rogachev, Ľ. Čaplovič, Diamond Relat. Mater. 42, 64–70 (2014) A.S. Chaus, T.N. Fedosenko, A.V. Rogachev, Ľ. Čaplovič, Diamond Relat. Mater. 42, 64–70 (2014)
142.
go back to reference B. Naik, S.M. Kim, C.H. Jung, S.Y. Moon, S.H. Kim, J.Y. Park, Adv. Mater. Interfaces 1, 201300018 (2014) B. Naik, S.M. Kim, C.H. Jung, S.Y. Moon, S.H. Kim, J.Y. Park, Adv. Mater. Interfaces 1, 201300018 (2014)
144.
go back to reference A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012) A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012)
145.
go back to reference N. Subcommittee of the National Science and T. Council, “National Nanotechnology Initiative Supplement to the President’s 2019 Budget,” no. August 2018, p. 24, (2019) N. Subcommittee of the National Science and T. Council, “National Nanotechnology Initiative Supplement to the President’s 2019 Budget,” no. August 2018, p. 24, (2019)
146.
go back to reference P. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles. Phys. Rev. A 13(6), 2287–2298 (1976) P. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles. Phys. Rev. A 13(6), 2287–2298 (1976)
147.
go back to reference J. Jortner, Cluster size effects. Zeitschrift für Phys. D Atoms, Mol. Clust. 24(3), 247–275 (1992) J. Jortner, Cluster size effects. Zeitschrift für Phys. D Atoms, Mol. Clust. 24(3), 247–275 (1992)
148.
go back to reference C.D. Didomenico, M. Lintz, L.J. Bonassar, Molecular transport in articular cartilage - What have we learned from the past 50 years? Nat. Rev. Rheumatol. 14(7), 393–403 (2018) C.D. Didomenico, M. Lintz, L.J. Bonassar, Molecular transport in articular cartilage - What have we learned from the past 50 years? Nat. Rev. Rheumatol. 14(7), 393–403 (2018)
149.
go back to reference S.D. Perrault, C. Walkey, T. Jennings, H.C. Fischer, W.C.W. Chan, Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9(5), 1909–1915 (2009) S.D. Perrault, C. Walkey, T. Jennings, H.C. Fischer, W.C.W. Chan, Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9(5), 1909–1915 (2009)
150.
go back to reference K. R. Backe, P. Skalle, O. B. Lile, Shrinkage of Oil Well Cement Slurries K. R. Backe, P. Skalle, O. B. Lile, Shrinkage of Oil Well Cement Slurries
151.
go back to reference P. J. Boul, P. M. Ajayan, Nanotechnology Research and Development in Upstream Oil and Gas, vol. 1901216, (2020) P. J. Boul, P. M. Ajayan, Nanotechnology Research and Development in Upstream Oil and Gas, vol. 1901216, (2020)
152.
go back to reference Y. Bu, X. Hou, C. Wang, J. Du, Effect of colloidal nanosilica on early-age compressive strength of oil well cement stone at low temperature. Constr. Build. Mater. 171, 690–696 (2018) Y. Bu, X. Hou, C. Wang, J. Du, Effect of colloidal nanosilica on early-age compressive strength of oil well cement stone at low temperature. Constr. Build. Mater. 171, 690–696 (2018)
153.
go back to reference I. Panas, A. Martinelli, A. Matic, Accelerating effects of colloidal nano-silica for beneficial calcium – silicate – hydrate formation in cement. Chemical Physics Letters 392, 242–248 (2004) I. Panas, A. Martinelli, A. Matic, Accelerating effects of colloidal nano-silica for beneficial calcium – silicate – hydrate formation in cement. Chemical Physics Letters 392, 242–248 (2004)
154.
go back to reference X. Pang, P. J. Boul, W. C. Jimenez, IADC / SPE 168037 Nanosilicas as Accelerators in Oilwell Cementing at Low Temperatures, no. March, pp. 4–6, (2014) X. Pang, P. J. Boul, W. C. Jimenez, IADC / SPE 168037 Nanosilicas as Accelerators in Oilwell Cementing at Low Temperatures, no. March, pp. 4–6, (2014)
155.
go back to reference D. Enescu, M.A. Cerqueira, P. Fucinos, L.M. Pastrana, Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food Chem. Toxicol 134(May), 110814 (2019) D. Enescu, M.A. Cerqueira, P. Fucinos, L.M. Pastrana, Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food Chem. Toxicol 134(May), 110814 (2019)
156.
go back to reference H. Mu, H. Gao, H. Chen, F. Tao, X. Fang, L. Ge, A nanosised oxygen scavenger : Preparation and antioxidant application to roasted sunflower seeds and walnuts. Food Chem. 136(1), 245–250 (2013) H. Mu, H. Gao, H. Chen, F. Tao, X. Fang, L. Ge, A nanosised oxygen scavenger : Preparation and antioxidant application to roasted sunflower seeds and walnuts. Food Chem. 136(1), 245–250 (2013)
157.
go back to reference G.O. Noonan, A.J. Whelton, D. Carlander, T.V. Duncan, Measurement Methods to Evaluate Engineered Nanomaterial Release from Food Contact Materials. Comprehensive Reviews in Food Science and Food Safety 13, 679–692 (2014) G.O. Noonan, A.J. Whelton, D. Carlander, T.V. Duncan, Measurement Methods to Evaluate Engineered Nanomaterial Release from Food Contact Materials. Comprehensive Reviews in Food Science and Food Safety 13, 679–692 (2014)
158.
go back to reference Z. Zhang et al., NanoImpact Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact 13, 13–25 (2019) Z. Zhang et al., NanoImpact Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact 13, 13–25 (2019)
159.
go back to reference C.G. Otoni, P.J.P. Espitia, R.J. Avena-bustillos, T.H. Mchugh, Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. FRIN 83, 60–73 (2016) C.G. Otoni, P.J.P. Espitia, R.J. Avena-bustillos, T.H. Mchugh, Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. FRIN 83, 60–73 (2016)
160.
go back to reference H. Chung, M. Yu, Q.P. Nguyen, J. Pet. Sci. Eng. Nanotechnol. Oil Field Appl. Challenges. Impact 157, 1160–1169 (2017) H. Chung, M. Yu, Q.P. Nguyen, J. Pet. Sci. Eng. Nanotechnol. Oil Field Appl. Challenges. Impact 157, 1160–1169 (2017)
161.
go back to reference A. Sánchez Jiménez et al., Safe(r) by design implementation in the nanotechnology industry. NanoImpact 20(July) (2020) A. Sánchez Jiménez et al., Safe(r) by design implementation in the nanotechnology industry. NanoImpact 20(July) (2020)
Metadata
Title
Nanoparticles: Preparation, Stabilization, and Control Over Particle Size
Authors
Maryam Razi
Maria Contreras-Mateus
Kotaybah W. Hashlamoun
Nashaat N. Nassar
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-319-12051-5_1