Skip to main content
Top

2016 | OriginalPaper | Chapter

Nanoscale Effects in Water Splitting Photocatalysis

Author : Frank E. Osterloh

Published in: Solar Energy for Fuels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

From a conceptual standpoint, the water photoelectrolysis reaction is the simplest way to convert solar energy into fuel. It is widely believed that nanostructured photocatalysts can improve the efficiency of the process and lower the costs. Indeed, nanostructured light absorbers have several advantages over traditional materials. This includes shorter charge transport pathways and larger redox active surface areas. It is also possible to adjust the energetics of small particles via the quantum size effect or with adsorbed ions. At the same time, nanostructured absorbers have significant disadvantages over conventional ones. The larger surface area promotes defect recombination and reduces the photovoltage that can be drawn from the absorber. The smaller size of the particles also makes electron–hole separation more difficult to achieve. This chapter discusses these issues using selected examples from the literature and from the laboratory of the author.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103(43):15729–15735CrossRef Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103(43):15729–15735CrossRef
3.
go back to reference Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (Version 45). Prog Photovolt Res Appl 23(1):1–9CrossRef Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (Version 45). Prog Photovolt Res Appl 23(1):1–9CrossRef
4.
go back to reference Peharz G, Dimroth F, Wittstadt U (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int J Hydrogen Energy 32(15):3248–3252CrossRef Peharz G, Dimroth F, Wittstadt U (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int J Hydrogen Energy 32(15):3248–3252CrossRef
5.
6.
go back to reference Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Wireless solar water splitting using silicon-based semiconductors and Earth-abundant catalysts. Science 334(6056):645–648CrossRef Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Wireless solar water splitting using silicon-based semiconductors and Earth-abundant catalysts. Science 334(6056):645–648CrossRef
7.
go back to reference Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204):1593–1596CrossRef Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204):1593–1596CrossRef
8.
go back to reference Gratzel M, Park NG (2014) Organometal halide perovskite photovoltaics: a diamond in the rough. Nano 9(5):1440002–1440009 Gratzel M, Park NG (2014) Organometal halide perovskite photovoltaics: a diamond in the rough. Nano 9(5):1440002–1440009
9.
go back to reference Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473CrossRef Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473CrossRef
10.
go back to reference Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425–427CrossRef Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425–427CrossRef
11.
go back to reference Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316(6028):495–500CrossRef Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316(6028):495–500CrossRef
12.
go back to reference Varghese OK, Grimes CA (2008) Appropriate strategies for determining the photoconversion efficiency of water photo electrolysis cells: a review with examples using titania nanotube array photoanodes. Sol Energy Mat Sol C 92(4):374–384CrossRef Varghese OK, Grimes CA (2008) Appropriate strategies for determining the photoconversion efficiency of water photo electrolysis cells: a review with examples using titania nanotube array photoanodes. Sol Energy Mat Sol C 92(4):374–384CrossRef
13.
go back to reference Sathre R, Scown CD, Morrow WR, Stevens JC, Sharp ID, Ager JW, Walczak K, Houle FA, Greenblatt JB (2014) Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ Sci 7:3264–3278CrossRef Sathre R, Scown CD, Morrow WR, Stevens JC, Sharp ID, Ager JW, Walczak K, Houle FA, Greenblatt JB (2014) Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ Sci 7:3264–3278CrossRef
14.
go back to reference Ronge J, Bosserez T, Martel D, Nervi C, Boarino L, Taulelle F, Decher G, Bordiga S, Martens JA (2014) Monolithic cells for solar fuels. Chem Soc Rev 43:7963–7981CrossRef Ronge J, Bosserez T, Martel D, Nervi C, Boarino L, Taulelle F, Decher G, Bordiga S, Martens JA (2014) Monolithic cells for solar fuels. Chem Soc Rev 43:7963–7981CrossRef
15.
go back to reference Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20(1):35–54CrossRef Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20(1):35–54CrossRef
16.
go back to reference Maeda K (2013) Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3(7):1486–1503CrossRef Maeda K (2013) Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3(7):1486–1503CrossRef
17.
go back to reference Kudo A (2011) Z-Scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bull 36(1):32–38CrossRef Kudo A (2011) Z-Scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bull 36(1):32–38CrossRef
18.
go back to reference Maeda K, Teramura K, Saito N, Inoue Y, Kobayashi H, Domen K (2006) Overall water splitting using (oxy)nitride photocatalysts. Pure Appl Chem 78(12):2267–2276CrossRef Maeda K, Teramura K, Saito N, Inoue Y, Kobayashi H, Domen K (2006) Overall water splitting using (oxy)nitride photocatalysts. Pure Appl Chem 78(12):2267–2276CrossRef
19.
go back to reference Rajeshwar K (2007) Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J Appl Electrochem 37(7):765–787CrossRef Rajeshwar K (2007) Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J Appl Electrochem 37(7):765–787CrossRef
20.
go back to reference Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photoch Photobio C 12(4):237–268CrossRef Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photoch Photobio C 12(4):237–268CrossRef
21.
go back to reference Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111(22):7851–7861CrossRef Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111(22):7851–7861CrossRef
22.
go back to reference Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278CrossRef Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278CrossRef
23.
go back to reference Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photoch Photobio C 11(4):179–209CrossRef Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photoch Photobio C 11(4):179–209CrossRef
24.
go back to reference Osterloh FE, Parkinson BA (2011) Recent developments in solar water splitting photocatalysis. MRS Bull 36(1):17–22CrossRef Osterloh FE, Parkinson BA (2011) Recent developments in solar water splitting photocatalysis. MRS Bull 36(1):17–22CrossRef
25.
go back to reference Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen ZB, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang HL, Miller E, Jaramillo TF (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6(7):1983–2002CrossRef Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen ZB, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang HL, Miller E, Jaramillo TF (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6(7):1983–2002CrossRef
27.
go back to reference Bard AJ, Fox MA (1995) Artificial photosynthesis – solar splitting of water to hydrogen and oxygen. Acc Chem Res 28(3):141–145CrossRef Bard AJ, Fox MA (1995) Artificial photosynthesis – solar splitting of water to hydrogen and oxygen. Acc Chem Res 28(3):141–145CrossRef
28.
go back to reference Mills A, LeHunte S (1997) An overview of semiconductor photocatalysis. J Photoch Photobio A 108(1):1–35CrossRef Mills A, LeHunte S (1997) An overview of semiconductor photocatalysis. J Photoch Photobio A 108(1):1–35CrossRef
29.
go back to reference Nozik AJ (1978) Photoelectrochemistry – applications to solar-energy conversion. Ann Rev Phys Chem 29:189–222CrossRef Nozik AJ (1978) Photoelectrochemistry – applications to solar-energy conversion. Ann Rev Phys Chem 29:189–222CrossRef
30.
go back to reference Memming R (1994) Photoinduced charge-transfer processes at semiconductor electrodes and particles. Electron Transfer I 169:105–181CrossRef Memming R (1994) Photoinduced charge-transfer processes at semiconductor electrodes and particles. Electron Transfer I 169:105–181CrossRef
31.
go back to reference Krol R (2012) Principles of photoelectrochemical cells. In: van de Krol R, Grätzel M (eds) Photoelectrochemical hydrogen production, vol 102. Springer, USA, pp 13–67 Krol R (2012) Principles of photoelectrochemical cells. In: van de Krol R, Grätzel M (eds) Photoelectrochemical hydrogen production, vol 102. Springer, USA, pp 13–67
32.
go back to reference Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H-2 and O-2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082–3089CrossRef Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H-2 and O-2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082–3089CrossRef
33.
go back to reference Ohno T, Bai L, Hisatomi T, Maeda K, Domen K (2012) Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity. J Am Chem Soc 134(19):8254–8259CrossRef Ohno T, Bai L, Hisatomi T, Maeda K, Domen K (2012) Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity. J Am Chem Soc 134(19):8254–8259CrossRef
34.
go back to reference Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Characterization of Rh-Cr mixed-oxide nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) as a cocatalyst for visible-light-driven overall water splitting. J Phys Chem B 110(28):13753–13758CrossRef Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Characterization of Rh-Cr mixed-oxide nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) as a cocatalyst for visible-light-driven overall water splitting. J Phys Chem B 110(28):13753–13758CrossRef
35.
go back to reference Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water – enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440(7082):295–295CrossRef Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water – enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440(7082):295–295CrossRef
36.
go back to reference Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864):625–627CrossRef Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864):625–627CrossRef
37.
go back to reference Zou ZG, Arakawa H (2003) Direct water splitting into H-2 and O-2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J Photoch Photobio A 158(2–3):145–162CrossRef Zou ZG, Arakawa H (2003) Direct water splitting into H-2 and O-2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J Photoch Photobio A 158(2–3):145–162CrossRef
38.
go back to reference Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y, Lu X, Wei D, Feng G, Yu Q, Cai X, Zhao J, Ren Z, Fang H, Robles-Hernandez F, Baldelli S, Bao J (2014) Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nano 9(1):69–73CrossRef Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y, Lu X, Wei D, Feng G, Yu Q, Cai X, Zhao J, Ren Z, Fang H, Robles-Hernandez F, Baldelli S, Bao J (2014) Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nano 9(1):69–73CrossRef
39.
go back to reference Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3:357–358CrossRef Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3:357–358CrossRef
40.
go back to reference de Jongh PE, Vanmaekelbergh D, Kelly JJ (1999) Cu2O: a catalyst for the photochemical decomposition of water? Chem Commun 12:1069–1070CrossRef de Jongh PE, Vanmaekelbergh D, Kelly JJ (1999) Cu2O: a catalyst for the photochemical decomposition of water? Chem Commun 12:1069–1070CrossRef
41.
go back to reference Malingowski AC, Stephens PW, Huq A, Huang QZ, Khalid S, Khalifah PG (2012) Substitutional mechanism of Ni into the wide-band-gap semiconductor in TaO4 and its implications for water splitting activity in the wolframite structure type. Inorg Chem 51(11):6096–6103CrossRef Malingowski AC, Stephens PW, Huq A, Huang QZ, Khalid S, Khalifah PG (2012) Substitutional mechanism of Ni into the wide-band-gap semiconductor in TaO4 and its implications for water splitting activity in the wolframite structure type. Inorg Chem 51(11):6096–6103CrossRef
42.
go back to reference Duonghong D, Borgarello E, Gratzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103(16):4685–4690CrossRef Duonghong D, Borgarello E, Gratzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103(16):4685–4690CrossRef
43.
go back to reference Bard AJ (1979) Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J Photochem 10(1):59–75CrossRef Bard AJ (1979) Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J Photochem 10(1):59–75CrossRef
44.
go back to reference Kato H, Sasaki Y, Shirakura N, Kudo A (2013) Synthesis of highly active rhodium-soped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J Mater Chem A 1(39):12327–12333CrossRef Kato H, Sasaki Y, Shirakura N, Kudo A (2013) Synthesis of highly active rhodium-soped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J Mater Chem A 1(39):12327–12333CrossRef
45.
go back to reference Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344(6187):1005–1009CrossRef Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344(6187):1005–1009CrossRef
46.
go back to reference Paracchino A, Laporte V, Sivula K, Graetzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456–461CrossRef Paracchino A, Laporte V, Sivula K, Graetzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456–461CrossRef
47.
go back to reference Joshi UA, Palasyuk A, Arney D, Maggard PA (2010) Semiconducting oxides to facilitate the conversion of solar energy to chemical fuels. J Phys Chem Lett 1(18):2719–2726CrossRef Joshi UA, Palasyuk A, Arney D, Maggard PA (2010) Semiconducting oxides to facilitate the conversion of solar energy to chemical fuels. J Phys Chem Lett 1(18):2719–2726CrossRef
48.
go back to reference Woodhouse M, Parkinson BA (2008) Combinatorial discovery and optimization of a complex oxide with water photoelectrolysis activity. Chem Mater 20(7):2495–2502CrossRef Woodhouse M, Parkinson BA (2008) Combinatorial discovery and optimization of a complex oxide with water photoelectrolysis activity. Chem Mater 20(7):2495–2502CrossRef
49.
go back to reference Woodhouse M, Herman GS, Parkinson BA (2005) Combinatorial approach to identification of catalysts for the photoelectrolysis of water. Chem Mater 17(17):4318–4324CrossRef Woodhouse M, Herman GS, Parkinson BA (2005) Combinatorial approach to identification of catalysts for the photoelectrolysis of water. Chem Mater 17(17):4318–4324CrossRef
50.
go back to reference Woodhouse M, Parkinson BA (2009) Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem Soc Rev 38(1):197–210CrossRef Woodhouse M, Parkinson BA (2009) Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem Soc Rev 38(1):197–210CrossRef
51.
go back to reference Jaramillo TF, Baeck SH, Kleiman-Shwarsctein A, Choi KS, Stucky GD, McFarland EW (2005) Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCoxO thin films for solar hydrogen production. J Comb Chem 7(2):264–271CrossRef Jaramillo TF, Baeck SH, Kleiman-Shwarsctein A, Choi KS, Stucky GD, McFarland EW (2005) Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCoxO thin films for solar hydrogen production. J Comb Chem 7(2):264–271CrossRef
52.
go back to reference Katz JE, Gingrich TR, Santori EA, Lewis NS (2009) Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting. Energy Environ Sci 2(1):103–112CrossRef Katz JE, Gingrich TR, Santori EA, Lewis NS (2009) Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting. Energy Environ Sci 2(1):103–112CrossRef
53.
go back to reference Dingle R, Wiegmann W, Henry CH (1974) Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures. Phys Rev Lett 33(14):827–830CrossRef Dingle R, Wiegmann W, Henry CH (1974) Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures. Phys Rev Lett 33(14):827–830CrossRef
54.
go back to reference Henglein A (1982) Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous-solution. Phys Chem Chem Phys 86(4):301–305 Henglein A (1982) Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous-solution. Phys Chem Chem Phys 86(4):301–305
55.
go back to reference Fojtik A, Weller H, Koch U, Henglein A (1984) Photo-chemistry of colloidal metal sulfides. 8. Photo-physics of extremely small CDS particle S – Q-state CDS and magic agglomeration numbers. Phys Chem Chem Phys 88(10):969–977 Fojtik A, Weller H, Koch U, Henglein A (1984) Photo-chemistry of colloidal metal sulfides. 8. Photo-physics of extremely small CDS particle S – Q-state CDS and magic agglomeration numbers. Phys Chem Chem Phys 88(10):969–977
56.
go back to reference Brus LE (1983) A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys 79(11):5566–5571CrossRef Brus LE (1983) A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys 79(11):5566–5571CrossRef
57.
go back to reference Vayssieres L (2009) On solar hydrogen & nanotechnology. Wiley, Singapore/Hoboken, p xxi, 680 pp, 16 p Vayssieres L (2009) On solar hydrogen & nanotechnology. Wiley, Singapore/Hoboken, p xxi, 680 pp, 16 p
58.
go back to reference Hoertz PG, Mallouk TE (2005) Light-to-chemical energy conversion in lamellar solids and thin films. Inorg Chem 44(20):6828–6840CrossRef Hoertz PG, Mallouk TE (2005) Light-to-chemical energy conversion in lamellar solids and thin films. Inorg Chem 44(20):6828–6840CrossRef
59.
go back to reference Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49–68CrossRef Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49–68CrossRef
60.
go back to reference Zhu JF, Zach M (2009) Nanostructured materials for photocatalytic hydrogen production. Curr Opin Colloid Interface Sci 14(4):260–269CrossRef Zhu JF, Zach M (2009) Nanostructured materials for photocatalytic hydrogen production. Curr Opin Colloid Interface Sci 14(4):260–269CrossRef
61.
go back to reference Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7):2834–2860CrossRef Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7):2834–2860CrossRef
62.
go back to reference Kamat PV, Dimitrijevic NM (1990) Colloidal semiconductors as photocatalysts for solar-energy conversion. Sol Energy 44(2):83–98CrossRef Kamat PV, Dimitrijevic NM (1990) Colloidal semiconductors as photocatalysts for solar-energy conversion. Sol Energy 44(2):83–98CrossRef
63.
go back to reference Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110(11):6664–6688CrossRef Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110(11):6664–6688CrossRef
64.
go back to reference Zhang JZ (2011) Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting. MRS Bull 36(1):48–55CrossRef Zhang JZ (2011) Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting. MRS Bull 36(1):48–55CrossRef
65.
go back to reference Foley JM, Price MJ, Feldblyum JI, Maldonado S (2012) Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion. Energy Environ Sci 5(1):5203–5220CrossRef Foley JM, Price MJ, Feldblyum JI, Maldonado S (2012) Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion. Energy Environ Sci 5(1):5203–5220CrossRef
66.
go back to reference Jaegermann W, Tributsch H (1988) Interfacial properties of semiconducting transition-metal chalcogenides. Prog Surf Sci 29(1–2):1–167CrossRef Jaegermann W, Tributsch H (1988) Interfacial properties of semiconducting transition-metal chalcogenides. Prog Surf Sci 29(1–2):1–167CrossRef
67.
go back to reference van de Krol R, Liang YQ, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18(20):2311–2320CrossRef van de Krol R, Liang YQ, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18(20):2311–2320CrossRef
68.
go back to reference Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345):55–U65CrossRef Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345):55–U65CrossRef
69.
go back to reference Boddy PJ (1968) Oxygen evolution on semiconducting TIO2. J Electrochem Soc 115(2):199 Boddy PJ (1968) Oxygen evolution on semiconducting TIO2. J Electrochem Soc 115(2):199
70.
go back to reference Freund T, Gomes WP (1970) Electrochemical methods for investigating catalysis by semiconductors. Catal Rev 3(1):1–36CrossRef Freund T, Gomes WP (1970) Electrochemical methods for investigating catalysis by semiconductors. Catal Rev 3(1):1–36CrossRef
71.
go back to reference Fujishima A, Honda K (1971) Studies on photosensitive electrode reactions. 3. Electrochemical evidence for mechanism of primary stage of photosynthesis. B Chem Soc Jpn 44(4):1148–1150 Fujishima A, Honda K (1971) Studies on photosensitive electrode reactions. 3. Electrochemical evidence for mechanism of primary stage of photosynthesis. B Chem Soc Jpn 44(4):1148–1150
72.
go back to reference Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRef
73.
go back to reference Henglein A (1989) Small-particle research – physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873CrossRef Henglein A (1989) Small-particle research – physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873CrossRef
74.
go back to reference Kalyanasundaram K, Gratzel M (1979) Cyclic cleavage of water into H-2 and O-2 by visible-light with coupled redox catalysts. Angew Chem Int Ed Engl 18(9):701–702 Kalyanasundaram K, Gratzel M (1979) Cyclic cleavage of water into H-2 and O-2 by visible-light with coupled redox catalysts. Angew Chem Int Ed Engl 18(9):701–702
75.
go back to reference Mills A, Porter G (1982) Photosensitized dissociation of water using dispersed suspensions of N-type semiconductors. J Chem Soc Faraday T I 78:3659–3669CrossRef Mills A, Porter G (1982) Photosensitized dissociation of water using dispersed suspensions of N-type semiconductors. J Chem Soc Faraday T I 78:3659–3669CrossRef
76.
77.
go back to reference Würfel P (2005) Physics of solar cells. Wiley-VCH, Weinheim, p 244 Würfel P (2005) Physics of solar cells. Wiley-VCH, Weinheim, p 244
78.
go back to reference Berger LI (2008) Optical properties of selected inorganic and organic solids. In: Lide DR (ed) CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton Berger LI (2008) Optical properties of selected inorganic and organic solids. In: Lide DR (ed) CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton
79.
go back to reference Maiolo JR, Atwater HA, Lewis NS (2008) Macroporous silicon as a model for silicon wire array solar cells. J Phys Chem C 112(15):6194–6201CrossRef Maiolo JR, Atwater HA, Lewis NS (2008) Macroporous silicon as a model for silicon wire array solar cells. J Phys Chem C 112(15):6194–6201CrossRef
80.
go back to reference Berger LI (2008) Properties of semiconductors. In: Lide DR (ed) CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton Berger LI (2008) Properties of semiconductors. In: Lide DR (ed) CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton
81.
go back to reference Huda MN, Al-Jassim MM, Turner JA (2011) Mott insulators: an early selection criterion for materials for photoelectrochemical H(2) production. J Renew Sustain Energy 3(5):053101-1–053101-10 Huda MN, Al-Jassim MM, Turner JA (2011) Mott insulators: an early selection criterion for materials for photoelectrochemical H(2) production. J Renew Sustain Energy 3(5):053101-1–053101-10
82.
go back to reference Cox PA (2010) Transition metal oxides: an introduction to their electronic structure and properties. Clarendon/Oxford University Press, Oxford/New York Cox PA (2010) Transition metal oxides: an introduction to their electronic structure and properties. Clarendon/Oxford University Press, Oxford/New York
83.
go back to reference Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Correction: photocatalytic water splitting with suspended calcium niobium oxides: why nanoscale is better than bulk – a kinetic analysis. J Phys Chem C 116(35):19051–19051CrossRef Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Correction: photocatalytic water splitting with suspended calcium niobium oxides: why nanoscale is better than bulk – a kinetic analysis. J Phys Chem C 116(35):19051–19051CrossRef
84.
go back to reference Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Photocatalytic water splitting with suspended calcium niobium oxides: why nanoscale is better than bulk – a kinetic analysis. J Phys Chem C 116(4):3161–3170CrossRef Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Photocatalytic water splitting with suspended calcium niobium oxides: why nanoscale is better than bulk – a kinetic analysis. J Phys Chem C 116(4):3161–3170CrossRef
85.
go back to reference Laser D, Bard AJ (1976) Semiconductor electrodes. 9. digital-simulation of relaxation of photogenerated free carriers and photocurrents. J Electrochem Soc 123(12):1837–1842CrossRef Laser D, Bard AJ (1976) Semiconductor electrodes. 9. digital-simulation of relaxation of photogenerated free carriers and photocurrents. J Electrochem Soc 123(12):1837–1842CrossRef
86.
go back to reference Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum, New York, p xiv, 401 Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum, New York, p xiv, 401
87.
go back to reference Pleskov YV, Gurevich YY (1986) Semiconductor photoelectrochemistry. Consultants Bureau, New York, p xxv, 422 Pleskov YV, Gurevich YY (1986) Semiconductor photoelectrochemistry. Consultants Bureau, New York, p xxv, 422
88.
go back to reference Salvador P (2001) Semiconductors' photoelectrochemistry: a kinetic and thermodynamic analysis in the light of equilibrium and nonequilibrium models. J Phys Chem B 105(26):6128–6141CrossRef Salvador P (2001) Semiconductors' photoelectrochemistry: a kinetic and thermodynamic analysis in the light of equilibrium and nonequilibrium models. J Phys Chem B 105(26):6128–6141CrossRef
89.
go back to reference Townsend TK, Sabio EM, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with suspended alpha-Fe2O3 particles – effects of nanoscaling. Energy Env Sci 4:4270–4275CrossRef Townsend TK, Sabio EM, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with suspended alpha-Fe2O3 particles – effects of nanoscaling. Energy Env Sci 4:4270–4275CrossRef
90.
go back to reference de Almeida JS, Ahuja R (2006) Electronic and optical properties of RuO2 and IrO2. Phys Rev B 3(16) de Almeida JS, Ahuja R (2006) Electronic and optical properties of RuO2 and IrO2. Phys Rev B 3(16)
91.
go back to reference Frame FA, Townsend TK, Chamousis RL, Sabio EM, Dittrich T, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with non-sensitized IrO2 nanocrystals under visible and UV light. J Am Chem Soc 133(19):7264–7267CrossRef Frame FA, Townsend TK, Chamousis RL, Sabio EM, Dittrich T, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with non-sensitized IrO2 nanocrystals under visible and UV light. J Am Chem Soc 133(19):7264–7267CrossRef
92.
go back to reference Yoffe AD (2001) Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv Phys 50(1):1–208CrossRef Yoffe AD (2001) Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv Phys 50(1):1–208CrossRef
93.
go back to reference Gerischer H (1990) The impact of semiconductors on the concepts of electrochemistry. Electrochim Acta 35(11–12):1677–1699CrossRef Gerischer H (1990) The impact of semiconductors on the concepts of electrochemistry. Electrochim Acta 35(11–12):1677–1699CrossRef
94.
go back to reference Marcus RA (1964) Chemical + electrochemical electron-transfer theory. Ann Rev Phys Chem 15:155–196CrossRef Marcus RA (1964) Chemical + electrochemical electron-transfer theory. Ann Rev Phys Chem 15:155–196CrossRef
95.
go back to reference Sant PA, Kamat PV (2002) Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys Chem Chem Phys 4(2):198–203CrossRef Sant PA, Kamat PV (2002) Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys Chem Chem Phys 4(2):198–203CrossRef
96.
go back to reference Robel I, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129(14):4136–4137CrossRef Robel I, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129(14):4136–4137CrossRef
97.
go back to reference Tvrdy K, Frantsuzov PA, Kamat PV (2011) Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. PNAS 108(1):29–34CrossRef Tvrdy K, Frantsuzov PA, Kamat PV (2011) Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. PNAS 108(1):29–34CrossRef
98.
go back to reference Holmes MA, Townsend TK, Osterloh FE (2012) Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem Commun 48(3):371–373CrossRef Holmes MA, Townsend TK, Osterloh FE (2012) Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem Commun 48(3):371–373CrossRef
99.
go back to reference Zhao J, Holmes MA, Osterloh FE (2013) Quantum confinement controls photocatalysis – a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 7(5):4316–4325CrossRef Zhao J, Holmes MA, Osterloh FE (2013) Quantum confinement controls photocatalysis – a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 7(5):4316–4325CrossRef
100.
go back to reference Rogach AL, Kornowski A, Gao MY, Eychmuller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103(16):3065–3069CrossRef Rogach AL, Kornowski A, Gao MY, Eychmuller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103(16):3065–3069CrossRef
101.
go back to reference Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. 2nd edn. Wiley, New York, p xxi, 833 Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. 2nd edn. Wiley, New York, p xxi, 833
102.
go back to reference Waller M, Townsend TK, Zhao J, Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Single-crystal tungsten oxide nanosheets: photochemical water oxidation in the quantum confinement regime. Chem Mater 24(4):698–704CrossRef Waller M, Townsend TK, Zhao J, Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Single-crystal tungsten oxide nanosheets: photochemical water oxidation in the quantum confinement regime. Chem Mater 24(4):698–704CrossRef
103.
go back to reference Sambur JB, Novet T, Parkinson BA (2010) Multiple exciton collection in a sensitized photovoltaic system. Science 330(6000):63–66CrossRef Sambur JB, Novet T, Parkinson BA (2010) Multiple exciton collection in a sensitized photovoltaic system. Science 330(6000):63–66CrossRef
104.
go back to reference Semonin OE, Luther JM, Choi S, Chen HY, Gao JB, Nozik AJ, Beard MC (2011) Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334(6062):1530–1533CrossRef Semonin OE, Luther JM, Choi S, Chen HY, Gao JB, Nozik AJ, Beard MC (2011) Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334(6062):1530–1533CrossRef
105.
go back to reference Nozik AJ (2002) Quantum dot solar cells. Phys E Low Dimens Syst Nanostruct 14(1–2):115–120CrossRef Nozik AJ (2002) Quantum dot solar cells. Phys E Low Dimens Syst Nanostruct 14(1–2):115–120CrossRef
106.
go back to reference Kavan L, Gratzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723CrossRef Kavan L, Gratzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723CrossRef
107.
go back to reference Khan SUM, Akikusa J (1999) Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J Phys Chem B 103(34):7184–7189CrossRef Khan SUM, Akikusa J (1999) Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J Phys Chem B 103(34):7184–7189CrossRef
108.
go back to reference Atkinson RJ, Posner AM, Quirk JP (1967) Adsorption of potential-determining ions at ferric oxide-aqueous electrolyte interface. J Phys Chem 71(3):550–558CrossRef Atkinson RJ, Posner AM, Quirk JP (1967) Adsorption of potential-determining ions at ferric oxide-aqueous electrolyte interface. J Phys Chem 71(3):550–558CrossRef
109.
go back to reference Brown GE, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman DW, Gratzel M, Maciel G, McCarthy MI, Nealson KH, Sverjensky DA, Toney MF, Zachara JM (1999) Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem Rev 99(1):77–174CrossRef Brown GE, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman DW, Gratzel M, Maciel G, McCarthy MI, Nealson KH, Sverjensky DA, Toney MF, Zachara JM (1999) Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem Rev 99(1):77–174CrossRef
110.
go back to reference Hingston FJ, Atkinson RJ, Posner AM, Quirk JP (1967) Specific adsorption of anions. Nature 215(5109):1459–1461CrossRef Hingston FJ, Atkinson RJ, Posner AM, Quirk JP (1967) Specific adsorption of anions. Nature 215(5109):1459–1461CrossRef
111.
go back to reference Meissner D, Memming R, Kastening B (1988) Photoelectrochemistry of cadmium-sulfide. 1. Reanalysis of photocorrosion and flat-band potential. J Phys Chem 92(12):3476–3483CrossRef Meissner D, Memming R, Kastening B (1988) Photoelectrochemistry of cadmium-sulfide. 1. Reanalysis of photocorrosion and flat-band potential. J Phys Chem 92(12):3476–3483CrossRef
112.
go back to reference Ginley DS, Butler MA (1978) Flatband potential of cadmium-sulfide (Cds) photoanodes and its dependence on surface ion effects. J Electrochem Soc 125(12):1968–1974CrossRef Ginley DS, Butler MA (1978) Flatband potential of cadmium-sulfide (Cds) photoanodes and its dependence on surface ion effects. J Electrochem Soc 125(12):1968–1974CrossRef
113.
go back to reference Frese KW, Canfield DG (1984) Adsorption of hydroxide and sulfide ions on single-crystal n-CdSe electrodes. J Electrochem Soc 131(11):2614–2618CrossRef Frese KW, Canfield DG (1984) Adsorption of hydroxide and sulfide ions on single-crystal n-CdSe electrodes. J Electrochem Soc 131(11):2614–2618CrossRef
114.
go back to reference Lincot D, Vedel J (1988) Adsorption of telluride ions on cadmium telluride – consequences for photoelectrochemical cells. J Phys Chem 92(14):4103–4110CrossRef Lincot D, Vedel J (1988) Adsorption of telluride ions on cadmium telluride – consequences for photoelectrochemical cells. J Phys Chem 92(14):4103–4110CrossRef
115.
go back to reference Minoura H, Watanabe T, Oki T, Tsuiki M (1977) Effects of dissolved Cd2+ and S2- ions on flatband potential of CdS electrode in aqueous-solution. Jpn J Appl Phys 16(5):865–866CrossRef Minoura H, Watanabe T, Oki T, Tsuiki M (1977) Effects of dissolved Cd2+ and S2- ions on flatband potential of CdS electrode in aqueous-solution. Jpn J Appl Phys 16(5):865–866CrossRef
116.
go back to reference Singh P, Singh R, Gale R, Rajeshwar K, Dubow J (1980) Surface-charge and specific ion adsorption effects in photoelectrochemical devices. J Appl Phys 51(12):6286–6291CrossRef Singh P, Singh R, Gale R, Rajeshwar K, Dubow J (1980) Surface-charge and specific ion adsorption effects in photoelectrochemical devices. J Appl Phys 51(12):6286–6291CrossRef
117.
go back to reference Butler MA, Ginley GS (1978) Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativies. J Electrochem Soc 125(2):228–232CrossRef Butler MA, Ginley GS (1978) Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativies. J Electrochem Soc 125(2):228–232CrossRef
118.
go back to reference Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, p 60 Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, p 60
119.
go back to reference Vanysek P (2008) Electrochemical series. In: CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton Vanysek P (2008) Electrochemical series. In: CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton
120.
go back to reference Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn, Wiley, New York, p 550 Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn, Wiley, New York, p 550
121.
go back to reference Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41(3):441–501CrossRef Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41(3):441–501CrossRef
122.
go back to reference Mayer JM (2004) Proton-coupled electron transfer: a reaction chemist’s view. Ann Rev Phys Chem 55:363–390CrossRef Mayer JM (2004) Proton-coupled electron transfer: a reaction chemist’s view. Ann Rev Phys Chem 55:363–390CrossRef
123.
go back to reference Chamousis RL, Osterloh FE (2014) Use of potential determining ions to control energetics and photochemical charge transfer of a nanoscale water splitting photocatalyst. Energy Envi Sci 7(2):736–743CrossRef Chamousis RL, Osterloh FE (2014) Use of potential determining ions to control energetics and photochemical charge transfer of a nanoscale water splitting photocatalyst. Energy Envi Sci 7(2):736–743CrossRef
124.
go back to reference Nozik AJ, Memming R (1996) Physical chemistry of semiconductor-liquid interfaces. J Phys Chem 100(31):13061–13078CrossRef Nozik AJ, Memming R (1996) Physical chemistry of semiconductor-liquid interfaces. J Phys Chem 100(31):13061–13078CrossRef
125.
go back to reference Miller RJD, Memming R (2008) Fundamentals in photoelectrochemistry. In: Archer MD, Nozik AJ (eds) Nanostructured and photoelectrochemical systems for solar photon conversion, vol 3. Imperial College Press, London Miller RJD, Memming R (2008) Fundamentals in photoelectrochemistry. In: Archer MD, Nozik AJ (eds) Nanostructured and photoelectrochemical systems for solar photon conversion, vol 3. Imperial College Press, London
126.
go back to reference Chmiel G, Gerischer H (1990) Photoluminescence at a semiconductor electrolyte contact around and beyond the flat-band potential. J Phys Chem 94(4):1612–1619CrossRef Chmiel G, Gerischer H (1990) Photoluminescence at a semiconductor electrolyte contact around and beyond the flat-band potential. J Phys Chem 94(4):1612–1619CrossRef
127.
go back to reference Klahr BM, Hamann TW (2011) Current and voltage limiting processes in thin film hematite electrodes. J Phys Chem C 115(16):8393–8399CrossRef Klahr BM, Hamann TW (2011) Current and voltage limiting processes in thin film hematite electrodes. J Phys Chem C 115(16):8393–8399CrossRef
128.
go back to reference Tan MX, Laibinis PE, Nguyen ST, Kesselman JM, Stanton CE, Lewis NS (1994) Principles and applications of semiconductor photoelectrochemistry. In: Progress in inorganic chemistry, Wiley, New York, vol 41. pp 21–144 Tan MX, Laibinis PE, Nguyen ST, Kesselman JM, Stanton CE, Lewis NS (1994) Principles and applications of semiconductor photoelectrochemistry. In: Progress in inorganic chemistry, Wiley, New York, vol 41. pp 21–144
129.
go back to reference Cowan AJ, Tang JW, Leng WH, Durrant JR, Klug DR (2010) Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J Phys Chem C 114(9):4208–4214CrossRef Cowan AJ, Tang JW, Leng WH, Durrant JR, Klug DR (2010) Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J Phys Chem C 114(9):4208–4214CrossRef
130.
go back to reference Tang JW, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO(2). Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130(42):13885–13891CrossRef Tang JW, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO(2). Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130(42):13885–13891CrossRef
131.
go back to reference McCrory CCL, Jung SH, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987CrossRef McCrory CCL, Jung SH, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987CrossRef
132.
go back to reference Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270CrossRef Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270CrossRef
133.
go back to reference Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem 126(21):5531–5534CrossRef Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem 126(21):5531–5534CrossRef
134.
go back to reference Lewis NS (2005) Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorg Chem 44(20):6900–6911CrossRef Lewis NS (2005) Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorg Chem 44(20):6900–6911CrossRef
135.
go back to reference Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32(3):510–519CrossRef Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32(3):510–519CrossRef
136.
go back to reference Lewis NS (1990) Mechanistic studies of light-induced charge separation at semiconductor liquid interfaces. Acc Chem Res 23(6):176–183CrossRef Lewis NS (1990) Mechanistic studies of light-induced charge separation at semiconductor liquid interfaces. Acc Chem Res 23(6):176–183CrossRef
137.
go back to reference Lewis NS (2001) Frontiers of research in photoelectrochemical solar energy conversion. J Electroanal Chem 508(1–2):1–10CrossRef Lewis NS (2001) Frontiers of research in photoelectrochemical solar energy conversion. J Electroanal Chem 508(1–2):1–10CrossRef
138.
go back to reference Yablonovitch E, Allara DL, Chang CC, Gmitter T, Bright TB (1986) Unusually low surface recombination velocity on silicon and germanium surfaces. Phys Rev Lett 57(2):249–252CrossRef Yablonovitch E, Allara DL, Chang CC, Gmitter T, Bright TB (1986) Unusually low surface recombination velocity on silicon and germanium surfaces. Phys Rev Lett 57(2):249–252CrossRef
139.
go back to reference Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRef Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRef
140.
go back to reference Cummings CY, Marken F, Peter LM, Tahir AA, Wijayantha KGU (2012) Kinetics and mechanism of light-driven oxygen evolution at thin film alpha-Fe2O3 electrodes. Chem Commun 48(14):2027–2029CrossRef Cummings CY, Marken F, Peter LM, Tahir AA, Wijayantha KGU (2012) Kinetics and mechanism of light-driven oxygen evolution at thin film alpha-Fe2O3 electrodes. Chem Commun 48(14):2027–2029CrossRef
141.
go back to reference Arakawa H (2002) Water photolysis by TiO2 particles-significant effect of Na2CO3 addition on water splitting. In: Kaneko M, Okura I (eds) Photocatalysis science and technology. Springer, New York, pp 235–248 Arakawa H (2002) Water photolysis by TiO2 particles-significant effect of Na2CO3 addition on water splitting. In: Kaneko M, Okura I (eds) Photocatalysis science and technology. Springer, New York, pp 235–248
142.
go back to reference Saito K, Koga K, Kudo A (2011) Lithium niobate nanowires for photocatalytic water splitting. Dalton Trans 40(15):3909–3913CrossRef Saito K, Koga K, Kudo A (2011) Lithium niobate nanowires for photocatalytic water splitting. Dalton Trans 40(15):3909–3913CrossRef
143.
go back to reference Yan SC, Wan LJ, Li ZS, Zou ZG (2011) Facile temperature-controlled synthesis of hexagonal Zn(2)GeO(4) nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO(2). Chem Commun 47(19):5632–5634CrossRef Yan SC, Wan LJ, Li ZS, Zou ZG (2011) Facile temperature-controlled synthesis of hexagonal Zn(2)GeO(4) nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO(2). Chem Commun 47(19):5632–5634CrossRef
144.
go back to reference Pala RA, Leenheer AJ, Lichterman M, Atwater HA, Lewis NS (2014) Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes. Energy Environ Sci 7(10):3424–3430CrossRef Pala RA, Leenheer AJ, Lichterman M, Atwater HA, Lewis NS (2014) Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes. Energy Environ Sci 7(10):3424–3430CrossRef
145.
go back to reference Pendlebury SR, Cowan AJ, Barroso M, Sivula K, Ye JH, Gratzel M, Klug DR, Tang JW, Durrant JR (2012) Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ Sci 5(4):6304–6312CrossRef Pendlebury SR, Cowan AJ, Barroso M, Sivula K, Ye JH, Gratzel M, Klug DR, Tang JW, Durrant JR (2012) Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ Sci 5(4):6304–6312CrossRef
146.
go back to reference Hagedorn K, Forgacs C, Collins S, Maldonado S (2010) Design considerations for nanowire heterojunctions in solar energy conversion/storage applications. J Phys Chem C 114(27):12010–12017CrossRef Hagedorn K, Forgacs C, Collins S, Maldonado S (2010) Design considerations for nanowire heterojunctions in solar energy conversion/storage applications. J Phys Chem C 114(27):12010–12017CrossRef
147.
go back to reference Maruyama M, Iwase A, Kato H, Kudo A, Onishi H (2009) Time-resolved infrared absorption study of NaTaO3 photocatalysts doped with alkali earth metals. J Phys Chem C 113(31):13918–13923CrossRef Maruyama M, Iwase A, Kato H, Kudo A, Onishi H (2009) Time-resolved infrared absorption study of NaTaO3 photocatalysts doped with alkali earth metals. J Phys Chem C 113(31):13918–13923CrossRef
148.
go back to reference Garnett EC, Yang PD (2008) Silicon nanowire radial p-n junction solar cells. J Am Chem Soc 130(29):9224 Garnett EC, Yang PD (2008) Silicon nanowire radial p-n junction solar cells. J Am Chem Soc 130(29):9224
149.
go back to reference Wu P, Wang J, Zhao J, Guo L, Osterloh FE (2014) Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J Mater Chem A 2(47):20338–20344CrossRef Wu P, Wang J, Zhao J, Guo L, Osterloh FE (2014) Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J Mater Chem A 2(47):20338–20344CrossRef
150.
go back to reference Osterloh FE (2014) Boosting the efficiency of suspended photocatalysts for overall water splitting. J Phys Chem Lett 5(15):2510–2511CrossRef Osterloh FE (2014) Boosting the efficiency of suspended photocatalysts for overall water splitting. J Phys Chem Lett 5(15):2510–2511CrossRef
151.
go back to reference Le Formal F, Tetreault N, Cornuz M, Moehl T, Gratzel M, Sivula K (2011) Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci 2(4):737–743CrossRef Le Formal F, Tetreault N, Cornuz M, Moehl T, Gratzel M, Sivula K (2011) Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci 2(4):737–743CrossRef
152.
go back to reference Spray RL, McDonald KJ, Choi K-S (2011) Enhancing photoresponse of nanoparticulate alpha-Fe2O3 electrodes by surface composition tuning. J Phys Chem C 115(8):3497–3506CrossRef Spray RL, McDonald KJ, Choi K-S (2011) Enhancing photoresponse of nanoparticulate alpha-Fe2O3 electrodes by surface composition tuning. J Phys Chem C 115(8):3497–3506CrossRef
153.
go back to reference Liang YQ, Tsubota T, Mooij LPA, van de Krol R (2011) Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J Phys Chem C 115(35):17594–17598CrossRef Liang YQ, Tsubota T, Mooij LPA, van de Krol R (2011) Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J Phys Chem C 115(35):17594–17598CrossRef
154.
go back to reference Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J Am Chem Soc 133(45):18370–18377CrossRef Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J Am Chem Soc 133(45):18370–18377CrossRef
155.
go back to reference Osterloh FE (2014) Maximum theoretical efficiency limit of photovoltaic devices: effect of band structure on excited state entropy. J Phys Chem Lett 2014:3354–3359CrossRef Osterloh FE (2014) Maximum theoretical efficiency limit of photovoltaic devices: effect of band structure on excited state entropy. J Phys Chem Lett 2014:3354–3359CrossRef
156.
go back to reference Gerischer H (1966) Electrochemical behavior of semiconductors under illumination. J Electrochem Soc 113(11):1174–1182CrossRef Gerischer H (1966) Electrochemical behavior of semiconductors under illumination. J Electrochem Soc 113(11):1174–1182CrossRef
157.
go back to reference Polman A, Atwater HA (2012) Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 11(3):174–177CrossRef Polman A, Atwater HA (2012) Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 11(3):174–177CrossRef
158.
go back to reference Hodes G, Howell IDJ, Peter LM (1992) Nanocrystalline photoelectrochemical cells – a new concept in photovoltaic cells. J Electrochem Soc 139(11):3136–3140CrossRef Hodes G, Howell IDJ, Peter LM (1992) Nanocrystalline photoelectrochemical cells – a new concept in photovoltaic cells. J Electrochem Soc 139(11):3136–3140CrossRef
159.
go back to reference Cesar I, Sivula K, Kay A, Zboril R, Graetzel M (2009) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J Phys Chem C 113(2):772–782CrossRef Cesar I, Sivula K, Kay A, Zboril R, Graetzel M (2009) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J Phys Chem C 113(2):772–782CrossRef
160.
go back to reference Oregan B, Moser J, Anderson M, Gratzel M (1990) Vectorial electron injection into transparent semiconductor membranes and electric-field effects on the dynamics of light-induced charge separation. J Phys Chem 94(24):8720–8726CrossRef Oregan B, Moser J, Anderson M, Gratzel M (1990) Vectorial electron injection into transparent semiconductor membranes and electric-field effects on the dynamics of light-induced charge separation. J Phys Chem 94(24):8720–8726CrossRef
161.
go back to reference Dloczik L, Ileperuma O, Lauermann I, Peter LM, Ponomarev EA, Redmond G, Shaw NJ, Uhlendorf I (1997) Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J Phys Chem B 101(49):10281–10289CrossRef Dloczik L, Ileperuma O, Lauermann I, Peter LM, Ponomarev EA, Redmond G, Shaw NJ, Uhlendorf I (1997) Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J Phys Chem B 101(49):10281–10289CrossRef
162.
go back to reference Giebink NC, Wiederrecht GP, Wasielewski MR, Forrest SR (2011) Thermodynamic efficiency limit of excitonic solar cells. Phys Rev B 83(19):195326-1–195326-6 Giebink NC, Wiederrecht GP, Wasielewski MR, Forrest SR (2011) Thermodynamic efficiency limit of excitonic solar cells. Phys Rev B 83(19):195326-1–195326-6
163.
go back to reference Miseki Y, Kato H, Kudo A (2009) Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ Sci 2(3):306–314CrossRef Miseki Y, Kato H, Kudo A (2009) Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ Sci 2(3):306–314CrossRef
164.
go back to reference Matsumoto Y, Ida S, Inoue T (2008) Photodeposition of metal and metal oxide at the TiOx nanosheet to observe the photocatalytic active site. J Phys Chem C 112(31):11614–11616CrossRef Matsumoto Y, Ida S, Inoue T (2008) Photodeposition of metal and metal oxide at the TiOx nanosheet to observe the photocatalytic active site. J Phys Chem C 112(31):11614–11616CrossRef
165.
go back to reference Sabio EM, Chi M, Browning ND, Osterloh FE (2010) Charge separation in a niobate nanosheet photocatalyst studied with photochemical labeling. Langmuir 26(10):7254–7261CrossRef Sabio EM, Chi M, Browning ND, Osterloh FE (2010) Charge separation in a niobate nanosheet photocatalyst studied with photochemical labeling. Langmuir 26(10):7254–7261CrossRef
166.
go back to reference Li RG, Han HX, Zhang FX, Wang DG, Li C (2014) Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ Sci 7(4):1369–1376CrossRef Li RG, Han HX, Zhang FX, Wang DG, Li C (2014) Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ Sci 7(4):1369–1376CrossRef
167.
go back to reference Giocondi JL, Rohrer GS (2001) Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate. Chem Mater 13(2):241–242CrossRef Giocondi JL, Rohrer GS (2001) Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate. Chem Mater 13(2):241–242CrossRef
168.
go back to reference Yang SY, Seidel J, Byrnes SJ, Shafer P, Yang CH, Rossell MD, Yu P, Chu YH, Scott JF, Ager JW, Martin LW, Ramesh R (2010) Above-bandgap voltages from ferroelectric photovoltaic devices. Nat Nanotechnol 5(2):143–147CrossRef Yang SY, Seidel J, Byrnes SJ, Shafer P, Yang CH, Rossell MD, Yu P, Chu YH, Scott JF, Ager JW, Martin LW, Ramesh R (2010) Above-bandgap voltages from ferroelectric photovoltaic devices. Nat Nanotechnol 5(2):143–147CrossRef
169.
go back to reference Li L, Salvador PA, Rohrer GS (2014) Photocatalysts with internal electric fields. Nanoscale 6(1):24–42CrossRef Li L, Salvador PA, Rohrer GS (2014) Photocatalysts with internal electric fields. Nanoscale 6(1):24–42CrossRef
170.
go back to reference Abdi FF, Han LH, Smets AHM, Zeman M, Dam B, van de Krol R (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 2013:4 Abdi FF, Han LH, Smets AHM, Zeman M, Dam B, van de Krol R (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 2013:4
171.
go back to reference Dittrich T, Belaidi A, Ennaoui A (2011) Concepts of inorganic solid-state nanostructured solar cells. Sol Energy Mater 95(6):1527–1536CrossRef Dittrich T, Belaidi A, Ennaoui A (2011) Concepts of inorganic solid-state nanostructured solar cells. Sol Energy Mater 95(6):1527–1536CrossRef
172.
go back to reference Du C, Yang XG, Mayer MT, Hoyt H, Xie J, McMahon G, Bischoping G, Wang DW (2013) Hematite-based water splitting with low turn-on voltages. Angew Chem Int Ed Engl 52(48):12692–12695 Du C, Yang XG, Mayer MT, Hoyt H, Xie J, McMahon G, Bischoping G, Wang DW (2013) Hematite-based water splitting with low turn-on voltages. Angew Chem Int Ed Engl 52(48):12692–12695
173.
go back to reference Pasquarelli RM, Ginley DS, O'Hayre R (2011) Solution processing of transparent conductors: from flask to film. Chem Soc Rev 40(11):5406–5441CrossRef Pasquarelli RM, Ginley DS, O'Hayre R (2011) Solution processing of transparent conductors: from flask to film. Chem Soc Rev 40(11):5406–5441CrossRef
174.
go back to reference Sodergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical-models for the action spectrum and the current–voltage characteristics of microporous semiconductor-films in photoelectrochemical cells. J Phys Chem 98(21):5552–5556CrossRef Sodergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical-models for the action spectrum and the current–voltage characteristics of microporous semiconductor-films in photoelectrochemical cells. J Phys Chem 98(21):5552–5556CrossRef
175.
go back to reference Hagfeldt A, Bjorksten U, Lindquist SE (1992) Photoelectrochemical studies of colloidal TIO2-films – the charge separation process studied by means of action spectra in the UV region. Sol Energy Mat Sol C 27(4):293–304CrossRef Hagfeldt A, Bjorksten U, Lindquist SE (1992) Photoelectrochemical studies of colloidal TIO2-films – the charge separation process studied by means of action spectra in the UV region. Sol Energy Mat Sol C 27(4):293–304CrossRef
176.
go back to reference Bisquert J, Vikhrenko VS (2004) Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J Phys Chem B 108(7):2313–2322CrossRef Bisquert J, Vikhrenko VS (2004) Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J Phys Chem B 108(7):2313–2322CrossRef
177.
go back to reference Hagfeldt A, Lindstrom H, Sodergren S, Lindquist SE (1995) Photoelectrochemical studies of colloidal TiO2 films – the effect of oxygen studied by photocurrent transients. J Electroanal Chem 381(1–2):39–46CrossRef Hagfeldt A, Lindstrom H, Sodergren S, Lindquist SE (1995) Photoelectrochemical studies of colloidal TiO2 films – the effect of oxygen studied by photocurrent transients. J Electroanal Chem 381(1–2):39–46CrossRef
178.
go back to reference Abeles B, Sheng P, Coutts MD, Arie Y (1975) Structural and electrical properties of granular metal-films. Adv Phys 24(3):407–461CrossRef Abeles B, Sheng P, Coutts MD, Arie Y (1975) Structural and electrical properties of granular metal-films. Adv Phys 24(3):407–461CrossRef
179.
go back to reference Terrill RH, Postlethwaite TA, Chen CH, Poon CD, Terzis A, Chen AD, Hutchison JE, Clark MR, Wignall G, Londono JD, Superfine R, Falvo M, Johnson CS, Samulski ET, Murray RW (1995) Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J Am Chem Soc 117(50):12537–12548CrossRef Terrill RH, Postlethwaite TA, Chen CH, Poon CD, Terzis A, Chen AD, Hutchison JE, Clark MR, Wignall G, Londono JD, Superfine R, Falvo M, Johnson CS, Samulski ET, Murray RW (1995) Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J Am Chem Soc 117(50):12537–12548CrossRef
180.
go back to reference Yokoi T, Sakuma J, Maeda K, Domen K, Tatsumi T, Kondo JN (2011) Preparation of a colloidal array of NaTaO(3) nanoparticles via a confined space synthesis route and its photocatalytic application. Phys Chem Chem Phys 13(7):2563–2570CrossRef Yokoi T, Sakuma J, Maeda K, Domen K, Tatsumi T, Kondo JN (2011) Preparation of a colloidal array of NaTaO(3) nanoparticles via a confined space synthesis route and its photocatalytic application. Phys Chem Chem Phys 13(7):2563–2570CrossRef
181.
go back to reference Townsend TK, Browning ND, Osterloh FE (2012) Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 6(8):7420–7426CrossRef Townsend TK, Browning ND, Osterloh FE (2012) Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 6(8):7420–7426CrossRef
182.
go back to reference Liu B, Wu C-H, Miao J, Yang P (2014) All inorganic semiconductor nanowire mesh for direct solar water splitting. ACS Nano 8(11):11739–11744CrossRef Liu B, Wu C-H, Miao J, Yang P (2014) All inorganic semiconductor nanowire mesh for direct solar water splitting. ACS Nano 8(11):11739–11744CrossRef
183.
go back to reference Liu J, Hisatomi T, Ma G, Iwanaga A, Minegishi T, Moriya Y, Katayama M, Kubota J, Domen K (2014) Improving the photoelectrochemical activity of La5Ti2CuS5O7 for hydrogen evolution by particle transfer and doping. Energy Environ Sci 7(7):2239–2242CrossRef Liu J, Hisatomi T, Ma G, Iwanaga A, Minegishi T, Moriya Y, Katayama M, Kubota J, Domen K (2014) Improving the photoelectrochemical activity of La5Ti2CuS5O7 for hydrogen evolution by particle transfer and doping. Energy Environ Sci 7(7):2239–2242CrossRef
184.
go back to reference Minegishi T, Nishimura N, Kubota J, Domen K (2013) Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem Sci 4(3):1120–1124CrossRef Minegishi T, Nishimura N, Kubota J, Domen K (2013) Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem Sci 4(3):1120–1124CrossRef
185.
go back to reference Urabe H, Hisatomi T, Minegishi T, Kubota J, Domen K (2014) Photoelectrochemical properties of SrNbO2N photoanodes for water oxidation fabricated by the particle transfer method. Faraday Discuss 176:213–223 Urabe H, Hisatomi T, Minegishi T, Kubota J, Domen K (2014) Photoelectrochemical properties of SrNbO2N photoanodes for water oxidation fabricated by the particle transfer method. Faraday Discuss 176:213–223
186.
go back to reference Townsend TK, Sabio EM, Browning ND, Osterloh FE (2011) Improved niobate nanoscroll photocatalysts for partial water splitting. ChemSusChem 4(2):185–190 Townsend TK, Sabio EM, Browning ND, Osterloh FE (2011) Improved niobate nanoscroll photocatalysts for partial water splitting. ChemSusChem 4(2):185–190
187.
go back to reference Kronik L, Shapira Y (1999) Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep 37:1–206CrossRef Kronik L, Shapira Y (1999) Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep 37:1–206CrossRef
188.
go back to reference Kronik L, Shapira Y (2001) SPV review-short version. Surf Interface Anal 31:954–965CrossRef Kronik L, Shapira Y (2001) SPV review-short version. Surf Interface Anal 31:954–965CrossRef
189.
go back to reference Zhao J, Osterloh FE (2014) Photochemical charge separation in nanocrystal photocatalyst films – insights from surface photovoltage spectroscopy. J Phys Chem Lett 5:782–786CrossRef Zhao J, Osterloh FE (2014) Photochemical charge separation in nanocrystal photocatalyst films – insights from surface photovoltage spectroscopy. J Phys Chem Lett 5:782–786CrossRef
190.
go back to reference Osterloh FE, Holmes MA, Zhao J, Chang L, Kawula S, Roehling JD, Moulé AJ (2014) P3HT:PCBM bulk-heterojunctions: observing interfacial and charge transfer states with surface photovoltage spectroscopy. J Phys Chem C 118(27):14723–14731CrossRef Osterloh FE, Holmes MA, Zhao J, Chang L, Kawula S, Roehling JD, Moulé AJ (2014) P3HT:PCBM bulk-heterojunctions: observing interfacial and charge transfer states with surface photovoltage spectroscopy. J Phys Chem C 118(27):14723–14731CrossRef
191.
go back to reference Osterloh FE, Holmes MA, Chang L, Moule AJ, Zhao J (2013) Photochemical charge separation in poly(3-hexylthiophene) (P3HT) films observed with surface photovoltage spectroscopy. J Phys Chem C 117(51):26905–26913CrossRef Osterloh FE, Holmes MA, Chang L, Moule AJ, Zhao J (2013) Photochemical charge separation in poly(3-hexylthiophene) (P3HT) films observed with surface photovoltage spectroscopy. J Phys Chem C 117(51):26905–26913CrossRef
192.
go back to reference Lagowski J (1994) Semiconductor surface spectroscopies – the early years. Surf Sci 299(1–3):92–101CrossRef Lagowski J (1994) Semiconductor surface spectroscopies – the early years. Surf Sci 299(1–3):92–101CrossRef
193.
go back to reference Luria JL, Hoepker N, Bruce R, Jacobs AR, Groves C, Marohn JA (2012) Spectroscopic imaging of photopotentials and photoinduced potential fluctuations in a bulk heterojunction solar cell film. ACS Nano 6(11):9392–9401CrossRef Luria JL, Hoepker N, Bruce R, Jacobs AR, Groves C, Marohn JA (2012) Spectroscopic imaging of photopotentials and photoinduced potential fluctuations in a bulk heterojunction solar cell film. ACS Nano 6(11):9392–9401CrossRef
194.
go back to reference Burstein L, Bregman J, Shapira Y (1991) Characterization of interface states at III-V compound semiconductor–metal interfaces. J Appl Phys 69(4):2312–2316CrossRef Burstein L, Bregman J, Shapira Y (1991) Characterization of interface states at III-V compound semiconductor–metal interfaces. J Appl Phys 69(4):2312–2316CrossRef
195.
go back to reference Lagowski J, Jastrzebski L, Cullen GW (1981) Electronic characterization of hetero-epitaxial silicon-on-sapphire by surface photo-voltage spectroscopy. J Electrochem Soc 128(12):2665–2670CrossRef Lagowski J, Jastrzebski L, Cullen GW (1981) Electronic characterization of hetero-epitaxial silicon-on-sapphire by surface photo-voltage spectroscopy. J Electrochem Soc 128(12):2665–2670CrossRef
196.
go back to reference Musser ME, Dahlberg SC (1980) The surface photo-voltage of polymethine semiconducting-films. J Chem Phys 72(7):4084–4088CrossRef Musser ME, Dahlberg SC (1980) The surface photo-voltage of polymethine semiconducting-films. J Chem Phys 72(7):4084–4088CrossRef
197.
go back to reference Moons E, Eschle M, Gratzel M (1997) Determination of the energy diagram of the dithioketopyrrolopyrrole/SnO2:F heterojunction by surface photovoltage spectroscopy. Appl Phys Lett 71(22):3305–3307CrossRef Moons E, Eschle M, Gratzel M (1997) Determination of the energy diagram of the dithioketopyrrolopyrrole/SnO2:F heterojunction by surface photovoltage spectroscopy. Appl Phys Lett 71(22):3305–3307CrossRef
198.
go back to reference Gross D, Mora-Sero I, Dittrich T, Belaidi A, Mauser C, Houtepen AJ, Da Como E, Rogach AL, Feldmann J (2010) Charge separation in type II tunneling multi layered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J Am Chem Soc 132(17):5981 Gross D, Mora-Sero I, Dittrich T, Belaidi A, Mauser C, Houtepen AJ, Da Como E, Rogach AL, Feldmann J (2010) Charge separation in type II tunneling multi layered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J Am Chem Soc 132(17):5981
199.
go back to reference Dittrich T, Fiechter S, Thomas A (2011) Surface photovoltage spectroscopy of carbon nitride powder. Appl Phys Lett 99(8):084105-1–084105-3 Dittrich T, Fiechter S, Thomas A (2011) Surface photovoltage spectroscopy of carbon nitride powder. Appl Phys Lett 99(8):084105-1–084105-3
200.
go back to reference Nowotny MK, Bogdanoff P, Dittrich T, Fiechter S, Fujishima A, Tributsch H (2010) Observations of p-type semiconductivity in titanium dioxide at room temperature. Mater Lett 64(8):928–930CrossRef Nowotny MK, Bogdanoff P, Dittrich T, Fiechter S, Fujishima A, Tributsch H (2010) Observations of p-type semiconductivity in titanium dioxide at room temperature. Mater Lett 64(8):928–930CrossRef
201.
go back to reference Zidon Y, Shapira Y, Dittrich T, Otero L (2007) Light-induced charge separation in thin tetraphenyl-porphyrin layers deposited on Au. Phys Rev B 75(19) Zidon Y, Shapira Y, Dittrich T, Otero L (2007) Light-induced charge separation in thin tetraphenyl-porphyrin layers deposited on Au. Phys Rev B 75(19)
202.
go back to reference Mandujano-Ramirez HJ, Gonzalez-Vazquez JP, Oskam G, Dittrich T, Garcia-Belmonte G, Mora-Sero I, Bisquert J, Anta JA (2014) Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations. Phys Chem Chem Phys 16(9):4082–4091CrossRef Mandujano-Ramirez HJ, Gonzalez-Vazquez JP, Oskam G, Dittrich T, Garcia-Belmonte G, Mora-Sero I, Bisquert J, Anta JA (2014) Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations. Phys Chem Chem Phys 16(9):4082–4091CrossRef
203.
go back to reference Fungo F, Milanesio ME, Durantini EN, Otero L, Dittrich T (2007) Optically induced switch of the surface work function in TiO2/porphyrin-C-60 dyad system. J Mater Chem 17(20):2107–2112CrossRef Fungo F, Milanesio ME, Durantini EN, Otero L, Dittrich T (2007) Optically induced switch of the surface work function in TiO2/porphyrin-C-60 dyad system. J Mater Chem 17(20):2107–2112CrossRef
204.
go back to reference Herzog C, Belaidi A, Ogacho A, Dittrich T (2009) Inorganic solid state solar cell with ultra-thin nanocomposite absorber based on nanoporous TiO(2) and In(2)S(3). Energy Environ Sci 2(9):962–964CrossRef Herzog C, Belaidi A, Ogacho A, Dittrich T (2009) Inorganic solid state solar cell with ultra-thin nanocomposite absorber based on nanoporous TiO(2) and In(2)S(3). Energy Environ Sci 2(9):962–964CrossRef
205.
go back to reference Maeda K, Mallouk TE (2009) Comparison of two- and three-layer restacked Dion–Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution. J Mater Chem 19(27):4813–4818CrossRef Maeda K, Mallouk TE (2009) Comparison of two- and three-layer restacked Dion–Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution. J Mater Chem 19(27):4813–4818CrossRef
206.
go back to reference Compton OC, Osterloh FE (2009) Niobate nanosheets as catalysts for photochemical water splitting into hydrogen and hydrogen peroxide. J Phys Chem C 113(1):479–485CrossRef Compton OC, Osterloh FE (2009) Niobate nanosheets as catalysts for photochemical water splitting into hydrogen and hydrogen peroxide. J Phys Chem C 113(1):479–485CrossRef
207.
go back to reference Lide DR (2008) Electron work function of the elements. In: CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton Lide DR (2008) Electron work function of the elements. In: CRC handbook of chemistry and physics, vol 88. CRC/Taylor and Francis, Boca Raton
208.
go back to reference Wang J, Osterloh FE (2014) Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight. J Mater Chem A 2:9405–9411CrossRef Wang J, Osterloh FE (2014) Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight. J Mater Chem A 2:9405–9411CrossRef
209.
go back to reference Kudo A, Ueda K, Kato H, Mikami I (1998) Photocatalytic O-2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal Lett 53(3–4):229–230CrossRef Kudo A, Ueda K, Kato H, Mikami I (1998) Photocatalytic O-2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal Lett 53(3–4):229–230CrossRef
Metadata
Title
Nanoscale Effects in Water Splitting Photocatalysis
Author
Frank E. Osterloh
Copyright Year
2016
DOI
https://doi.org/10.1007/128_2015_633

Premium Partners