Skip to main content
Top
Published in: Journal of Materials Science 17/2021

08-03-2021 | Chemical routes to materials

Nanoscale investigation and control of photothermal action of gold nanostructure-coated surfaces

Authors: Samir V. Jenkins, Seunghyun Jung, Shruti Shah, Paul C. Millett, Ruud P. M. Dings, Michael J. Borrelli, Robert J. Griffin

Published in: Journal of Materials Science | Issue 17/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The combination of biological variation and nanomaterial heterogeneity makes elucidating the mechanisms of interactions between cells and nanoparticles extremely complicated. Accurate nanoparticle quantification can be extremely challenging, and cellular response can change based on the location of the nanoparticle and the cell type under investigation. These complications are only amplified by the addition of external stimuli. These limitations have yielded a wide range of studies that show effects, but often provide little mechanistic insight. Gold (Au) nanomaterials were stably immobilized onto glass coverslips treated with mercaptosilane to control both the average number of nanoparticles that interact with cells and their spatial orientation relative to the cell membrane. Surfaces were characterized optically and by electron microscopy to confirm their surface density and uniformity. The thermal response of Au nanocage-coated surfaces to near infrared laser irradiation was measured in cell culture medium and modeled computationally. The modeling showed a vastly higher thermal dose than would be predicted by bulk temperature measurements. Adherent or non-adherent cell lines were cultured directly on the nanocage-coated surface or in the medium, respectively, in culture wells and laser irradiation was applied. Survival of cells growing in suspension correlated with the bulk temperature increase in the culture medium, as measured by viability assay. Conversely, adherent cells exhibited a much greater susceptibility than expected from the bulk temperature measurement, which is ostensibly related to the close interaction with the nanoparticles on their growth substrate and induction of substantially greater thermal dose upon laser exposure. This platform is designed to be a new tool to determine how many particles need to be in contact with a cell to induce desired physical or biological effects. Here we demonstrate the delivery of precise thermal doses following laser irradiation. The anticipated biological effects based on bulk measurements vastly underestimated the effects that were observed, which is ascribed to the proximity of the nanoparticle to the cell and the extraordinary high surface temperature of the particle. This platform could be expanded to a variety of nanoparticles, external stimuli, and cell types to enable more deliberate and optimized application of nanomedicine.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Sharma SK, Shrivastava N, Rossi F, Tung LD, Thanh NTK (2019) Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today 29:1–27CrossRef Sharma SK, Shrivastava N, Rossi F, Tung LD, Thanh NTK (2019) Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today 29:1–27CrossRef
2.
go back to reference Wilets KA, Duyne RPV (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRef Wilets KA, Duyne RPV (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRef
3.
go back to reference Schöttler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, Mailänder V, Wurm FR (2016) Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol 11:372–377CrossRef Schöttler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, Mailänder V, Wurm FR (2016) Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol 11:372–377CrossRef
4.
go back to reference Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331(2):251–262CrossRef Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331(2):251–262CrossRef
5.
go back to reference Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, Pandey RK (2014) Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 4(2):163–174CrossRef Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, Pandey RK (2014) Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 4(2):163–174CrossRef
6.
go back to reference Jenkins SV, Qu H, Mudalige T, Ingle TM, Wang R, Wang F, Howard PC, Chen J, Zhang Y (2015) Rapid determination of plasmonic nanoparticle agglomeration status in blood. Biomaterials 51:226–237CrossRef Jenkins SV, Qu H, Mudalige T, Ingle TM, Wang R, Wang F, Howard PC, Chen J, Zhang Y (2015) Rapid determination of plasmonic nanoparticle agglomeration status in blood. Biomaterials 51:226–237CrossRef
7.
go back to reference Wang H, Chen B, He M, Li X, Chen P, Hu B (2019) Study on uptake of gold nanoparticles by single cells using droplet microfluidic chip-inductively coupled plasma mass spectrometry. Talanta 200:398–407CrossRef Wang H, Chen B, He M, Li X, Chen P, Hu B (2019) Study on uptake of gold nanoparticles by single cells using droplet microfluidic chip-inductively coupled plasma mass spectrometry. Talanta 200:398–407CrossRef
8.
go back to reference Rosman C, Pierrat S, Henkel A, Tarantola M, Schneider D, Sunnick E, Janshoff A, Sönnichsen C (2012) A new approach to assess gold nanoparticle uptake by mammalian cells: combining optical dark-field and transmission electron microscopy. Small 8(23):3683–3690CrossRef Rosman C, Pierrat S, Henkel A, Tarantola M, Schneider D, Sunnick E, Janshoff A, Sönnichsen C (2012) A new approach to assess gold nanoparticle uptake by mammalian cells: combining optical dark-field and transmission electron microscopy. Small 8(23):3683–3690CrossRef
9.
go back to reference Jenkins SV, Nima ZA, Vang KB, Kannarpady G, Nedosekin DA, Zharov VP, Griffin RJ, Biris AS, Dings RPM (2017) Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. NPJ Precis Oncol 1(1):1–9 Jenkins SV, Nima ZA, Vang KB, Kannarpady G, Nedosekin DA, Zharov VP, Griffin RJ, Biris AS, Dings RPM (2017) Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. NPJ Precis Oncol 1(1):1–9
10.
go back to reference Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134(28):11358–11361CrossRef Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134(28):11358–11361CrossRef
11.
go back to reference Untener EA, Comfort KK, Maurer EI, Grabinski CM, Comfort DA, Hussain SM (2013) Tannic acid coated gold nanorods demonstrate a distinctive form of endosomal uptake and unique distribution within cells. ACS Appl Mater Interfaces 5(17):8366–8373CrossRef Untener EA, Comfort KK, Maurer EI, Grabinski CM, Comfort DA, Hussain SM (2013) Tannic acid coated gold nanorods demonstrate a distinctive form of endosomal uptake and unique distribution within cells. ACS Appl Mater Interfaces 5(17):8366–8373CrossRef
12.
go back to reference Gu Y-J, Cheng J, Lin C-C, Lam YW, Cheng SH, Wong W-T (2009) Nuclear penetration of surface functionalized gold nanoparticles. Toxicol Appl Pharmacol 237(2):196–204CrossRef Gu Y-J, Cheng J, Lin C-C, Lam YW, Cheng SH, Wong W-T (2009) Nuclear penetration of surface functionalized gold nanoparticles. Toxicol Appl Pharmacol 237(2):196–204CrossRef
13.
go back to reference Merzel RL, Orr BG, Banaszak Holl MM (2018) Distributions: the importance of the chemist’s molecular view for biological materials. Biomacromol 19(5):1469–1484CrossRef Merzel RL, Orr BG, Banaszak Holl MM (2018) Distributions: the importance of the chemist’s molecular view for biological materials. Biomacromol 19(5):1469–1484CrossRef
14.
go back to reference Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216CrossRef Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216CrossRef
15.
go back to reference Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV−Vis Spectra. Anal Chem 79(11):4215–4221CrossRef Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV−Vis Spectra. Anal Chem 79(11):4215–4221CrossRef
16.
go back to reference Zlatanova J, van Holde K (2006) Single-molecule biology: What is it and how does it work? Mol Cell 24(3):317–329CrossRef Zlatanova J, van Holde K (2006) Single-molecule biology: What is it and how does it work? Mol Cell 24(3):317–329CrossRef
17.
go back to reference Ali MRK, Wu Y, El-Sayed MA (2019) Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. J Phys Chem C 123(25):15375–15393CrossRef Ali MRK, Wu Y, El-Sayed MA (2019) Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. J Phys Chem C 123(25):15375–15393CrossRef
18.
go back to reference Dewey WC (1994) Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperth 10(4):457–483CrossRef Dewey WC (1994) Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperth 10(4):457–483CrossRef
19.
go back to reference Pearce J (2009) Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose. SPIE 7181:1–15 Pearce J (2009) Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose. SPIE 7181:1–15
20.
go back to reference Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ (2016) Hyperthermia: How can it be used? Oman Med J 31(2):89–97CrossRef Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ (2016) Hyperthermia: How can it be used? Oman Med J 31(2):89–97CrossRef
21.
go back to reference Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5(9):7124–7129CrossRef Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5(9):7124–7129CrossRef
22.
go back to reference Gerner EW (1987) Thermal dose and time—temperature factors for biological responses to heat shock. Int J Hyperth 3(4):319–327CrossRef Gerner EW (1987) Thermal dose and time—temperature factors for biological responses to heat shock. Int J Hyperth 3(4):319–327CrossRef
23.
go back to reference van Rhoon GC, Samaras T, Yarmolenko PS, Dewhirst MW, Neufeld E, Kuster N (2013) CEM43 °C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23(8):2215–2227CrossRef van Rhoon GC, Samaras T, Yarmolenko PS, Dewhirst MW, Neufeld E, Kuster N (2013) CEM43 °C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23(8):2215–2227CrossRef
24.
go back to reference Borrelli MJ, Thompson LL, Cain CA, Dewey WC (1990) Time-temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43.5 °C to 57.0 °C. Int J Radiat Oncol Biol Phys 19(2):389–399CrossRef Borrelli MJ, Thompson LL, Cain CA, Dewey WC (1990) Time-temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43.5 °C to 57.0 °C. Int J Radiat Oncol Biol Phys 19(2):389–399CrossRef
25.
go back to reference Garanina AS, Naumenko VA, Nikitin AA, Myrovali E, Petukhova AY, Klimyuk SV, Nalench YA, Ilyasov AR, Vodopyanov SS, Erofeev AS, Gorelkin PV, Angelakeris M, Savchenko AG, Wiedwald U, Majouga Dr AG, Abakumov MA (2020) Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination. Nanomed Nanotechnol Biol Med 25:1–12CrossRef Garanina AS, Naumenko VA, Nikitin AA, Myrovali E, Petukhova AY, Klimyuk SV, Nalench YA, Ilyasov AR, Vodopyanov SS, Erofeev AS, Gorelkin PV, Angelakeris M, Savchenko AG, Wiedwald U, Majouga Dr AG, Abakumov MA (2020) Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination. Nanomed Nanotechnol Biol Med 25:1–12CrossRef
26.
go back to reference Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D (2010) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 7(1):94–104CrossRef Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D (2010) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 7(1):94–104CrossRef
27.
go back to reference Zhang S, Li Y, He X, Dong S, Huang Y, Li X, Li Y, Jin C, Zhang Y, Wang Y (2014) Photothermolysis mediated by gold nanorods modified with EGFR monoclonal antibody induces Hep-2 cells apoptosis in vitro and in vivo. Int J Nanomed 9:1931–1946 Zhang S, Li Y, He X, Dong S, Huang Y, Li X, Li Y, Jin C, Zhang Y, Wang Y (2014) Photothermolysis mediated by gold nanorods modified with EGFR monoclonal antibody induces Hep-2 cells apoptosis in vitro and in vivo. Int J Nanomed 9:1931–1946
28.
go back to reference Jenkins SV, Nedosekin DA, Shaulis BJ, Wang T, Jamshidi-Parsian A, Pollock ED, Chen J, Dings RPM, Griffin RJ (2019) Enhanced photothermal treatment efficacy and normal tissue protection via vascular targeted gold nanocages. Nanotheranostics 3(2):145–155CrossRef Jenkins SV, Nedosekin DA, Shaulis BJ, Wang T, Jamshidi-Parsian A, Pollock ED, Chen J, Dings RPM, Griffin RJ (2019) Enhanced photothermal treatment efficacy and normal tissue protection via vascular targeted gold nanocages. Nanotheranostics 3(2):145–155CrossRef
29.
go back to reference Jenkins SV, Nedosekin DA, Miller EK, Zharov VP, Dings RPM, Chen J, Griffin RJ (2018) Galectin-1-based tumour-targeting for gold nanostructure-mediated photothermal therapy. Int J Hyperth 34(1):19–29CrossRef Jenkins SV, Nedosekin DA, Miller EK, Zharov VP, Dings RPM, Chen J, Griffin RJ (2018) Galectin-1-based tumour-targeting for gold nanostructure-mediated photothermal therapy. Int J Hyperth 34(1):19–29CrossRef
30.
go back to reference Meeker DG, Jenkins SV, Miller EK, Beenken KE, Loughran AJ, Powless A, Muldoon TJ, Galanzha EI, Zharov VP, Smeltzer MS, Chen J (2016) Synergistic photothermal and antibiotic killing of biofilm-associated staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect Dis 2(4):241–250CrossRef Meeker DG, Jenkins SV, Miller EK, Beenken KE, Loughran AJ, Powless A, Muldoon TJ, Galanzha EI, Zharov VP, Smeltzer MS, Chen J (2016) Synergistic photothermal and antibiotic killing of biofilm-associated staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect Dis 2(4):241–250CrossRef
31.
go back to reference Zhang Y, Zhan X, Xiong J, Peng S, Huang W, Joshi R, Cai Y, Liu Y, Li R, Yuan K, Zhou N, Min W (2018) Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep 8(1):1–9 Zhang Y, Zhan X, Xiong J, Peng S, Huang W, Joshi R, Cai Y, Liu Y, Li R, Yuan K, Zhou N, Min W (2018) Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep 8(1):1–9
32.
go back to reference Carlson MT, Khan A, Richardson HH (2011) Local temperature determination of optically excited nanoparticles and nanodots. Nano Lett 11(3):1061–1069CrossRef Carlson MT, Khan A, Richardson HH (2011) Local temperature determination of optically excited nanoparticles and nanodots. Nano Lett 11(3):1061–1069CrossRef
33.
go back to reference Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, Polleux J, Rigneault H (2013) Photoinduced heating of nanoparticle arrays. ACS Nano 7(8):6478–6488CrossRef Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, Polleux J, Rigneault H (2013) Photoinduced heating of nanoparticle arrays. ACS Nano 7(8):6478–6488CrossRef
34.
go back to reference Skrabalak SE, Au L, Li X, Xia Y (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2(9):2182–2190CrossRef Skrabalak SE, Au L, Li X, Xia Y (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2(9):2182–2190CrossRef
35.
go back to reference Jeon M, Jenkins S, Oh J, Kim J, Peterson T, Chen J, Kim C (2013) Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine 9:1377–1388CrossRef Jeon M, Jenkins S, Oh J, Kim J, Peterson T, Chen J, Kim C (2013) Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine 9:1377–1388CrossRef
36.
go back to reference Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90CrossRef Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90CrossRef
37.
go back to reference Nishida K, Kawasaki H (2017) Effective removal of surface-bound cetyltrimethylammonium ions from thiol-monolayer-protected Au nanorods by treatment with dimethyl sulfoxide/citric acid. RSC Adv 7(29):18041–18045CrossRef Nishida K, Kawasaki H (2017) Effective removal of surface-bound cetyltrimethylammonium ions from thiol-monolayer-protected Au nanorods by treatment with dimethyl sulfoxide/citric acid. RSC Adv 7(29):18041–18045CrossRef
38.
go back to reference Wang Y, Black KCL, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S-Y, Li M, Kim P, Li Z-Y, Wang LV, Liu Y, Xia Y (2013) Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7(3):2068–2077CrossRef Wang Y, Black KCL, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S-Y, Li M, Kim P, Li Z-Y, Wang LV, Liu Y, Xia Y (2013) Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7(3):2068–2077CrossRef
39.
go back to reference van Dommelen R, Fanzio P, Sasso L (2018) Surface self-assembly of colloidal crystals for micro- and nano-patterning. Adv Coll Interface Sci 251:97–114CrossRef van Dommelen R, Fanzio P, Sasso L (2018) Surface self-assembly of colloidal crystals for micro- and nano-patterning. Adv Coll Interface Sci 251:97–114CrossRef
40.
go back to reference Xue Y, Li X, Li H, Zhang W (2014) Quantifying thiol–gold interactions towards the efficient strength control. Nat Commun 5:4438–4447CrossRef Xue Y, Li X, Li H, Zhang W (2014) Quantifying thiol–gold interactions towards the efficient strength control. Nat Commun 5:4438–4447CrossRef
41.
go back to reference Ansar SM, Ameer FS, Hu W, Zou S, Pittman CU, Zhang D (2013) Removal of molecular adsorbates on gold nanoparticles using sodium borohydride in water. Nano Lett 13(3):1226–1229CrossRef Ansar SM, Ameer FS, Hu W, Zou S, Pittman CU, Zhang D (2013) Removal of molecular adsorbates on gold nanoparticles using sodium borohydride in water. Nano Lett 13(3):1226–1229CrossRef
Metadata
Title
Nanoscale investigation and control of photothermal action of gold nanostructure-coated surfaces
Authors
Samir V. Jenkins
Seunghyun Jung
Shruti Shah
Paul C. Millett
Ruud P. M. Dings
Michael J. Borrelli
Robert J. Griffin
Publication date
08-03-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05947-6

Other articles of this Issue 17/2021

Journal of Materials Science 17/2021 Go to the issue

Premium Partners