Skip to main content
Top

2018 | OriginalPaper | Chapter

8. Nanostructured Electrodes for High-Performing Solid Oxide Fuel Cells

Author : Hanping Ding

Published in: Nanostructured Materials for Next-Generation Energy Storage and Conversion

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solid oxide fuel cell (SOFC) is an all-solid-state ceramic electrochemical device for converting chemical energy (fuels) to electricity with high energy efficiency and ultralow harmful emissions. These classes of FCs have received significant attention by researchers as a potential replacement for petroleum-based energy devices. In order to broaden the material selection and increase material system durability, the development of intermediate- or low-temperature SOFC is critical to making their commercialization viable. Therefore, the SOFC performance at lowered operating temperatures must be improved by the innovation of materials and microstructures. The nanostructure engineering of electrodes has demonstrated their improved catalytic performance due to minimization of the electrode polarization resistances for oxygen reduction reaction and fuel oxidation reaction at the nanoscale compared to the traditional electrode design. The synthesis technique strategy was based on wet chemistry catalyst infiltration into electrode structure and has been demonstrated improvements in power density and electrode stability. In this chapter, the technical process of ion infiltration method is discussed; and the different routes in fabricating nanostructured electrodes to achieve high-performing SOFC in hydrogen and hydrocarbon fuels are reviewed. The electrode parameters that lead to improvement of SOFC performance are also summarized. By fabricating electrodes at the nanoscale, a significant increase in specific area was obtained that can provide greater active catalysis sites for electrode reactions, as well as a decrease in the activation polarization resistance which collectively led to improved SOFC performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference A.J. Jacobson, Materials for solid oxide fuel cells. Chem. Mater. 22, 660–674 (2010)CrossRef A.J. Jacobson, Materials for solid oxide fuel cells. Chem. Mater. 22, 660–674 (2010)CrossRef
3.
go back to reference D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)CrossRef D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)CrossRef
4.
5.
go back to reference Y. Yi, A.D. Rao, J. Brouwer, G.S. Samuelsen, J. Power Sources 144, 67–76 (2005)CrossRef Y. Yi, A.D. Rao, J. Brouwer, G.S. Samuelsen, J. Power Sources 144, 67–76 (2005)CrossRef
6.
go back to reference S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics 152-153, 405–410 (2002)CrossRef S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics 152-153, 405–410 (2002)CrossRef
7.
go back to reference W.G. Coors, Protonic ceramic fuel cells for high-efficiency operation with methane. J. Power Sources 118, 150–156 (2003)CrossRef W.G. Coors, Protonic ceramic fuel cells for high-efficiency operation with methane. J. Power Sources 118, 150–156 (2003)CrossRef
8.
go back to reference L. Yang, C.D. Zuo, S.Z. Wang, Z. Cheng, M. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv. Mater. 20, 3280–3283 (2008)CrossRef L. Yang, C.D. Zuo, S.Z. Wang, Z. Cheng, M. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv. Mater. 20, 3280–3283 (2008)CrossRef
9.
go back to reference N.M. Sammes, Y. Du, R. Bove, Design and fabrication of a 100 W anode-supported tubular SOFC stack. J. Power Sources 145, 428–434 (2005)CrossRef N.M. Sammes, Y. Du, R. Bove, Design and fabrication of a 100 W anode-supported tubular SOFC stack. J. Power Sources 145, 428–434 (2005)CrossRef
10.
go back to reference T. Fukui, S. Ohara, K. Mukai, Long-term stability of Ni-YSZ anode with a new microstructure prepared from composite powder. Electrochem. Solid-State Lett. 29(1), 120–122 (1998) T. Fukui, S. Ohara, K. Mukai, Long-term stability of Ni-YSZ anode with a new microstructure prepared from composite powder. Electrochem. Solid-State Lett. 29(1), 120–122 (1998)
11.
go back to reference A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004)CrossRef A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004)CrossRef
12.
go back to reference T. Zhang, W.G. Fahrenholtz, S.T. Reis, R.K. Brow, Borate volatility from SOFC sealing glasses. J. Am. Ceram. Soc. 91, 2564–2569 (2008)CrossRef T. Zhang, W.G. Fahrenholtz, S.T. Reis, R.K. Brow, Borate volatility from SOFC sealing glasses. J. Am. Ceram. Soc. 91, 2564–2569 (2008)CrossRef
13.
go back to reference E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)CrossRef E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)CrossRef
14.
go back to reference S. McIntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells. Chem. Rev. 104, 4845–4865 (2004)CrossRef S. McIntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells. Chem. Rev. 104, 4845–4865 (2004)CrossRef
15.
go back to reference Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid oxide fuel cells. Science 312, 254–257 (2006)CrossRef Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid oxide fuel cells. Science 312, 254–257 (2006)CrossRef
16.
go back to reference R. Steinberger-Wilckens, F. Tietz, M.J. Smith, J. Mougin, B. Rietveld, O. Bucheli, J.V. Herle, R. Rosenberg, M. Zahid, P. Holtappels, Real-SOFC–a joint European effort in understanding SOFC degradation. ECS Trans. 7, 67–76 (2007)CrossRef R. Steinberger-Wilckens, F. Tietz, M.J. Smith, J. Mougin, B. Rietveld, O. Bucheli, J.V. Herle, R. Rosenberg, M. Zahid, P. Holtappels, Real-SOFC–a joint European effort in understanding SOFC degradation. ECS Trans. 7, 67–76 (2007)CrossRef
17.
go back to reference A. Hagen, R. Barfod, P.V. Hendriksen, Y.-L. Liu, S. Ramousse, Degradation of anode-supported SOFCs as a function of temperature and current load. J. Electrochem. Soc. 153, A1165–A1171 (2006)CrossRef A. Hagen, R. Barfod, P.V. Hendriksen, Y.-L. Liu, S. Ramousse, Degradation of anode-supported SOFCs as a function of temperature and current load. J. Electrochem. Soc. 153, A1165–A1171 (2006)CrossRef
18.
go back to reference M.L. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y.M. Choi, Rational SOFC material design: new advances and tools. Mater. Today 14, 534–546 (2011)CrossRef M.L. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y.M. Choi, Rational SOFC material design: new advances and tools. Mater. Today 14, 534–546 (2011)CrossRef
19.
go back to reference J.-H. Lee, J.-W. Heo, D.-S. Lee, J. Kim, G.-H. Kim, H.-W. Lee, H.S. Song, J.-H. Moon, The impact of anode microstructure on the power generating characteristics of SOFC. Solid State Ionics 158, 225–232 (2003)CrossRef J.-H. Lee, J.-W. Heo, D.-S. Lee, J. Kim, G.-H. Kim, H.-W. Lee, H.S. Song, J.-H. Moon, The impact of anode microstructure on the power generating characteristics of SOFC. Solid State Ionics 158, 225–232 (2003)CrossRef
20.
go back to reference K.J. Yoon, P. Zink, S. Gopalan, U.B. Pal, Polarization measurements on single-step co-fired solid oxide fuel cells (SOFCs). J. Power Sources 172, 39–49 (2007)CrossRef K.J. Yoon, P. Zink, S. Gopalan, U.B. Pal, Polarization measurements on single-step co-fired solid oxide fuel cells (SOFCs). J. Power Sources 172, 39–49 (2007)CrossRef
21.
go back to reference A.V. Virkar, J. Chen, C.W. Tanner, J.-W. Kim, The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics 131, 189–198 (2000)CrossRef A.V. Virkar, J. Chen, C.W. Tanner, J.-W. Kim, The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics 131, 189–198 (2000)CrossRef
22.
go back to reference S.H. Chan, K.A. Khor, Z.T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 93, 130–140 (2001)CrossRef S.H. Chan, K.A. Khor, Z.T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 93, 130–140 (2001)CrossRef
23.
go back to reference D.A. Noren, M.A. Hoffman, Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. J. Power Sources 152, 175–181 (2005)CrossRef D.A. Noren, M.A. Hoffman, Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. J. Power Sources 152, 175–181 (2005)CrossRef
24.
go back to reference Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004)CrossRef Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004)CrossRef
25.
go back to reference S.B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004)CrossRef S.B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004)CrossRef
26.
go back to reference C.W. Sun, R. Hui, J. Roller, Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14, 1125–1144 (2010)CrossRef C.W. Sun, R. Hui, J. Roller, Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14, 1125–1144 (2010)CrossRef
27.
go back to reference S.J. Skinner, Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3, 113–121 (2001)CrossRef S.J. Skinner, Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3, 113–121 (2001)CrossRef
28.
go back to reference A. Tarancόn, S.J. Skinner, R.J. Chater, F. Hernández-Ramírez, J.A. Kilner, Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175–3181 (2007)CrossRef A. Tarancόn, S.J. Skinner, R.J. Chater, F. Hernández-Ramírez, J.A. Kilner, Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175–3181 (2007)CrossRef
29.
go back to reference L. Shao, Q. Wang, L. Fan, P. Wang, N. Zhang, K. Sun, Copper-cobalt spinel as a high-performance cathode for intermediate temperature solid oxide fuel cells. Chem. Commun. 52, 8615–8618 (2016)CrossRef L. Shao, Q. Wang, L. Fan, P. Wang, N. Zhang, K. Sun, Copper-cobalt spinel as a high-performance cathode for intermediate temperature solid oxide fuel cells. Chem. Commun. 52, 8615–8618 (2016)CrossRef
30.
go back to reference Q. Fu, F. Tietz, D. Sebold, S. Tao, J.T.S. Irvine, An efficient ceramic-based anode for solid oxide fuel cells. J. Power Sources 171, 663–669 (2007)CrossRef Q. Fu, F. Tietz, D. Sebold, S. Tao, J.T.S. Irvine, An efficient ceramic-based anode for solid oxide fuel cells. J. Power Sources 171, 663–669 (2007)CrossRef
31.
go back to reference G. Xiao, F. Chen, Redox stable anodes for solid oxide fuel cells. Front. Energy Res. 2, 1–13 (2014) G. Xiao, F. Chen, Redox stable anodes for solid oxide fuel cells. Front. Energy Res. 2, 1–13 (2014)
32.
go back to reference K. Huang, J. Wan, J.B. Goodenough, Oxide-ion conducting ceramics for solid oxide fuel. Cell 36, 1093–1098 (2001) K. Huang, J. Wan, J.B. Goodenough, Oxide-ion conducting ceramics for solid oxide fuel. Cell 36, 1093–1098 (2001)
33.
go back to reference J.B. Goodenough, Y.-H. Huang, Alternative anode materials for solid oxide fuel cells. J. Power Sources 173, 1–10 (2007)CrossRef J.B. Goodenough, Y.-H. Huang, Alternative anode materials for solid oxide fuel cells. J. Power Sources 173, 1–10 (2007)CrossRef
34.
go back to reference P.G. Bruce, B. Scrosati, J.-M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. 47, 2930–2946 (2008)CrossRef P.G. Bruce, B. Scrosati, J.-M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. 47, 2930–2946 (2008)CrossRef
35.
go back to reference L. Zhang, T.J. Webster, Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4, 66–80 (2009)CrossRef L. Zhang, T.J. Webster, Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4, 66–80 (2009)CrossRef
36.
go back to reference Q. Peng, Y.-C. Tseng, S.B. Darling, J.W. Elam, A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. ACS Nano 5, 4600–4606 (2011)CrossRef Q. Peng, Y.-C. Tseng, S.B. Darling, J.W. Elam, A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. ACS Nano 5, 4600–4606 (2011)CrossRef
37.
go back to reference J. Martin, C. Mijangos, Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. Langmuir 25, 1181–1187 (2009)CrossRef J. Martin, C. Mijangos, Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. Langmuir 25, 1181–1187 (2009)CrossRef
38.
go back to reference T.Z. Sholklapper, H. Kurokawa, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Nanostructured solid oxide fuel cell electrodes. Nano Lett. 7, 2136–2141 (2007)CrossRef T.Z. Sholklapper, H. Kurokawa, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Nanostructured solid oxide fuel cell electrodes. Nano Lett. 7, 2136–2141 (2007)CrossRef
39.
go back to reference C.C. Chao, C.M. Hsu, Y. Cui, F.B. Prinz, Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 5, 5692–5696 (2011)CrossRef C.C. Chao, C.M. Hsu, Y. Cui, F.B. Prinz, Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 5, 5692–5696 (2011)CrossRef
40.
go back to reference L. Baque, A. Caneiro, M.S. Moreno, A. Serquis, High-performance nanostructured IT-SOFC cathodes prepared by the novel chemical method. Electrochem. Commun. 10, 1905–1908 (2008)CrossRef L. Baque, A. Caneiro, M.S. Moreno, A. Serquis, High-performance nanostructured IT-SOFC cathodes prepared by the novel chemical method. Electrochem. Commun. 10, 1905–1908 (2008)CrossRef
41.
go back to reference D. Ding, X. Li, S.Y. Lai, K. Gerdes, M. Liu, Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci. 7, 552–575 (2014)CrossRef D. Ding, X. Li, S.Y. Lai, K. Gerdes, M. Liu, Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci. 7, 552–575 (2014)CrossRef
42.
go back to reference J.M. Vohs, R.J. Gorte, High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943–956 (2009)CrossRef J.M. Vohs, R.J. Gorte, High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943–956 (2009)CrossRef
43.
go back to reference S.P. Jiang, A review of wet impregnation – an alternative method for the fabrication of high performance and nanostructured electrodes of solid oxide fuel cells. Mater. Sci. Eng. 418, 199–210 (2006)CrossRef S.P. Jiang, A review of wet impregnation – an alternative method for the fabrication of high performance and nanostructured electrodes of solid oxide fuel cells. Mater. Sci. Eng. 418, 199–210 (2006)CrossRef
44.
go back to reference S.P. Jiang, Nanoscale and nanostructured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int. J. Hydro. Energy 37, 449–470 (2012)CrossRef S.P. Jiang, Nanoscale and nanostructured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int. J. Hydro. Energy 37, 449–470 (2012)CrossRef
45.
go back to reference M.J. Jorgensen, M. Mogensen, Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. J. Electrochem. Soc. 148, A433–A442 (2001)CrossRef M.J. Jorgensen, M. Mogensen, Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. J. Electrochem. Soc. 148, A433–A442 (2001)CrossRef
46.
go back to reference M. Shiono, K. Kobayashi, T.L. Nguyen, K. Hosoda, T. Kato, K. Ota, M. Dokiya, Effect of the CeO2 interlayer on ZrO2 electrolyte/la(Sr)CoO3 cathode for low-temperature SOFCs. Solid State Ionics 170, 1–7 (2004)CrossRef M. Shiono, K. Kobayashi, T.L. Nguyen, K. Hosoda, T. Kato, K. Ota, M. Dokiya, Effect of the CeO2 interlayer on ZrO2 electrolyte/la(Sr)CoO3 cathode for low-temperature SOFCs. Solid State Ionics 170, 1–7 (2004)CrossRef
47.
go back to reference L. Yang, C.D. Zuo, S.Z. Wang, Z. Cheng, M.L. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv. Mater. 20, 3280–3283 (2008)CrossRef L. Yang, C.D. Zuo, S.Z. Wang, Z. Cheng, M.L. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv. Mater. 20, 3280–3283 (2008)CrossRef
48.
go back to reference Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004)CrossRef Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004)CrossRef
49.
go back to reference H. He, Y. Huang, J. Regal, M. Boaro, J.M. Vohs, R.J. Gorte, Low-temperature fabrication of oxide composites for solid-oxides fuel cells. J. Am. Ceram. Soc. 87, 331–336 (2004)CrossRef H. He, Y. Huang, J. Regal, M. Boaro, J.M. Vohs, R.J. Gorte, Low-temperature fabrication of oxide composites for solid-oxides fuel cells. J. Am. Ceram. Soc. 87, 331–336 (2004)CrossRef
50.
go back to reference Y. Huang, J.M. Vohs, R.J. Gorte, Characterization of LSM-YSZ composites prepared by impregnation methods. J. Electrochem. Soc. 152, A1347–A1353 (2005)CrossRef Y. Huang, J.M. Vohs, R.J. Gorte, Characterization of LSM-YSZ composites prepared by impregnation methods. J. Electrochem. Soc. 152, A1347–A1353 (2005)CrossRef
51.
go back to reference T.J. Armstrong, A.V. Virkar, 204th Meeting of the Electrochemical Society (Electrochemical Society, Pennington, 2003). Abstract 1113 T.J. Armstrong, A.V. Virkar, 204th Meeting of the Electrochemical Society (Electrochemical Society, Pennington, 2003). Abstract 1113
52.
go back to reference Z. Jiang, Z. Lei, B. Ding, C. Xia, F. Zhao, F. Chen, Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (la,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. Int. J. Hydrog. Energy 35, 8322–8330 (2010)CrossRef Z. Jiang, Z. Lei, B. Ding, C. Xia, F. Zhao, F. Chen, Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (la,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. Int. J. Hydrog. Energy 35, 8322–8330 (2010)CrossRef
53.
go back to reference T.Z. Sholklapper, C. Lu, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, LSM-infiltrated solid oxide fuel cell cathodes. Electrochem. Solid-State Lett. 9, A376–A378 (2006)CrossRef T.Z. Sholklapper, C. Lu, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, LSM-infiltrated solid oxide fuel cell cathodes. Electrochem. Solid-State Lett. 9, A376–A378 (2006)CrossRef
54.
go back to reference T.Z. Sholklapper, V. Radmilovic, C.P. Jacobson, S.J. Visco, L.C.D. Jonghe, Electrochem. Solid-State Lett. 10, B74–B76 (2007)CrossRef T.Z. Sholklapper, V. Radmilovic, C.P. Jacobson, S.J. Visco, L.C.D. Jonghe, Electrochem. Solid-State Lett. 10, B74–B76 (2007)CrossRef
55.
go back to reference M.G. Bellino, J.G. Scannell, D.G. Lamas, A.G. Leyva, N.E. Walsöe de Reca, High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J. Am. Chem. Soc. 129, 3066–3067 (2007)CrossRef M.G. Bellino, J.G. Scannell, D.G. Lamas, A.G. Leyva, N.E. Walsöe de Reca, High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J. Am. Chem. Soc. 129, 3066–3067 (2007)CrossRef
56.
go back to reference Y. Gong, D. Palacio, X. Song, R.L. Patel, X. Liang, X. Zhao, J.B. Goodenough, K. Huang, Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Lett. 13, 4340–4345 (2013)CrossRef Y. Gong, D. Palacio, X. Song, R.L. Patel, X. Liang, X. Zhao, J.B. Goodenough, K. Huang, Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Lett. 13, 4340–4345 (2013)CrossRef
57.
go back to reference Y.L. Liu, A. Hagen, R. Barfod, M. Chen, H.J. Wang, F.W. Poulsen, P.V. Hendriksen, Microstructural studies on the degradation of the interface between LM-YSZ cathode and YSZ electrolyte in SOFCs. Solid State Ionics 180, 1298–1304 (2009)CrossRef Y.L. Liu, A. Hagen, R. Barfod, M. Chen, H.J. Wang, F.W. Poulsen, P.V. Hendriksen, Microstructural studies on the degradation of the interface between LM-YSZ cathode and YSZ electrolyte in SOFCs. Solid State Ionics 180, 1298–1304 (2009)CrossRef
58.
go back to reference T.J. Armstrong, J.G. Rich, Anode-supported solid oxide fuel cells with La0.6Sr0.4CoO3-δ-Zr0.84Y0.16O2-δ composite cathodes fabricated by an infiltration method. J. Electrochem. Soc. 153, A515–A520 (2006)CrossRef T.J. Armstrong, J.G. Rich, Anode-supported solid oxide fuel cells with La0.6Sr0.4CoO3-δ-Zr0.84Y0.16O2-δ composite cathodes fabricated by an infiltration method. J. Electrochem. Soc. 153, A515–A520 (2006)CrossRef
59.
go back to reference B. Liu, X. Chen, Y. Dong, S.S. Mao, M. Cheng, A high-performance, a nanostructured Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for solid oxide fuel cells. Adv. Energy Mater. 1, 343–346 (2011)CrossRef B. Liu, X. Chen, Y. Dong, S.S. Mao, M. Cheng, A high-performance, a nanostructured Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for solid oxide fuel cells. Adv. Energy Mater. 1, 343–346 (2011)CrossRef
60.
go back to reference D. Han, X. Liu, F. Zeng, J. Qian, T. Wu, Z. Zhan, A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Sci. Rep. 2, 462 (2012)CrossRef D. Han, X. Liu, F. Zeng, J. Qian, T. Wu, Z. Zhan, A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Sci. Rep. 2, 462 (2012)CrossRef
61.
go back to reference N. Ai, S.P. Jiang, Z. Lü, K. Chen, W. Su, Nanostructured (Ba,Sr)(Co,Fe) O3-δ impregnated (La,Sr) MnO3 cathode for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 157, B1033–B1039 (2010)CrossRef N. Ai, S.P. Jiang, Z. Lü, K. Chen, W. Su, Nanostructured (Ba,Sr)(Co,Fe) O3-δ impregnated (La,Sr) MnO3 cathode for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 157, B1033–B1039 (2010)CrossRef
62.
go back to reference R. Su, Z. Lü, S.P. Jiang, Y.B. Shen, W.H. Su, K.F. Chen, Ag decorated (Ba,Sr)(Co,Fe)O3 cathodes for solid oxide fuel cells prepared by electroless silver deposition. Int. J. Hydrog. Energy 38, 2413–2420 (2013)CrossRef R. Su, Z. Lü, S.P. Jiang, Y.B. Shen, W.H. Su, K.F. Chen, Ag decorated (Ba,Sr)(Co,Fe)O3 cathodes for solid oxide fuel cells prepared by electroless silver deposition. Int. J. Hydrog. Energy 38, 2413–2420 (2013)CrossRef
63.
go back to reference C. Xia, M. Liu, A simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates. J. Am. Ceram. Soc. 84, 1903–1905 (2001)CrossRef C. Xia, M. Liu, A simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates. J. Am. Ceram. Soc. 84, 1903–1905 (2001)CrossRef
64.
go back to reference C. Xia, F. Chen, M. Liu, Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochem. Solid-State Lett. 4, A52–A54 (2001)CrossRef C. Xia, F. Chen, M. Liu, Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochem. Solid-State Lett. 4, A52–A54 (2001)CrossRef
65.
go back to reference H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Ln1-xSrxCoO3 (Ln=Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ionics 100, 283–288 (1997)CrossRef H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Ln1-xSrxCoO3 (Ln=Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ionics 100, 283–288 (1997)CrossRef
66.
go back to reference Y. Liu, S. Zha, M. Liu, Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD). Adv. Mater. 16, 256–260 (2004)CrossRef Y. Liu, S. Zha, M. Liu, Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD). Adv. Mater. 16, 256–260 (2004)CrossRef
67.
go back to reference F. Zhao, Z. Wang, M. Liu, L. Zhang, C. Xia, F. Chen, Novel nano-network cathodes for solid oxide fuel cells. J. Power Sources 185, 13–18 (2008)CrossRef F. Zhao, Z. Wang, M. Liu, L. Zhang, C. Xia, F. Chen, Novel nano-network cathodes for solid oxide fuel cells. J. Power Sources 185, 13–18 (2008)CrossRef
68.
go back to reference T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Impact of anode microstructure on solid oxide fuel cells. Science 325, 852–855 (2009)CrossRef T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Impact of anode microstructure on solid oxide fuel cells. Science 325, 852–855 (2009)CrossRef
69.
go back to reference Z. Zhan, S.A. Barnett, A reduced temperature solid oxide fuel cell with nanostructured anodes. Energy Environ. Sic. 4, 3951–3954 (2011)CrossRef Z. Zhan, S.A. Barnett, A reduced temperature solid oxide fuel cell with nanostructured anodes. Energy Environ. Sic. 4, 3951–3954 (2011)CrossRef
70.
go back to reference J.H. Park, S.M. Han, K.J. Yoon, H. Kim, J. Hong, B.-K. Kim, J.-H. Lee, J.-W. Son, Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells. J. Power Sources 315, 324–330 (2016)CrossRef J.H. Park, S.M. Han, K.J. Yoon, H. Kim, J. Hong, B.-K. Kim, J.-H. Lee, J.-W. Son, Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells. J. Power Sources 315, 324–330 (2016)CrossRef
71.
go back to reference T. Yamaguchi, H. Sumi, K. Hamamoto, T. Suzuki, Y. Fujishiro, J.D. Carter, S.A. Barnett, Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature. Int. J. Hydrog. Energy 39, 19731–19736 (2014)CrossRef T. Yamaguchi, H. Sumi, K. Hamamoto, T. Suzuki, Y. Fujishiro, J.D. Carter, S.A. Barnett, Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature. Int. J. Hydrog. Energy 39, 19731–19736 (2014)CrossRef
72.
go back to reference S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000)CrossRef S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000)CrossRef
73.
go back to reference R.J. Gorte, S. Park, J.M. Vohs, C. Wang, Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv. Mater. 12, 1465–1469 (2000)CrossRef R.J. Gorte, S. Park, J.M. Vohs, C. Wang, Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv. Mater. 12, 1465–1469 (2000)CrossRef
74.
go back to reference M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons. J. Mater. Chem. 17, 3071–3077 (2007)CrossRef M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons. J. Mater. Chem. 17, 3071–3077 (2007)CrossRef
75.
go back to reference X.-F. Ye, B. Huang, S.R. Wang, Z.R. Wang, L. Xiong, T.L. Wen, Preparation and performance of a Cu–CeO2–ScSZ composite anode for SOFCs running on ethanol fuel. J. Power Sources 164, 203–209 (2007)CrossRef X.-F. Ye, B. Huang, S.R. Wang, Z.R. Wang, L. Xiong, T.L. Wen, Preparation and performance of a Cu–CeO2–ScSZ composite anode for SOFCs running on ethanol fuel. J. Power Sources 164, 203–209 (2007)CrossRef
76.
go back to reference R.J. Gorte, J.M. Vohs, Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid Interface Sci. 14, 236–244 (2009)CrossRef R.J. Gorte, J.M. Vohs, Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid Interface Sci. 14, 236–244 (2009)CrossRef
77.
go back to reference S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid oxide fuel cells. Nat. Mater. 2, 320–323 (2003)CrossRef S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid oxide fuel cells. Nat. Mater. 2, 320–323 (2003)CrossRef
78.
go back to reference X.W. Zhou, N. Yan, K.T. Chuang, J.L. Luo, Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv. 4, 118–131 (2014)CrossRef X.W. Zhou, N. Yan, K.T. Chuang, J.L. Luo, Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv. 4, 118–131 (2014)CrossRef
79.
go back to reference Y.H. Huang, R.I. Dass, Z.L. Xing, J. Goodenough, Double perovskites as anode materials for solid oxide fuel cells. Science 312, 254–257 (2006)CrossRef Y.H. Huang, R.I. Dass, Z.L. Xing, J. Goodenough, Double perovskites as anode materials for solid oxide fuel cells. Science 312, 254–257 (2006)CrossRef
80.
go back to reference Q. Liu, X.H. Dong, G.L. Xiao, F. Zhao, F.L. Chen, A novel electrode material for symmetric SOFCs. Adv. Mater. 22, 5478–5482 (2010)CrossRef Q. Liu, X.H. Dong, G.L. Xiao, F. Zhao, F.L. Chen, A novel electrode material for symmetric SOFCs. Adv. Mater. 22, 5478–5482 (2010)CrossRef
81.
go back to reference C.H. Yang, Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater. 24, 1439–1443 (2012)CrossRef C.H. Yang, Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater. 24, 1439–1443 (2012)CrossRef
82.
go back to reference J.S. Kim, V.V. Nair, J.M. Vohs, R.J. Gorte, A study of the methane tolerance of LSCM-YSZ composite anodes with Pt, Ni, Pd and ceria catalysts. Scr. Mater. 65, 90–95 (2011)CrossRef J.S. Kim, V.V. Nair, J.M. Vohs, R.J. Gorte, A study of the methane tolerance of LSCM-YSZ composite anodes with Pt, Ni, Pd and ceria catalysts. Scr. Mater. 65, 90–95 (2011)CrossRef
83.
go back to reference K.B. Yoo, G.M. Choi, LST-GDC composite anode on LaGaO3-based solid oxide fuel cell. Solid State Ionics 192, 515–518 (2011)CrossRef K.B. Yoo, G.M. Choi, LST-GDC composite anode on LaGaO3-based solid oxide fuel cell. Solid State Ionics 192, 515–518 (2011)CrossRef
84.
go back to reference Y.H. Huang, Double-perovskite anode materials Sr2MMoO6 (M = Co, Ni) for solid oxide fuel cells. Chem. Mater. 21, 2319–2326 (2009)CrossRef Y.H. Huang, Double-perovskite anode materials Sr2MMoO6 (M = Co, Ni) for solid oxide fuel cells. Chem. Mater. 21, 2319–2326 (2009)CrossRef
85.
go back to reference S.P. Jiang, Y. Ye, T. He, S.B. Ho, Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells. J. Power Sources 185, 179–182 (2008)CrossRef S.P. Jiang, Y. Ye, T. He, S.B. Ho, Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells. J. Power Sources 185, 179–182 (2008)CrossRef
86.
go back to reference Y. Ye, T. He, Y. Li, E.H. Tang, T.L. Reitz, S.P. Jiang, Pd-promoted La0.75Sr0.25Cr0.5Mn0.5O3/YSZ composite anodes for direct utilization of methane in SOFCs. J. Electrochem. Soc. 155, B811–B818 (2008)CrossRef Y. Ye, T. He, Y. Li, E.H. Tang, T.L. Reitz, S.P. Jiang, Pd-promoted La0.75Sr0.25Cr0.5Mn0.5O3/YSZ composite anodes for direct utilization of methane in SOFCs. J. Electrochem. Soc. 155, B811–B818 (2008)CrossRef
87.
go back to reference H. Kurokawa, J. Yang, C. Jacobson, L. DE Jongle, S. Visco, Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells. J. Power Sources 164, 510–518 (2007)CrossRef H. Kurokawa, J. Yang, C. Jacobson, L. DE Jongle, S. Visco, Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells. J. Power Sources 164, 510–518 (2007)CrossRef
88.
go back to reference S. Primdahl, Y.L. Liu, Ni catalyst for hydrogen conversion in Gadolinia-doped ceria anodes for solid oxide fuel cells. J. Electrochem. Soc. 149, A1466–A1472 (2002)CrossRef S. Primdahl, Y.L. Liu, Ni catalyst for hydrogen conversion in Gadolinia-doped ceria anodes for solid oxide fuel cells. J. Electrochem. Soc. 149, A1466–A1472 (2002)CrossRef
89.
go back to reference H. Uchida, S. Suzuki, M. Watanabe, High performance electrode for medium-temperature solid oxide fuel cells. Electrochem. Solid-State Lett. 6, A174–A177 (2003)CrossRef H. Uchida, S. Suzuki, M. Watanabe, High performance electrode for medium-temperature solid oxide fuel cells. Electrochem. Solid-State Lett. 6, A174–A177 (2003)CrossRef
90.
go back to reference Q. Fu, F. Tietz, D. Sebold, S. Tao, J. Irvine, An efficient ceramic-based anode for solid oxide fuel cells. J. Power Sources 171, 663–669 (2007)CrossRef Q. Fu, F. Tietz, D. Sebold, S. Tao, J. Irvine, An efficient ceramic-based anode for solid oxide fuel cells. J. Power Sources 171, 663–669 (2007)CrossRef
91.
go back to reference S. Boulfrad, M. Cassidy, E. Traversa, J.T.S. Irvine, Improving the performance of SOFC anodes by decorating perovskite with Ni nanoparticles. ECS Trans. 57, 1211–1216 (2013)CrossRef S. Boulfrad, M. Cassidy, E. Traversa, J.T.S. Irvine, Improving the performance of SOFC anodes by decorating perovskite with Ni nanoparticles. ECS Trans. 57, 1211–1216 (2013)CrossRef
92.
go back to reference K.B. Yoo, B.H. Park, G.M. Choi, Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel. Solid State Ionics 225, 104–107 (2012)CrossRef K.B. Yoo, B.H. Park, G.M. Choi, Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel. Solid State Ionics 225, 104–107 (2012)CrossRef
93.
go back to reference G. Xiao, C. Jin, Q. Liu, A. Heyden, F. Chen, Ni modified ceramic anodes for solid oxide fuel cells. J. Power Sources 201, 43–48 (2012)CrossRef G. Xiao, C. Jin, Q. Liu, A. Heyden, F. Chen, Ni modified ceramic anodes for solid oxide fuel cells. J. Power Sources 201, 43–48 (2012)CrossRef
94.
go back to reference S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.-W. Ju, H.Y. Jeong, J. Shin, J.T.S. Irvine, G. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015)CrossRef S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.-W. Ju, H.Y. Jeong, J. Shin, J.T.S. Irvine, G. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015)CrossRef
95.
go back to reference S. Lee, G. Kim, J.M. Vohs, R.J. Gorte, SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J. Electrochem. Soc. 155, B1179–B1183 (2008)CrossRef S. Lee, G. Kim, J.M. Vohs, R.J. Gorte, SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J. Electrochem. Soc. 155, B1179–B1183 (2008)CrossRef
96.
go back to reference G. Kim, S. Lee, J.Y. Shin, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gorte, Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem. Solid-State Lett. 12, B48–B52 (2009)CrossRef G. Kim, S. Lee, J.Y. Shin, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gorte, Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem. Solid-State Lett. 12, B48–B52 (2009)CrossRef
97.
go back to reference G. Corre, G. Kim, M. Cassidy, J.M. Vohs, R.J. Gorte, J.T.S. Irvine, Activation and ripening of impregnated manganese containing perovskite SOFC electrodes under redox cycling. Chem. Mater. 21, 1077–1084 (2009)CrossRef G. Corre, G. Kim, M. Cassidy, J.M. Vohs, R.J. Gorte, J.T.S. Irvine, Activation and ripening of impregnated manganese containing perovskite SOFC electrodes under redox cycling. Chem. Mater. 21, 1077–1084 (2009)CrossRef
98.
go back to reference G. Kim, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gorte, Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochem. Solid-State Lett. 11, B16–B19 (2008)CrossRef G. Kim, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gorte, Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochem. Solid-State Lett. 11, B16–B19 (2008)CrossRef
99.
go back to reference J.-S. Kim, N.L. Wieder, A.J. Abraham, M. Cargnello, P. Fornasiero, R.J. Gorte, J.M. Vohs, Highly active and thermally stable core-shell catalysts for solid oxide fuel cells. J. Electrochem. Soc. 158, B596–B600 (2011)CrossRef J.-S. Kim, N.L. Wieder, A.J. Abraham, M. Cargnello, P. Fornasiero, R.J. Gorte, J.M. Vohs, Highly active and thermally stable core-shell catalysts for solid oxide fuel cells. J. Electrochem. Soc. 158, B596–B600 (2011)CrossRef
100.
go back to reference H. Ding, Z. Tao, S. Liu, J. Zhang, A high-performing sulfur-tolerant and redox-stable layered perovskite anode for direct hydrocarbon solid oxide fuel cells. Sci. Rep. 5, 18129 (2015)CrossRef H. Ding, Z. Tao, S. Liu, J. Zhang, A high-performing sulfur-tolerant and redox-stable layered perovskite anode for direct hydrocarbon solid oxide fuel cells. Sci. Rep. 5, 18129 (2015)CrossRef
Metadata
Title
Nanostructured Electrodes for High-Performing Solid Oxide Fuel Cells
Author
Hanping Ding
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56364-9_8

Premium Partners