Skip to main content
Top

2018 | OriginalPaper | Chapter

7. Nanomaterials in Proton Exchange Membrane Fuel Cells

Authors : Yufeng Zhang, Rui Xue, Weijian Yuan, Xiaowei Liu

Published in: Nanostructured Materials for Next-Generation Energy Storage and Conversion

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the rapid development of modern science and technology in the current society, environmental conservation and taking advantage of new energy sources have become the core strategies of sustainable development for society. Micro-energy technology has boasted a huge potential in market demand and attracted a great deal of interest in research and development since it is safe, efficient, and environmentally friendly and meets the goals for portable devices on the exterior, weight, and endurance. Although significant advancements have been achieved for proton exchange membrane fuel cells (PEMFCs) in recent years, PEMFCs still suffer from the key problems of low power density and fuel utilization, which are related, respectively, to poor reaction kinetics and methanol permeation through the membrane (viz., methanol crossover). Nanomaterials recently have attracted lots of attention owing to their distinguishing physical and chemical characteristics. Among them, carbon-based nanostructured materials such as graphene (G) and carbon nanotube (CNTs) have been successfully applied in fuel cells. PEMFC combined with nanostructured materials has remarkable improvements compared with the traditional fuel cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T.J. Yen, N. Fang, X. Zhang, G.Q. Lu, C.Y. Wang, A micro methanol fuel cell operating at near room temperature. Appl. Phys. Lett. 83, 4056–4058 (2003)CrossRef T.J. Yen, N. Fang, X. Zhang, G.Q. Lu, C.Y. Wang, A micro methanol fuel cell operating at near room temperature. Appl. Phys. Lett. 83, 4056–4058 (2003)CrossRef
2.
go back to reference C. Xu, T.S. Zhao, A new flow field design for polymer electrolyte-based fuel cells. Electrochem. Commun. 9, 497–503 (2007)CrossRef C. Xu, T.S. Zhao, A new flow field design for polymer electrolyte-based fuel cells. Electrochem. Commun. 9, 497–503 (2007)CrossRef
3.
go back to reference H. Dai, H.M. Zhang, Q.T. Luo, Y. Zhang, C. Bi, Properties and fuel cell performance of proton exchange membranes prepared from disulfonated poly (sulfide sulfone). J. Power Sources 185, 19–25 (2008)CrossRef H. Dai, H.M. Zhang, Q.T. Luo, Y. Zhang, C. Bi, Properties and fuel cell performance of proton exchange membranes prepared from disulfonated poly (sulfide sulfone). J. Power Sources 185, 19–25 (2008)CrossRef
4.
go back to reference Y.F. Zhang, P. Zhang, B. Zhang, J.M. Li, H.C. Deng, X.W. Liu, Development of an air-breathing direct methanol fuel cell with the cathode shutter current collectors. Int. J. Hydrog. Energy 35, 5638–5646 (2010)CrossRef Y.F. Zhang, P. Zhang, B. Zhang, J.M. Li, H.C. Deng, X.W. Liu, Development of an air-breathing direct methanol fuel cell with the cathode shutter current collectors. Int. J. Hydrog. Energy 35, 5638–5646 (2010)CrossRef
5.
go back to reference B. Zhang, Y.F. Zhang, H. He, J.M. Li, Z.Y. Yuan, C.R. Na, X.W. Liu, Development and performance analysis of a metallic micro-direct methanol fuel cell for high-performance applications. J. Power Sources 195, 7338–7348 (2010)CrossRef B. Zhang, Y.F. Zhang, H. He, J.M. Li, Z.Y. Yuan, C.R. Na, X.W. Liu, Development and performance analysis of a metallic micro-direct methanol fuel cell for high-performance applications. J. Power Sources 195, 7338–7348 (2010)CrossRef
6.
go back to reference Z. Yuan, Y. Zhang, J. Leng, Y. Gao, X. Liu, Development of a 4-cell air-breathing micro direct methanol fuel cell stack. J. Power Sources 202, 134–142 (2012)CrossRef Z. Yuan, Y. Zhang, J. Leng, Y. Gao, X. Liu, Development of a 4-cell air-breathing micro direct methanol fuel cell stack. J. Power Sources 202, 134–142 (2012)CrossRef
7.
go back to reference T.S. Zhao, C. Xu, R. Chen, W.W. Yang, Small direct methanol fuel cells with passive supply of reactants. J. Power Sources 191, 185–202 (2009)CrossRef T.S. Zhao, C. Xu, R. Chen, W.W. Yang, Small direct methanol fuel cells with passive supply of reactants. J. Power Sources 191, 185–202 (2009)CrossRef
8.
go back to reference F. Achmad, S.K. Kamarudin, W.R.W. Daud, E.H. Majlan, Passive direct methanol fuel cells for portable electronic devices. Appl. Energy 88, 1681–1689 (2011)CrossRef F. Achmad, S.K. Kamarudin, W.R.W. Daud, E.H. Majlan, Passive direct methanol fuel cells for portable electronic devices. Appl. Energy 88, 1681–1689 (2011)CrossRef
9.
go back to reference T.S. Zhao, C. Xu, R. Chen, W.W. Yang, Mass transport phenomena in direct methanol fuel cells. Prog. Energy Combust. Sci. 35, 275–292 (2009)CrossRef T.S. Zhao, C. Xu, R. Chen, W.W. Yang, Mass transport phenomena in direct methanol fuel cells. Prog. Energy Combust. Sci. 35, 275–292 (2009)CrossRef
10.
go back to reference R. Chen, T.S. Zhao, Porous current collectors for passive direct methanol fuel cells. Electrochim. Acta 52, 4317–4324 (2007)CrossRef R. Chen, T.S. Zhao, Porous current collectors for passive direct methanol fuel cells. Electrochim. Acta 52, 4317–4324 (2007)CrossRef
11.
go back to reference Y. Li, X.L. Zhang, L. Nie, Y.F. Zhang, X.W. Liu, Stainless steel fiber felt as cathode diffusion backing and current collector for a micro direct methanol fuel cell with low methanol crossover. J. Power Sources 245, 520–528 (2014)CrossRef Y. Li, X.L. Zhang, L. Nie, Y.F. Zhang, X.W. Liu, Stainless steel fiber felt as cathode diffusion backing and current collector for a micro direct methanol fuel cell with low methanol crossover. J. Power Sources 245, 520–528 (2014)CrossRef
12.
go back to reference S.C. Yao, X.D. Tang, C.C. Hsieh, Y. Alyousef, M. Vladime, G.K. Fedder, C.H. Amon, Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 31, 636–649 (2006)CrossRef S.C. Yao, X.D. Tang, C.C. Hsieh, Y. Alyousef, M. Vladime, G.K. Fedder, C.H. Amon, Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 31, 636–649 (2006)CrossRef
13.
go back to reference H. Peng, P. Chen, H. Chen, C. Chieng, T. Yeh, C. Pan, F. Tseng, Passive cathodic water/air management device for micro-direct methanol fuel cells. J. Power Sources 195, 7349–7358 (2010)CrossRef H. Peng, P. Chen, H. Chen, C. Chieng, T. Yeh, C. Pan, F. Tseng, Passive cathodic water/air management device for micro-direct methanol fuel cells. J. Power Sources 195, 7349–7358 (2010)CrossRef
14.
go back to reference Y.A. Zhou, X.H. Wang, X. Guo, X.P. Qiu, L.T. Liu, A water collecting and recycling structure for silicon-based micro direct methanol fuel cells. Int. J. Hydrog. Energy 37, 967–976 (2012)CrossRef Y.A. Zhou, X.H. Wang, X. Guo, X.P. Qiu, L.T. Liu, A water collecting and recycling structure for silicon-based micro direct methanol fuel cells. Int. J. Hydrog. Energy 37, 967–976 (2012)CrossRef
15.
go back to reference M.M.H.-S. rabadi, E. Dashtimoghadam, F.S. Majedi, S.H. Emami, H. Moaddel, A high-performance chitosan-based double layer proton exchange membrane with reduced methanol crossover. Int. J. Hydrog. Energy 36, 6105–6111 (2011)CrossRef M.M.H.-S. rabadi, E. Dashtimoghadam, F.S. Majedi, S.H. Emami, H. Moaddel, A high-performance chitosan-based double layer proton exchange membrane with reduced methanol crossover. Int. J. Hydrog. Energy 36, 6105–6111 (2011)CrossRef
16.
go back to reference J. Kim, J.-D. Jeon, S.-Y. Kwak, Delamination of microporous layered silicate by acid-hydrothermal treatment and its use for reduction of methanol crossover in DMFC. Microporous Mesoporous Mater. 168, 148–154 (2013)CrossRef J. Kim, J.-D. Jeon, S.-Y. Kwak, Delamination of microporous layered silicate by acid-hydrothermal treatment and its use for reduction of methanol crossover in DMFC. Microporous Mesoporous Mater. 168, 148–154 (2013)CrossRef
17.
go back to reference H. Deligöz, S. Yılmaztürk, T. Gümüsoglu, Improved direct methanol fuel cell performance of layer-by-layer assembled composite and catalyst containing membranes. Electrochim. Acta 111, 791–796 (2013)CrossRef H. Deligöz, S. Yılmaztürk, T. Gümüsoglu, Improved direct methanol fuel cell performance of layer-by-layer assembled composite and catalyst containing membranes. Electrochim. Acta 111, 791–796 (2013)CrossRef
18.
go back to reference Y. Xue, S. Chan, Layer-by-layer self-assembly of CHI/PVS-Nafion composite membrane for reduced methanol crossover and enhanced DMFC performance. Int. J. Hydrog. Energy 40, 1877–1885 (2015)CrossRef Y. Xue, S. Chan, Layer-by-layer self-assembly of CHI/PVS-Nafion composite membrane for reduced methanol crossover and enhanced DMFC performance. Int. J. Hydrog. Energy 40, 1877–1885 (2015)CrossRef
19.
go back to reference Y.-C. Park, D.-H. Kim, S. Lim, S.-K.Y. Kim, D.-H. Peck, D.-H. Jung, Design of a MEA with multi-layer electrodes for high concentration methanol DMFCs. Int. J. Hydrog. Energy 37, 4717–4727 (2012)CrossRef Y.-C. Park, D.-H. Kim, S. Lim, S.-K.Y. Kim, D.-H. Peck, D.-H. Jung, Design of a MEA with multi-layer electrodes for high concentration methanol DMFCs. Int. J. Hydrog. Energy 37, 4717–4727 (2012)CrossRef
20.
go back to reference H. Deng, Y. Zhang, Z. Xue, L. Yang, X. Zhang, X. Liu, A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol. Energy 82, 236–241 (2015)CrossRef H. Deng, Y. Zhang, Z. Xue, L. Yang, X. Zhang, X. Liu, A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol. Energy 82, 236–241 (2015)CrossRef
21.
go back to reference H. Deng, Y. Zhang, Y. Li, X. Zhang, X. Liu, A CNT-MEA compound structure of micro-direct methanol fuel cell for water management. Microelectron. Eng. 110, 288–291 (2013)CrossRef H. Deng, Y. Zhang, Y. Li, X. Zhang, X. Liu, A CNT-MEA compound structure of micro-direct methanol fuel cell for water management. Microelectron. Eng. 110, 288–291 (2013)CrossRef
22.
go back to reference S.H. Ng, J. Wang, Z.P. Guo, J. Chenb, et al., J. Electrochim. Acta 51, 23 (2005)CrossRef S.H. Ng, J. Wang, Z.P. Guo, J. Chenb, et al., J. Electrochim. Acta 51, 23 (2005)CrossRef
23.
go back to reference R. Xue, S. Sang, H. Jin, Q. Shen, Y. Zhang, X. Liu, X. Zhang, Stainless steel fiber felt as the anode diffusion backing and current collector for μ-DMFC. Microelectron. Eng. 119, 159–163 (2014)CrossRef R. Xue, S. Sang, H. Jin, Q. Shen, Y. Zhang, X. Liu, X. Zhang, Stainless steel fiber felt as the anode diffusion backing and current collector for μ-DMFC. Microelectron. Eng. 119, 159–163 (2014)CrossRef
24.
go back to reference S. Ye, F. Jiachun, W. Peiyi, Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl. Mater. Interfaces 5, 7122–7129 (2013)CrossRef S. Ye, F. Jiachun, W. Peiyi, Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl. Mater. Interfaces 5, 7122–7129 (2013)CrossRef
25.
go back to reference Y. Zhang, R. Xue, X. Zhang, J. Song, X. Liu, rGO deposited in stainless steel fiber felt as mass transfer barrier layer for μ-DMFC. Energy 91, 1081–1086 (2015)CrossRef Y. Zhang, R. Xue, X. Zhang, J. Song, X. Liu, rGO deposited in stainless steel fiber felt as mass transfer barrier layer for μ-DMFC. Energy 91, 1081–1086 (2015)CrossRef
26.
go back to reference J. Rajeswari, B. Viswanathan, Tungsten trioxide nanorods as supports for platinum in methanol oxidation. Mater. Chem. Phys. 106(2–3), 168–174 (2007)CrossRef J. Rajeswari, B. Viswanathan, Tungsten trioxide nanorods as supports for platinum in methanol oxidation. Mater. Chem. Phys. 106(2–3), 168–174 (2007)CrossRef
27.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, A.A. Firsov, Materials and methods: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, A.A. Firsov, Materials and methods: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
28.
go back to reference I. Fampiou, A. Ramasubramaniam, Binding of Pt nanoclusters to point defects in graphene: Adsorption, morphology, and electronic structure. J. Phys. Chem. C 116(11), 6543–6555 (2012)CrossRef I. Fampiou, A. Ramasubramaniam, Binding of Pt nanoclusters to point defects in graphene: Adsorption, morphology, and electronic structure. J. Phys. Chem. C 116(11), 6543–6555 (2012)CrossRef
29.
go back to reference R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, et al., Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J. Am. Chem. Soc. 133(8), 2541–2547 (2011)CrossRef R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, et al., Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J. Am. Chem. Soc. 133(8), 2541–2547 (2011)CrossRef
30.
go back to reference C. Huang, C. Li, G. Shi, Graphene based catalysts. Energy Environ. Sci. 5(10), 8848–8868 (2012)CrossRef C. Huang, C. Li, G. Shi, Graphene based catalysts. Energy Environ. Sci. 5(10), 8848–8868 (2012)CrossRef
31.
go back to reference B. Seger, P.V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-d carbon support in PEM fuel cells. J. Phys. Chem. C 113(19), 7990–7995 (2009)CrossRef B. Seger, P.V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-d carbon support in PEM fuel cells. J. Phys. Chem. C 113(19), 7990–7995 (2009)CrossRef
32.
go back to reference R.I. Jafri, T. Arockiados, N. Rajalakshmi, S. Ramaprabhu, Nanostructured Pt dispersed on graphene-multiwalled carbon nanotube hybrid nanomaterials as electrocatalyst for PEMFC. J. Electrochem. Soc. 157(6), B874 (2010)CrossRef R.I. Jafri, T. Arockiados, N. Rajalakshmi, S. Ramaprabhu, Nanostructured Pt dispersed on graphene-multiwalled carbon nanotube hybrid nanomaterials as electrocatalyst for PEMFC. J. Electrochem. Soc. 157(6), B874 (2010)CrossRef
33.
go back to reference H. Meng, C. Wang, P.K. Shen, G. Wu, Palladium thorn clusters as catalysts for electrooxidation of formic acid. Energy Environ. Sci. 4(4), 1522–1526 (2011)CrossRef H. Meng, C. Wang, P.K. Shen, G. Wu, Palladium thorn clusters as catalysts for electrooxidation of formic acid. Energy Environ. Sci. 4(4), 1522–1526 (2011)CrossRef
34.
go back to reference Y.G. Zhou, J.J. Chen, F.B. Wang, Z.H. Sheng, X.H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun. 46(32), 5951–5953 (2010)CrossRef Y.G. Zhou, J.J. Chen, F.B. Wang, Z.H. Sheng, X.H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun. 46(32), 5951–5953 (2010)CrossRef
35.
go back to reference S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J.L. Hutchison, et al., Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J. Phys. Chem. C 114(45), 19459–19466 (2010)CrossRef S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J.L. Hutchison, et al., Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J. Phys. Chem. C 114(45), 19459–19466 (2010)CrossRef
36.
go back to reference P. Kundu, C. Nethravathi, P.A. Deshpande, M. Rajamathi, G. Madras, N. Ravishankar, Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: Synergistic co-reduction mechanism and high catalytic activity. Chem. Mater. 23(11), 2772 (2011)CrossRef P. Kundu, C. Nethravathi, P.A. Deshpande, M. Rajamathi, G. Madras, N. Ravishankar, Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: Synergistic co-reduction mechanism and high catalytic activity. Chem. Mater. 23(11), 2772 (2011)CrossRef
37.
go back to reference H. Chen, J. Duan, X. Zhang, Y. Zhang, C. Guo, L. Nie, et al., One step synthesis of Pt/CeO2-graphene catalyst by microwave-assisted ethylene glycol process for direct methanol fuel cell. Mater. Lett. 126, 9–12 (2014)CrossRef H. Chen, J. Duan, X. Zhang, Y. Zhang, C. Guo, L. Nie, et al., One step synthesis of Pt/CeO2-graphene catalyst by microwave-assisted ethylene glycol process for direct methanol fuel cell. Mater. Lett. 126, 9–12 (2014)CrossRef
38.
go back to reference Z. Wang, J. Xia, X. Guo, Y. Xia, S. Yao, F. Zhang, et al., Platinum/graphene functionalized by PDDA as a novel enzyme carrier for hydrogen peroxide biosensor. Anal. Methods 5(2), 483–488 (2012)CrossRef Z. Wang, J. Xia, X. Guo, Y. Xia, S. Yao, F. Zhang, et al., Platinum/graphene functionalized by PDDA as a novel enzyme carrier for hydrogen peroxide biosensor. Anal. Methods 5(2), 483–488 (2012)CrossRef
39.
go back to reference J.D. Qiu, G.C. Wang, R.P. Liang, X.H. Xia, H.W. Yu, Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C 115(31), 15639–15645 (2011)CrossRef J.D. Qiu, G.C. Wang, R.P. Liang, X.H. Xia, H.W. Yu, Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C 115(31), 15639–15645 (2011)CrossRef
40.
go back to reference Z. Cui, C.M. Li, S.P. Jiang, PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. Phys. Chem. Chem. Phys. 13(36), 16349 (2011)CrossRef Z. Cui, C.M. Li, S.P. Jiang, PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. Phys. Chem. Chem. Phys. 13(36), 16349 (2011)CrossRef
41.
go back to reference J. Duan, X. Liu, H. Chen, Y. Zhang, J. Du, X. Zhang, Poly(n-acetylaniline) functionalized graphene nanosheets supported Pt electrocatalysts for methanol oxidation. Microelectron. Eng. 121(4), 100–103 (2014)CrossRef J. Duan, X. Liu, H. Chen, Y. Zhang, J. Du, X. Zhang, Poly(n-acetylaniline) functionalized graphene nanosheets supported Pt electrocatalysts for methanol oxidation. Microelectron. Eng. 121(4), 100–103 (2014)CrossRef
42.
go back to reference X. Zhang, W. Yuan, J. Duan, Y. Zhang, X. Liu, Graphene nanosheets modified by nitrogen-doped carbon layer to support Pt nanoparticles for direct methanol fuel cell. Microelectron. Eng. 141, 234–237 (2015)CrossRef X. Zhang, W. Yuan, J. Duan, Y. Zhang, X. Liu, Graphene nanosheets modified by nitrogen-doped carbon layer to support Pt nanoparticles for direct methanol fuel cell. Microelectron. Eng. 141, 234–237 (2015)CrossRef
43.
go back to reference J.M. Léger, Mechanism aspects of methanol oxidation on platinum-based electrocatalysts. J. Appl. Electrochem. 31, 767–771 (2001)CrossRef J.M. Léger, Mechanism aspects of methanol oxidation on platinum-based electrocatalysts. J. Appl. Electrochem. 31, 767–771 (2001)CrossRef
44.
go back to reference L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48(3), 781–787 (2010)CrossRef L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48(3), 781–787 (2010)CrossRef
45.
go back to reference H. Li, X. Zhang, H. Pang, C. Huang, J. Chen, PMo12-functionalized graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation. J. Solid State Electrochem. 14(12), 2267–2274 (2010)CrossRef H. Li, X. Zhang, H. Pang, C. Huang, J. Chen, PMo12-functionalized graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation. J. Solid State Electrochem. 14(12), 2267–2274 (2010)CrossRef
46.
go back to reference H. Ji, M. Li, Y. Wang, F. Gao, Electrodeposition of graphene-supported PdPt nanoparticles with enhanced electrocatalytic activity. Electrochem. Commun. 24(1), 17–20 (2012)CrossRef H. Ji, M. Li, Y. Wang, F. Gao, Electrodeposition of graphene-supported PdPt nanoparticles with enhanced electrocatalytic activity. Electrochem. Commun. 24(1), 17–20 (2012)CrossRef
47.
go back to reference Y. Lu, Y. Jiang, H. Wu, W. Chen, Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J. Phys. Chem. C 117(6), 2926–2938 (2013)CrossRef Y. Lu, Y. Jiang, H. Wu, W. Chen, Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J. Phys. Chem. C 117(6), 2926–2938 (2013)CrossRef
48.
go back to reference Y. Hu, P. Wu, Y. Yin, H. Zhang, C. Cai, Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl. Catal. B Environ. 111(6), 208–217 (2011) Y. Hu, P. Wu, Y. Yin, H. Zhang, C. Cai, Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl. Catal. B Environ. 111(6), 208–217 (2011)
49.
go back to reference Y. Hu, P. Wu, H. Zhang, C. Cai, Synthesis of graphene-supported hollow Pt-Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim. Acta 85(4), 314–321 (2012)CrossRef Y. Hu, P. Wu, H. Zhang, C. Cai, Synthesis of graphene-supported hollow Pt-Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim. Acta 85(4), 314–321 (2012)CrossRef
50.
go back to reference Z.Y. Ji, G.X. Zhu, X.P. Shen, H. Zhou, C.M. Wu, M. Wang, Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation. New J. Chem. 36(9), 1774–1780 (2012)CrossRef Z.Y. Ji, G.X. Zhu, X.P. Shen, H. Zhou, C.M. Wu, M. Wang, Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation. New J. Chem. 36(9), 1774–1780 (2012)CrossRef
51.
go back to reference F. Han, X. Wang, J. Lian, Y. Wang, The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction. Carbon 50(15), 5498–5504 (2012)CrossRef F. Han, X. Wang, J. Lian, Y. Wang, The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction. Carbon 50(15), 5498–5504 (2012)CrossRef
52.
go back to reference C.L. Perkins, M.A. Henderson, C.H.F. Peden, G.S. Herman, Self-diffusion in ceria. J. Vacuum Sci. Tech. Vacuum Surfaces Films 19(4 PT 2), 217–218 (2001) C.L. Perkins, M.A. Henderson, C.H.F. Peden, G.S. Herman, Self-diffusion in ceria. J. Vacuum Sci. Tech. Vacuum Surfaces Films 19(4 PT 2), 217–218 (2001)
53.
go back to reference R. Awasthi, R.N. Singh, Graphene-supported Pd-Ru nanoparticles with superior methanol electrooxidation activity. Carbon 51(1), 282–289 (2013)CrossRef R. Awasthi, R.N. Singh, Graphene-supported Pd-Ru nanoparticles with superior methanol electrooxidation activity. Carbon 51(1), 282–289 (2013)CrossRef
54.
go back to reference P. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao, et al., Surfactant free rGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Nanoscale 4(18), 5597 (2012)CrossRef P. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao, et al., Surfactant free rGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Nanoscale 4(18), 5597 (2012)CrossRef
55.
go back to reference E.J. Lim, S.M. Choi, H.S. Min, Y. Kim, S. Lee, W.B. Kim, Highly dispersed ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem. Commun. 28(1), 100–103 (2013)CrossRef E.J. Lim, S.M. Choi, H.S. Min, Y. Kim, S. Lee, W.B. Kim, Highly dispersed ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem. Commun. 28(1), 100–103 (2013)CrossRef
56.
go back to reference X. Liu, X. Wang, P. He, L. Yi, Z. Liu, X. Yi, Influence of borohydride concentration on the synthesized au/graphene nanocomposites for direct borohydride fuel cell. J. Solid State Electrochem. 16(12), 3929–3937 (2012)CrossRef X. Liu, X. Wang, P. He, L. Yi, Z. Liu, X. Yi, Influence of borohydride concentration on the synthesized au/graphene nanocomposites for direct borohydride fuel cell. J. Solid State Electrochem. 16(12), 3929–3937 (2012)CrossRef
57.
go back to reference S.J. Cho, A. Suri, X. Mei, J. Ouyang, In situ deposition of gold nanostructures with well-defined shapes on unfunctionalized reduced graphene oxide through chemical reduction of a dry gold precursor with ethylene glycol vapor. RSC Adv. 3(3), 1201–1209 (2012) S.J. Cho, A. Suri, X. Mei, J. Ouyang, In situ deposition of gold nanostructures with well-defined shapes on unfunctionalized reduced graphene oxide through chemical reduction of a dry gold precursor with ethylene glycol vapor. RSC Adv. 3(3), 1201–1209 (2012)
58.
go back to reference G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Grácio, Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21, 4796–4802 (2009)CrossRef G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Grácio, Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21, 4796–4802 (2009)CrossRef
59.
go back to reference M. Carmo, V.A. Paganin, J.M. Rosolen, E.R. Gonzalez, Alternative supports for the preparation of catalysts for low-temperature fuel cells: The use of carbon nanotubes. J. Power Sources 142(1), 169–176 (2005)CrossRef M. Carmo, V.A. Paganin, J.M. Rosolen, E.R. Gonzalez, Alternative supports for the preparation of catalysts for low-temperature fuel cells: The use of carbon nanotubes. J. Power Sources 142(1), 169–176 (2005)CrossRef
60.
go back to reference E.J. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma, J. Nakamura, Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells. J. Power Sources 196(1), 110–115 (2011)CrossRef E.J. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma, J. Nakamura, Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells. J. Power Sources 196(1), 110–115 (2011)CrossRef
61.
go back to reference E. Yeager, Electrocatalysts for molecular oxygen reduction. Electrochim. Acta 29, 1527–1537 (1984)CrossRef E. Yeager, Electrocatalysts for molecular oxygen reduction. Electrochim. Acta 29, 1527–1537 (1984)CrossRef
62.
go back to reference R. Kou, Y. Shao, D. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, et al., Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 11(5), 954–957 (2009)CrossRef R. Kou, Y. Shao, D. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, et al., Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 11(5), 954–957 (2009)CrossRef
63.
go back to reference H.J. Kim, S.M. Choi, H.S. Min, S. Green, G.W. Huber, W.B. Kim, Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst. Electrochem. Commun. 13(8), 890–893 (2011)CrossRef H.J. Kim, S.M. Choi, H.S. Min, S. Green, G.W. Huber, W.B. Kim, Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst. Electrochem. Commun. 13(8), 890–893 (2011)CrossRef
64.
go back to reference Q. Yue, K. Zhang, X. Chen, L. Wang, J. Zhao, J. Liu, J. Jia, Generation of OH radicals in oxygen reduction reaction at Pt–Co nanoparticles supported on graphene in alkaline solutions. Chem. Commun. 46(19), 3369–3371 (2010)CrossRef Q. Yue, K. Zhang, X. Chen, L. Wang, J. Zhao, J. Liu, J. Jia, Generation of OH radicals in oxygen reduction reaction at Pt–Co nanoparticles supported on graphene in alkaline solutions. Chem. Commun. 46(19), 3369–3371 (2010)CrossRef
65.
go back to reference K. Zhang, Q. Yue, G. Chen, Y. Zhai, L. Wang, H. Wang, H. Li, Effects of acid treatment of Pt− Ni alloy nanoparticles@ graphene on the kinetics of the oxygen reduction reaction in acidic and alkaline solutions. J. Phys. Chem. C 115(2), 379–389 (2010)CrossRef K. Zhang, Q. Yue, G. Chen, Y. Zhai, L. Wang, H. Wang, H. Li, Effects of acid treatment of Pt− Ni alloy nanoparticles@ graphene on the kinetics of the oxygen reduction reaction in acidic and alkaline solutions. J. Phys. Chem. C 115(2), 379–389 (2010)CrossRef
66.
go back to reference M. Liu, Y. Lu, W. Chen, Electrocatalysts: PdAg nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells (adv. Funct. Mater. 10/2013). Adv. Funct. Mater. 23(23), 1348–1348 (2013)CrossRef M. Liu, Y. Lu, W. Chen, Electrocatalysts: PdAg nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells (adv. Funct. Mater. 10/2013). Adv. Funct. Mater. 23(23), 1348–1348 (2013)CrossRef
67.
go back to reference Z.S. Wu, S. Yang, S. Yi, K. Parvez, X. Feng, K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134(22), 9082 (2012)CrossRef Z.S. Wu, S. Yang, S. Yi, K. Parvez, X. Feng, K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134(22), 9082 (2012)CrossRef
68.
go back to reference C. Zhang, R. Hao, H. Yin, F. Liu, Y. Hou, Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale 4(23), 7326–7329 (2012)CrossRef C. Zhang, R. Hao, H. Yin, F. Liu, Y. Hou, Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale 4(23), 7326–7329 (2012)CrossRef
69.
go back to reference H.R. Byon, S. Jin, S.H. Yang, Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater. 23(23), 3421–3428 (2011)CrossRef H.R. Byon, S. Jin, S.H. Yang, Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater. 23(23), 3421–3428 (2011)CrossRef
70.
go back to reference R.J. Toh, H.L. Poh, Z. Sofer, M. Pumera, Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis. Chem. Asian J. 8(6), 1295–1300 (2013)CrossRef R.J. Toh, H.L. Poh, Z. Sofer, M. Pumera, Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis. Chem. Asian J. 8(6), 1295–1300 (2013)CrossRef
71.
go back to reference M. Lefèvre, E. Proietti, F. Jaouen, Dodelet, Supporting material for: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923), 71–74 (2009)CrossRef M. Lefèvre, E. Proietti, F. Jaouen, Dodelet, Supporting material for: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923), 71–74 (2009)CrossRef
72.
go back to reference Y. Jiang, Y. Lu, X. Lv, D. Han, Q. Zhang, L. Niu, et al., Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 3(6), 1263–1271 (2013)CrossRef Y. Jiang, Y. Lu, X. Lv, D. Han, Q. Zhang, L. Niu, et al., Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 3(6), 1263–1271 (2013)CrossRef
73.
go back to reference Z. Yang, H. Nie, X. Chen, X. Chen, S. Huang, Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 236(16), 238–249 (2013)CrossRef Z. Yang, H. Nie, X. Chen, X. Chen, S. Huang, Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 236(16), 238–249 (2013)CrossRef
74.
go back to reference C. Zhang, R. Hao, H. Liao, Y. Hou, Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2(1), 88–97 (2013)CrossRef C. Zhang, R. Hao, H. Liao, Y. Hou, Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2(1), 88–97 (2013)CrossRef
75.
go back to reference C. He, Z. Li, M. Cai, M. Cai, J.Q. Wang, Z. Tian, et al., A strategy for mass production of self-assembled nitrogen-doped graphene as catalytic materials. J. Mater. Chem. A 1(4), 1401–1406 (2012)CrossRef C. He, Z. Li, M. Cai, M. Cai, J.Q. Wang, Z. Tian, et al., A strategy for mass production of self-assembled nitrogen-doped graphene as catalytic materials. J. Mater. Chem. A 1(4), 1401–1406 (2012)CrossRef
76.
go back to reference D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, et al., High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4(3), 760–764 (2011)CrossRef D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, et al., High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4(3), 760–764 (2011)CrossRef
77.
go back to reference J.B. Raoof, R. Ojani, S. Rashid-Nadimi, Electrochemical synthesis of bimetallic Au@Pt nanoparticles supported on gold film electrode by means of self-assembled monolayer. J. Electroanal. Chem. 641(1–2), 71–77 (2010)CrossRef J.B. Raoof, R. Ojani, S. Rashid-Nadimi, Electrochemical synthesis of bimetallic Au@Pt nanoparticles supported on gold film electrode by means of self-assembled monolayer. J. Electroanal. Chem. 641(1–2), 71–77 (2010)CrossRef
78.
go back to reference G. Chen, D. Xia, Z. Nie, Z. Wang, L. Wang, J. Zhang, et al., Facile synthesis of co-Pt hollow sphere electrocatalyst. Chem. Mater. 19(7), 1840–1844 (2007)CrossRef G. Chen, D. Xia, Z. Nie, Z. Wang, L. Wang, J. Zhang, et al., Facile synthesis of co-Pt hollow sphere electrocatalyst. Chem. Mater. 19(7), 1840–1844 (2007)CrossRef
79.
go back to reference C.S. Lim, K. Hola, A. Ambrosi, R. Zboril, M. Pumera, Graphene and carbon quantum dots electrochemistry. Electrochem. Commun. 52, 75–79 (2015)CrossRef C.S. Lim, K. Hola, A. Ambrosi, R. Zboril, M. Pumera, Graphene and carbon quantum dots electrochemistry. Electrochem. Commun. 52, 75–79 (2015)CrossRef
80.
go back to reference M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots. Part. Part. Syst. Charact. 31(4), 415–428 (2014)CrossRef M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots. Part. Part. Syst. Charact. 31(4), 415–428 (2014)CrossRef
81.
go back to reference Q. Li, B.W. Noffke, Y. Liu, L.S. Li, Understanding fundamental processes in carbon materials with well-defined colloidal graphene quantum dots. Curr. Opin. Colloid Interface Sci. 20(5-6), 346–353 (2015)CrossRef Q. Li, B.W. Noffke, Y. Liu, L.S. Li, Understanding fundamental processes in carbon materials with well-defined colloidal graphene quantum dots. Curr. Opin. Colloid Interface Sci. 20(5-6), 346–353 (2015)CrossRef
82.
go back to reference L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, X. Chen, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal. Chem. 54, 83–102 (2013)CrossRef L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, X. Chen, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal. Chem. 54, 83–102 (2013)CrossRef
83.
go back to reference F. Ksar, L. Ramos, B. Keita, L. Nadjo, P. Beaunier, H. Remita, Bimetallic palladium− gold nanostructures: Application in ethanol oxidation. Chem. Mater. 21(15), 3677–3683 (2009)CrossRef F. Ksar, L. Ramos, B. Keita, L. Nadjo, P. Beaunier, H. Remita, Bimetallic palladium− gold nanostructures: Application in ethanol oxidation. Chem. Mater. 21(15), 3677–3683 (2009)CrossRef
84.
go back to reference L. Liu, E. Pippel, R. Scholz, U. Gösele, Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties. Nano Lett. 9(12), 4352–4358 (2009)CrossRef L. Liu, E. Pippel, R. Scholz, U. Gösele, Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties. Nano Lett. 9(12), 4352–4358 (2009)CrossRef
85.
go back to reference P. Du, Y. Zhu, J. Zhang, D. Xu, W. Peng, G. Zhang, et al., Metallic 1t phase MoS2 nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods. RSC Adv. 6(78), 74394–74399 (2016)CrossRef P. Du, Y. Zhu, J. Zhang, D. Xu, W. Peng, G. Zhang, et al., Metallic 1t phase MoS2 nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods. RSC Adv. 6(78), 74394–74399 (2016)CrossRef
86.
go back to reference L.F. Zhang, G. Ou, L. Gu, Z.J. Peng, L.N. Wang, H. Wu, A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC Adv. 6(109), 107158–107162 (2016)CrossRef L.F. Zhang, G. Ou, L. Gu, Z.J. Peng, L.N. Wang, H. Wu, A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC Adv. 6(109), 107158–107162 (2016)CrossRef
87.
go back to reference S. Mu, X. Chen, R. Sun, X. Liu, H. Wu, D. He, et al., Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells. Carbon 103, 449–456 (2016)CrossRef S. Mu, X. Chen, R. Sun, X. Liu, H. Wu, D. He, et al., Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells. Carbon 103, 449–456 (2016)CrossRef
88.
go back to reference P. Wu, H. Lv, T. Peng, D. He, S. Mu, Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction. Sci. Rep. 4(2), 3968 (2014) P. Wu, H. Lv, T. Peng, D. He, S. Mu, Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction. Sci. Rep. 4(2), 3968 (2014)
89.
go back to reference X. Chen, D. He, H. Wu, X. Zhao, J. Zhang, K. Cheng, et al., Platinized graphene/ceramics nano-sandwiched architectures and electrodes with outstanding performance for PEM fuel cells. Sci. Rep. 5, 16246 (2015)CrossRef X. Chen, D. He, H. Wu, X. Zhao, J. Zhang, K. Cheng, et al., Platinized graphene/ceramics nano-sandwiched architectures and electrodes with outstanding performance for PEM fuel cells. Sci. Rep. 5, 16246 (2015)CrossRef
90.
go back to reference C. He, J. Tao, Y. Ke, Y. Qiu, Graphene-supported small tungsten carbide nanocrystals promoting a Pd catalyst towards formic acid oxidation. RSC Adv. 5(82), 66695–66703 (2015)CrossRef C. He, J. Tao, Y. Ke, Y. Qiu, Graphene-supported small tungsten carbide nanocrystals promoting a Pd catalyst towards formic acid oxidation. RSC Adv. 5(82), 66695–66703 (2015)CrossRef
91.
go back to reference M. Nawaz, W. Miran, J. Jang, D.S. Lee, One-step hydrothermal synthesis of porous 3d reduced graphene oxide/TiO2, aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B Environ. 203, 85–95 (2017)CrossRef M. Nawaz, W. Miran, J. Jang, D.S. Lee, One-step hydrothermal synthesis of porous 3d reduced graphene oxide/TiO2, aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B Environ. 203, 85–95 (2017)CrossRef
92.
go back to reference X. Jia, J. Wang, X. Zhu, T. Wang, F. Yang, W. Dong, et al., Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd. 697, 138–146 (2016)CrossRef X. Jia, J. Wang, X. Zhu, T. Wang, F. Yang, W. Dong, et al., Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd. 697, 138–146 (2016)CrossRef
93.
go back to reference X. Xu, Y. Sun, W. Qiao, X. Zhang, X. Chen, X. Song, et al., 3D MoS2-graphene hybrid aerogels as catalyst for enhanced efficient hydrogen evolution. Appl. Surf. Sci. 396(8), 1520–1527 (2017)CrossRef X. Xu, Y. Sun, W. Qiao, X. Zhang, X. Chen, X. Song, et al., 3D MoS2-graphene hybrid aerogels as catalyst for enhanced efficient hydrogen evolution. Appl. Surf. Sci. 396(8), 1520–1527 (2017)CrossRef
94.
go back to reference J. Duan, X. Zhang, W. Yuan, H. Chen, S. Jiang, X. Liu, et al., Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation. J. Power Sources 285, 76–79 (2015)CrossRef J. Duan, X. Zhang, W. Yuan, H. Chen, S. Jiang, X. Liu, et al., Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation. J. Power Sources 285, 76–79 (2015)CrossRef
Metadata
Title
Nanomaterials in Proton Exchange Membrane Fuel Cells
Authors
Yufeng Zhang
Rui Xue
Weijian Yuan
Xiaowei Liu
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56364-9_7

Premium Partners