Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 4/2023

11-08-2022 | Original Article

Necessity of 3D modeling for simulation of impact of skin effect of hydrogen charging on the binding energy of traps determined from the thermal desorption spectra

Authors: Alexander K. Belyaev, Anastasiia A. Chevrychkina, Vladimir A. Polyanskiy, Yuriy A. Yakovlev

Published in: Continuum Mechanics and Thermodynamics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Influence of the skin effect caused by the hydrogen charging of the samples on the thermal desorption spectra and the values of the hydrogen binding energy are critically analyzed. For the study, the experimental data and the McNab–Foster model are used. It is shown that an artificially formed specific inhomogeneity in the distribution of hydrogen concentrations significantly affects the shape of thermal desorption spectra and in turn the results of their interpretation based on the Choo–Lee plot and the Kissinger formula. Large errors are possible in the binding energies determined by means of the thermal desorption spectra, provided that the skin layer is formed artificially when the samples are charged with hydrogen. It is shown that the standard description of thermal desorption of hydrogen based upon the one-dimensional model leads to errors. The three-dimensional formulation of problem of hydrogen diffusion in cylindrical sample results in a broken line in the Choo–Lee plot rather than a straight line obtained in the framework of one-dimensional formulation. Comparison of experimental data with the 3D simulation data convinces that effect of the skin layer on the thermal desorption spectra is associated only with the diffusion of hydrogen at the sites of the crystal lattice in the McNab–Foster model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cailletet, L.: First report of h embrittlement of metals. Compt. Rend 58, 327 (1864) Cailletet, L.: First report of h embrittlement of metals. Compt. Rend 58, 327 (1864)
3.
go back to reference Johnson, W.H.: II: on some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc. R. Soc. Lond. 23(156), 168–179 (1875) Johnson, W.H.: II: on some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc. R. Soc. Lond. 23(156), 168–179 (1875)
5.
7.
go back to reference Liu, W., Sun, L., Li, Z., Fujii, M., Geng, Y., Dong, L., Fujita, T.: Trends and future challenges in hydrogen production and storage research. Environ. Sci. Pollut. Res. 27(25), 31092–31104 (2020)CrossRef Liu, W., Sun, L., Li, Z., Fujii, M., Geng, Y., Dong, L., Fujita, T.: Trends and future challenges in hydrogen production and storage research. Environ. Sci. Pollut. Res. 27(25), 31092–31104 (2020)CrossRef
14.
go back to reference Hill, M., Johnson, E.: Hydrogen in cold worked iron-carbon alloys and the mechanism of hydrogen embrittlement. Trans. Metall. Soc. AIME 215, 717–725 (1959) Hill, M., Johnson, E.: Hydrogen in cold worked iron-carbon alloys and the mechanism of hydrogen embrittlement. Trans. Metall. Soc. AIME 215, 717–725 (1959)
15.
go back to reference McNabb, A., Foster, P.: A new analysis of diffusion of hydrogen in iron and ferritic steels. Trans. Metall. Soc. AIME 227(3), 618 (1963) McNabb, A., Foster, P.: A new analysis of diffusion of hydrogen in iron and ferritic steels. Trans. Metall. Soc. AIME 227(3), 618 (1963)
17.
go back to reference Hirth, J.P.: Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11(6), 861–890 (1980)CrossRef Hirth, J.P.: Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11(6), 861–890 (1980)CrossRef
19.
go back to reference Xie, D., Li, S., Li, M., Wang, Z., Gumbsch, P., Sun, J., Ma, E., Li, J., Shan, Z.: Hydrogenated vacancies lock dislocations in aluminium. Nat. Commun. 7(1), 1–7 (2016)CrossRefADS Xie, D., Li, S., Li, M., Wang, Z., Gumbsch, P., Sun, J., Ma, E., Li, J., Shan, Z.: Hydrogenated vacancies lock dislocations in aluminium. Nat. Commun. 7(1), 1–7 (2016)CrossRefADS
42.
go back to reference of Welding, I.I.: Welding and Allied Processes—Determination of Hydrogen Content in Arc Weld Metal. ISO 3690:2018, 23 (2018) of Welding, I.I.: Welding and Allied Processes—Determination of Hydrogen Content in Arc Weld Metal. ISO 3690:2018, 23 (2018)
50.
go back to reference Ronevich, J., De Cooman, B., Speer, J., De Moor, E., Matlock, D.: Hydrogen effects in prestrained transformation induced plasticity steel. Metall. Mater. Trans. A. 43(7), 2293–2301 (2012)CrossRef Ronevich, J., De Cooman, B., Speer, J., De Moor, E., Matlock, D.: Hydrogen effects in prestrained transformation induced plasticity steel. Metall. Mater. Trans. A. 43(7), 2293–2301 (2012)CrossRef
51.
go back to reference Koyama, M., Bashir, A., Rohwerder, M., Merzlikin, S.V., Akiyama, E., Tsuzaki, K., Raabe, D.: Spatially and kinetically resolved mapping of hydrogen in a twinning-induced plasticity steel by use of scanning kelvin probe force microscopy. J. Electrochem. Soc. 162(12), 638–647 (2015). https://doi.org/10.1149/2.0131512jesCrossRef Koyama, M., Bashir, A., Rohwerder, M., Merzlikin, S.V., Akiyama, E., Tsuzaki, K., Raabe, D.: Spatially and kinetically resolved mapping of hydrogen in a twinning-induced plasticity steel by use of scanning kelvin probe force microscopy. J. Electrochem. Soc. 162(12), 638–647 (2015). https://​doi.​org/​10.​1149/​2.​0131512jesCrossRef
53.
go back to reference Guedes, D., Cupertino Malheiros, L., Oudriss, A., Cohendoz, S., Bouhattate, J., Creus, J., Thébault, F., Piette, M., Feaugas, X.: The role of plasticity and hydrogen flux in the fracture of a tempered martensitic steel: A new design of mechanical test until fracture to separate the influence of mobile from deeply trapped hydrogen. Acta Mater. 186, 133–148 (2020). https://doi.org/10.1016/j.actamat.2019.12.045CrossRefADS Guedes, D., Cupertino Malheiros, L., Oudriss, A., Cohendoz, S., Bouhattate, J., Creus, J., Thébault, F., Piette, M., Feaugas, X.: The role of plasticity and hydrogen flux in the fracture of a tempered martensitic steel: A new design of mechanical test until fracture to separate the influence of mobile from deeply trapped hydrogen. Acta Mater. 186, 133–148 (2020). https://​doi.​org/​10.​1016/​j.​actamat.​2019.​12.​045CrossRefADS
56.
go back to reference Wu, R., Ahlström, J., Magnusson, H., Frisk, K., Martinsson, A., Kimab, S.: Charging, Degassing and Distribution of Hydrogen in Cast Iron. Svensk kärnbränslehantering (SKB) (2015) Wu, R., Ahlström, J., Magnusson, H., Frisk, K., Martinsson, A., Kimab, S.: Charging, Degassing and Distribution of Hydrogen in Cast Iron. Svensk kärnbränslehantering (SKB) (2015)
68.
go back to reference Darken, L.S., Smith, R.P.: Behavior of hydrogen in steel during and after immersion in acid. Corrosion 5(1), 1–16 (1949)CrossRef Darken, L.S., Smith, R.P.: Behavior of hydrogen in steel during and after immersion in acid. Corrosion 5(1), 1–16 (1949)CrossRef
69.
go back to reference McNabb, A., Foster, P.K.: A new analysis of the diffusion of hydrogen in iron and ferrite. Trans. Metallic. Soc. 227, 618–627 (1963) McNabb, A., Foster, P.K.: A new analysis of the diffusion of hydrogen in iron and ferrite. Trans. Metallic. Soc. 227, 618–627 (1963)
70.
go back to reference Pressouyre, G.: A classification of hydrogen traps in steel. Metall. Trans. A 10(10), 1571–1573 (1979)CrossRef Pressouyre, G.: A classification of hydrogen traps in steel. Metall. Trans. A 10(10), 1571–1573 (1979)CrossRef
71.
go back to reference Pressouyre, G.: Hydrogen traps, repellers, and obstacles in steel; consequences on hydrogen diffusion, solubility, and embrittlement. Metall. Trans. A 14(10), 2189–2193 (1983)CrossRef Pressouyre, G.: Hydrogen traps, repellers, and obstacles in steel; consequences on hydrogen diffusion, solubility, and embrittlement. Metall. Trans. A 14(10), 2189–2193 (1983)CrossRef
73.
go back to reference McLean, D., Maradudin, A.: Grain boundaries in metals. Phys. Today 11(7), 35 (1958)CrossRef McLean, D., Maradudin, A.: Grain boundaries in metals. Phys. Today 11(7), 35 (1958)CrossRef
79.
go back to reference Enomoto, M., Hirakami, D.: Influence of specimen thickness on thermal desorption spectrum of hydrogen in high strength SCM435 steel. ISIJ Int. 55(11), 2492–2498 (2015)CrossRef Enomoto, M., Hirakami, D.: Influence of specimen thickness on thermal desorption spectrum of hydrogen in high strength SCM435 steel. ISIJ Int. 55(11), 2492–2498 (2015)CrossRef
80.
go back to reference Liu, Y., Wang, M., Liu, G.: Hydrogen trapping in high strength martensitic steel after austenitized at different temperatures. Int. J. Hydrog. Energy 38(33), 14364–14368 (2013)CrossRef Liu, Y., Wang, M., Liu, G.: Hydrogen trapping in high strength martensitic steel after austenitized at different temperatures. Int. J. Hydrog. Energy 38(33), 14364–14368 (2013)CrossRef
81.
go back to reference Takashima, K., Han, R., Yokoyama, K., Funakawa, Y.: Hydrogen embrittlement induced by hydrogen charging during deformation of ultra-high strength steel sheet consisting of ferrite and nanometer-sized precipitates. ISIJ Int. 59(12), 2327–2333 (2019)CrossRef Takashima, K., Han, R., Yokoyama, K., Funakawa, Y.: Hydrogen embrittlement induced by hydrogen charging during deformation of ultra-high strength steel sheet consisting of ferrite and nanometer-sized precipitates. ISIJ Int. 59(12), 2327–2333 (2019)CrossRef
82.
go back to reference Claeys, L., Cnockaert, V., Depover, T., De Graeve, I., Verbeken, K.: Critical assessment of the evaluation of thermal desorption spectroscopy data for duplex stainless steels: A combined experimental and numerical approach. Acta Mater. 186, 190–198 (2020)CrossRefADS Claeys, L., Cnockaert, V., Depover, T., De Graeve, I., Verbeken, K.: Critical assessment of the evaluation of thermal desorption spectroscopy data for duplex stainless steels: A combined experimental and numerical approach. Acta Mater. 186, 190–198 (2020)CrossRefADS
83.
go back to reference Rhode, M., Mente, T., Steppan, E., Steger, J., Kannengiesser, T.: Hydrogen trapping in T24 Cr-Mo-V steel weld joints-microstructure effect vs. experimental influence on activation energy for diffusion. Weld. World 62(2), 277–287 (2018)CrossRef Rhode, M., Mente, T., Steppan, E., Steger, J., Kannengiesser, T.: Hydrogen trapping in T24 Cr-Mo-V steel weld joints-microstructure effect vs. experimental influence on activation energy for diffusion. Weld. World 62(2), 277–287 (2018)CrossRef
84.
go back to reference Laureys, A., Claeys, L., Pinson, M., Depover, T., Verbeken, K.: Thermal desorption spectroscopy evaluation of hydrogen-induced damage and deformation-induced defects. Mater. Sci. Technol. 36(13), 1389–1397 (2020)CrossRefADS Laureys, A., Claeys, L., Pinson, M., Depover, T., Verbeken, K.: Thermal desorption spectroscopy evaluation of hydrogen-induced damage and deformation-induced defects. Mater. Sci. Technol. 36(13), 1389–1397 (2020)CrossRefADS
85.
go back to reference Nagumo, M., Takai, K., Okuda, N.: Nature of hydrogen trapping sites in steels induced by plastic deformation. J. Alloy. Compd. 293, 310–316 (1999)CrossRef Nagumo, M., Takai, K., Okuda, N.: Nature of hydrogen trapping sites in steels induced by plastic deformation. J. Alloy. Compd. 293, 310–316 (1999)CrossRef
Metadata
Title
Necessity of 3D modeling for simulation of impact of skin effect of hydrogen charging on the binding energy of traps determined from the thermal desorption spectra
Authors
Alexander K. Belyaev
Anastasiia A. Chevrychkina
Vladimir A. Polyanskiy
Yuriy A. Yakovlev
Publication date
11-08-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 4/2023
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01130-7

Other articles of this Issue 4/2023

Continuum Mechanics and Thermodynamics 4/2023 Go to the issue

Premium Partners