Skip to main content
Top
Published in: Computational Mechanics 4/2018

27-12-2017 | Original Paper

Negative extensibility metamaterials: phase diagram calculation

Authors: John T. Klein, Eduard G. Karpov

Published in: Computational Mechanics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Negative extensibility metamaterials are able to contract against the line of increasing external tension. A bistable unit cell exhibits several nonlinear mechanical behaviors including the negative extensibility response. Here, an exact form of the total mechanical potential is used based on engineering strain measure. The mechanical response is a function of the system parameters that specify unit cell dimensions and member stiffnesses. A phase diagram is calculated, which maps the response to regions in the diagram using the system parameters as the coordinate axes. Boundary lines pinpoint the onset of a particular mechanical response. Contour lines allow various material properties to be fine-tuned. Analogous to thermodynamic phase diagrams, there exist singular “triple points” which simultaneously satisfy conditions for three response types. The discussion ends with a brief statement about how thermodynamic phase diagrams differ from the phase diagram in this paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Klatt T, Haberman MR (2013) A nonlinear negative stiffness metamaterial unit cell and small-on-large multiscale material model. J Appl Phys 114(3):033503CrossRef Klatt T, Haberman MR (2013) A nonlinear negative stiffness metamaterial unit cell and small-on-large multiscale material model. J Appl Phys 114(3):033503CrossRef
2.
go back to reference Wu Y, Lai Y, Zhang ZQ (2011) Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys Rev Lett 107(10):105506CrossRef Wu Y, Lai Y, Zhang ZQ (2011) Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys Rev Lett 107(10):105506CrossRef
3.
go back to reference Qu J, Kadic M, Wegener M (2017) Poroelastic metamaterials with negative effective static compressibility. Appl Phys Lett 110(17):171901CrossRef Qu J, Kadic M, Wegener M (2017) Poroelastic metamaterials with negative effective static compressibility. Appl Phys Lett 110(17):171901CrossRef
4.
go back to reference Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D Soft metamaterials with negative Poisson’s ratio. Adv Mater 25(36):5044CrossRef Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D Soft metamaterials with negative Poisson’s ratio. Adv Mater 25(36):5044CrossRef
5.
go back to reference Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A, Kennerknecht T, Eberl C, Thiel M, Wegener M (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24(20):2710CrossRef Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A, Kennerknecht T, Eberl C, Thiel M, Wegener M (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24(20):2710CrossRef
6.
go back to reference Bückmann T, Thiel M, Kadic M, Schittny R, Wegener M (2014) An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat Commun 5:4130CrossRef Bückmann T, Thiel M, Kadic M, Schittny R, Wegener M (2014) An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat Commun 5:4130CrossRef
7.
go back to reference Wang K, Zhao Y, Chang YH, Qian Z, Zhang C, Wang B, Vannan MA, Wang MJ (2016) Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater Des 90:704CrossRef Wang K, Zhao Y, Chang YH, Qian Z, Zhang C, Wang B, Vannan MA, Wang MJ (2016) Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater Des 90:704CrossRef
8.
go back to reference Coulais C, Sounas D, Alù A (2017) Static non-reciprocity in mechanical metamaterials. Nature 542:461CrossRef Coulais C, Sounas D, Alù A (2017) Static non-reciprocity in mechanical metamaterials. Nature 542:461CrossRef
9.
go back to reference Lakes R (2001) Extreme damping in compliant composites with a negative-stiffness phase. Philos Mag Lett 81(2):95CrossRef Lakes R (2001) Extreme damping in compliant composites with a negative-stiffness phase. Philos Mag Lett 81(2):95CrossRef
10.
go back to reference Lakes R, Rosakis P, Ruina A (1993) Microbuckling instability in elastomeric cellular solids. J Mater Sci 28(17):4667CrossRef Lakes R, Rosakis P, Ruina A (1993) Microbuckling instability in elastomeric cellular solids. J Mater Sci 28(17):4667CrossRef
11.
go back to reference Moore B, Jaglinski T, Stone D, Lakes R (2006) Negative incremental bulk modulus in foams. Philos Mag Lett 86(10):651CrossRef Moore B, Jaglinski T, Stone D, Lakes R (2006) Negative incremental bulk modulus in foams. Philos Mag Lett 86(10):651CrossRef
12.
go back to reference Nicolaou ZG, Motter AE (2012) Mechanical metamaterials with negative compressibility transitions. Nat Mater 11(7):608CrossRef Nicolaou ZG, Motter AE (2012) Mechanical metamaterials with negative compressibility transitions. Nat Mater 11(7):608CrossRef
13.
go back to reference Jaglinski T, Kochmann D, Stone D, Lakes R (2007) Composite materials with viscoelastic stiffness greater than diamond. Science 315(5812):620CrossRef Jaglinski T, Kochmann D, Stone D, Lakes R (2007) Composite materials with viscoelastic stiffness greater than diamond. Science 315(5812):620CrossRef
14.
go back to reference Lakes R, Wojciechowski K (2008) Negative compressibility, negative Poisson’s ratio, and stability. Physica Status Solidi (b) 245(3):545CrossRef Lakes R, Wojciechowski K (2008) Negative compressibility, negative Poisson’s ratio, and stability. Physica Status Solidi (b) 245(3):545CrossRef
15.
go back to reference Dyskin AV, Pasternak E (2012) Elastic composite with negative stiffness inclusions in antiplane strain. Int J Eng Sci 58:45CrossRefMATH Dyskin AV, Pasternak E (2012) Elastic composite with negative stiffness inclusions in antiplane strain. Int J Eng Sci 58:45CrossRefMATH
16.
go back to reference Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T, Santangelo CD, Cohen I (2014) Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345(6197):647CrossRef Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T, Santangelo CD, Cohen I (2014) Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345(6197):647CrossRef
17.
go back to reference Boatti E, Vasios N, Bertoldi K (2017) Origami metamaterials for tunable thermal expansion. Adv Mater 29:1700360CrossRef Boatti E, Vasios N, Bertoldi K (2017) Origami metamaterials for tunable thermal expansion. Adv Mater 29:1700360CrossRef
18.
go back to reference Chen Y, Li T, Scarpa F, Wang L (2017) Lattice metamaterials with mechanically Tunable Poisson’s ratio for vibration control. Phys Rev Appl 7(2):024012CrossRef Chen Y, Li T, Scarpa F, Wang L (2017) Lattice metamaterials with mechanically Tunable Poisson’s ratio for vibration control. Phys Rev Appl 7(2):024012CrossRef
19.
go back to reference Chen M, Karpov E (2014) Bistability and thermal coupling in elastic metamaterials with negative compressibility. Phys Rev E 90(3):033201CrossRef Chen M, Karpov E (2014) Bistability and thermal coupling in elastic metamaterials with negative compressibility. Phys Rev E 90(3):033201CrossRef
20.
go back to reference Harne RL, Wu Z, Wang KW (2016) Designing and harnessing the metastable states of a modular Metastructure for programmable mechanical properties adaptation. J Mech Des 138(2):021402CrossRef Harne RL, Wu Z, Wang KW (2016) Designing and harnessing the metastable states of a modular Metastructure for programmable mechanical properties adaptation. J Mech Des 138(2):021402CrossRef
21.
go back to reference Che K, Yuan C, Wu J, Qi HJ, Meaud J (2017) Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J Appl Mech 84(1):011004CrossRef Che K, Yuan C, Wu J, Qi HJ, Meaud J (2017) Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J Appl Mech 84(1):011004CrossRef
22.
go back to reference Liu A, Zhu W, Tsai D, Zheludev NI (2012) Micromachined tunable metamaterials: a review. J Opt 14(11):114009CrossRef Liu A, Zhu W, Tsai D, Zheludev NI (2012) Micromachined tunable metamaterials: a review. J Opt 14(11):114009CrossRef
23.
go back to reference Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931CrossRef Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931CrossRef
24.
go back to reference Karpov EG, Danso LA, Klein JT (2017) Negative extensibility metamaterials: occurrence and design-space topology. Phys Rev E 96(2):023002CrossRef Karpov EG, Danso LA, Klein JT (2017) Negative extensibility metamaterials: occurrence and design-space topology. Phys Rev E 96(2):023002CrossRef
25.
go back to reference Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge
26.
go back to reference Dong J, Cai C, Okeil AM (2010) Overview of potential and existing applications of shape memory alloys in bridges. J Bridge Eng 16(2):305CrossRef Dong J, Cai C, Okeil AM (2010) Overview of potential and existing applications of shape memory alloys in bridges. J Bridge Eng 16(2):305CrossRef
27.
go back to reference Zeeman EC (1977) Catastrophe theory: selected papers, 1972–1977. Addison-Wesley, BostonMATH Zeeman EC (1977) Catastrophe theory: selected papers, 1972–1977. Addison-Wesley, BostonMATH
28.
go back to reference Saunders PT (1980) An introduction to catastrophe theory. Cambridge University Press, CambridgeCrossRefMATH Saunders PT (1980) An introduction to catastrophe theory. Cambridge University Press, CambridgeCrossRefMATH
29.
go back to reference Gilmore R (1993) Catastrophe theory for scientists and engineers. Courier Corporation, North ChelmsfordMATH Gilmore R (1993) Catastrophe theory for scientists and engineers. Courier Corporation, North ChelmsfordMATH
30.
go back to reference Liu WK, Karpov E, Zhang S, Park H (2004) An introduction to computational nanomechanics and materials. Comput Methods Appl Mech Eng 193(17):1529MathSciNetCrossRefMATH Liu WK, Karpov E, Zhang S, Park H (2004) An introduction to computational nanomechanics and materials. Comput Methods Appl Mech Eng 193(17):1529MathSciNetCrossRefMATH
31.
go back to reference Kan Q, Yu C, Kang G, Li J, Yan W (2016) Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy. Mech Mater 97:48CrossRef Kan Q, Yu C, Kang G, Li J, Yan W (2016) Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy. Mech Mater 97:48CrossRef
32.
go back to reference Ortın J, Delaey L (2002) Hysteresis in shape-memory alloys. Int J Non-Linear Mech 37(8):1275CrossRefMATH Ortın J, Delaey L (2002) Hysteresis in shape-memory alloys. Int J Non-Linear Mech 37(8):1275CrossRefMATH
33.
go back to reference Dolce M, Cardone D (2001) Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion. Int J Mech Sci 43(11):2631CrossRef Dolce M, Cardone D (2001) Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion. Int J Mech Sci 43(11):2631CrossRef
34.
go back to reference Saadat S, Salichs J, Noori M, Hou Z, Davoodi H, Bar-On I, Suzuki Y, Masuda A (2002) An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Mater Struct 11(2):218CrossRef Saadat S, Salichs J, Noori M, Hou Z, Davoodi H, Bar-On I, Suzuki Y, Masuda A (2002) An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Mater Struct 11(2):218CrossRef
35.
go back to reference Liu WK, Karpov EG, Park HS (2009) Nano mechanics and materials: theory, multiscale methods and applications. Wiley, Hoboken Liu WK, Karpov EG, Park HS (2009) Nano mechanics and materials: theory, multiscale methods and applications. Wiley, Hoboken
36.
go back to reference Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the Calphad method. Cambridge University Press, CambridgeCrossRefMATH Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the Calphad method. Cambridge University Press, CambridgeCrossRefMATH
Metadata
Title
Negative extensibility metamaterials: phase diagram calculation
Authors
John T. Klein
Eduard G. Karpov
Publication date
27-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 4/2018
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1520-2

Other articles of this Issue 4/2018

Computational Mechanics 4/2018 Go to the issue