Skip to main content
Top
Published in: Computational Mechanics 4/2018

08-12-2017 | Original Paper

Towards practical multiscale approach for analysis of reinforced concrete structures

Authors: Arturo Moyeda, Jacob Fish

Published in: Computational Mechanics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM (2008) Sustainable development and climate changes initiatives. Cem Concr Res 38:115–127CrossRef Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM (2008) Sustainable development and climate changes initiatives. Cem Concr Res 38:115–127CrossRef
2.
go back to reference American Concrete Institute (2014) Building code requirements for structural concrete ACI-318 American Concrete Institute (2014) Building code requirements for structural concrete ACI-318
3.
go back to reference International Federation for Structural Concrete fib CEB-FIP (2010) fib Model Code for Concrete Structures. ISBN: 978-3-433-03061-5 International Federation for Structural Concrete fib CEB-FIP (2010) fib Model Code for Concrete Structures. ISBN: 978-3-433-03061-5
4.
go back to reference Emery JM, Hochhalther JD, Ingraffea AR (2007) Computational fracture mechanics of concrete structures: a retrospective through multiple lenses. FraMCos-6 Catania (Italy) Emery JM, Hochhalther JD, Ingraffea AR (2007) Computational fracture mechanics of concrete structures: a retrospective through multiple lenses. FraMCos-6 Catania (Italy)
5.
go back to reference Bazant Z, Caner F, Carol I, Adley M, Akers S (2000) Microplane model M4 for concrete. I: Formulation with work-conjugate deviatoric stress. J Eng Mech ASCE 126(9):944–953CrossRef Bazant Z, Caner F, Carol I, Adley M, Akers S (2000) Microplane model M4 for concrete. I: Formulation with work-conjugate deviatoric stress. J Eng Mech ASCE 126(9):944–953CrossRef
6.
go back to reference Lilliu G, van Mier JGM (2003) 3D lattice type fracture model for concrete. Eng Fract Mech 70:927–941CrossRef Lilliu G, van Mier JGM (2003) 3D lattice type fracture model for concrete. Eng Fract Mech 70:927–941CrossRef
7.
go back to reference Fillipou FC, Spacone E, Taucer FF (1991) A fiber beam-column element for seismic response analysis of reinforced concrete structures, Report No. UCB/EERC-91/17. Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley Fillipou FC, Spacone E, Taucer FF (1991) A fiber beam-column element for seismic response analysis of reinforced concrete structures, Report No. UCB/EERC-91/17. Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley
8.
go back to reference Mohr S, Bairán J, Marí A (2010) A frame element model for the analysis of reinforced concrete structures under shear and bending. Eng Struct 32:3936–3954CrossRef Mohr S, Bairán J, Marí A (2010) A frame element model for the analysis of reinforced concrete structures under shear and bending. Eng Struct 32:3936–3954CrossRef
10.
go back to reference Pijaudier-Cabot G, Mazars J (2001) Damage models for concrete. Lemaitre handbook of materials behavior models. Academic Press, San Diego Pijaudier-Cabot G, Mazars J (2001) Damage models for concrete. Lemaitre handbook of materials behavior models. Academic Press, San Diego
11.
go back to reference Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading. J Eng Mech 124:892–900CrossRef Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading. J Eng Mech 124:892–900CrossRef
12.
go back to reference Grassl P, Xenos D, Nystrom U, Rempling R, Gylltoft K (2013) CDPM2: a damage-plasticity approach to modelling the failure of concrete. Int J Solids Struct 50(24):3805–3816CrossRef Grassl P, Xenos D, Nystrom U, Rempling R, Gylltoft K (2013) CDPM2: a damage-plasticity approach to modelling the failure of concrete. Int J Solids Struct 50(24):3805–3816CrossRef
13.
go back to reference Cervenka J, Cervenka V (2008) Three dimensional combined fracture-plastic material model for concrete including creep and rate effect for dynamic loading. Int J Plasiticy 24(12):2192–2220CrossRefMATH Cervenka J, Cervenka V (2008) Three dimensional combined fracture-plastic material model for concrete including creep and rate effect for dynamic loading. Int J Plasiticy 24(12):2192–2220CrossRefMATH
14.
go back to reference Moharrani M, Koutromanos I (2016) Triaxial constitutive model for concrete under cyclic loading. J Struct Eng 142(7):04016039CrossRef Moharrani M, Koutromanos I (2016) Triaxial constitutive model for concrete under cyclic loading. J Struct Eng 142(7):04016039CrossRef
15.
go back to reference Cuellar JR, Gallegos S (2004) Un modelo de filamentos para vigas-columnas de concreto, III Congreso Internacional sobre Métodos Numéricos en Ingeniería y Ciencias Aplicadas, Barcelona Cuellar JR, Gallegos S (2004) Un modelo de filamentos para vigas-columnas de concreto, III Congreso Internacional sobre Métodos Numéricos en Ingeniería y Ciencias Aplicadas, Barcelona
16.
go back to reference Maekawa K, Ishida T, Kishi T (2003) Multi-scale modeling of concrete performance. J Adv Concr Technol 1(2):91–126CrossRef Maekawa K, Ishida T, Kishi T (2003) Multi-scale modeling of concrete performance. J Adv Concr Technol 1(2):91–126CrossRef
17.
go back to reference Oliver J, Caicedo M, Roubin E, Hernández JA (2014) Multi-scale (\(\text{ FE }^{2})\) analysis of material failure in cement/aggregate-type composite structures, Computational Modelling of Concrete Structures. Taylor & Francis Group, Oxford Oliver J, Caicedo M, Roubin E, Hernández JA (2014) Multi-scale (\(\text{ FE }^{2})\) analysis of material failure in cement/aggregate-type composite structures, Computational Modelling of Concrete Structures. Taylor & Francis Group, Oxford
18.
go back to reference Caballero A, López CM, Carol I (2006) 3D meso-structural analysis of concrete specimens under uniaxial tension. Comput Methods Appl Mech Eng 195:7182–7195CrossRefMATH Caballero A, López CM, Carol I (2006) 3D meso-structural analysis of concrete specimens under uniaxial tension. Comput Methods Appl Mech Eng 195:7182–7195CrossRefMATH
19.
go back to reference Zhang JL, Liu X, Yuan Y, Mang HA (2014) A multiscale model for predicting the elasticity modulus and the strength of ultra-high performance fiber reinforced concrete, Computational Modeling of Concrete Structures. Taylor & Francis Group, Oxford Zhang JL, Liu X, Yuan Y, Mang HA (2014) A multiscale model for predicting the elasticity modulus and the strength of ultra-high performance fiber reinforced concrete, Computational Modeling of Concrete Structures. Taylor & Francis Group, Oxford
20.
go back to reference Rumanus E, Meschke G (2010) Homogenization-based model for reinforced concrete, computational modeling of concrete structures. Taylor & Francis Group, Oxford Rumanus E, Meschke G (2010) Homogenization-based model for reinforced concrete, computational modeling of concrete structures. Taylor & Francis Group, Oxford
21.
go back to reference Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21:571–574CrossRef Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21:571–574CrossRef
22.
go back to reference Wu W, Yuan Z, Fish J (2010) Eigendeformation-based homogenization of concrete. Int J Multiscale Comput Eng 8(1):1–15CrossRef Wu W, Yuan Z, Fish J (2010) Eigendeformation-based homogenization of concrete. Int J Multiscale Comput Eng 8(1):1–15CrossRef
23.
25.
go back to reference Fish J (2014) Practical multiscaling. Wiley, Hoboken Fish J (2014) Practical multiscaling. Wiley, Hoboken
26.
27.
go back to reference Fish J, Shek K, Pandheeradi Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Methods Appl Mech Eng 148(1–2):53–73MathSciNetCrossRefMATH Fish J, Shek K, Pandheeradi Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Methods Appl Mech Eng 148(1–2):53–73MathSciNetCrossRefMATH
28.
go back to reference Oskay C, Fish J (2007) Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput Methods Appl Mech Eng 196(7):1216–1243MathSciNetCrossRefMATH Oskay C, Fish J (2007) Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput Methods Appl Mech Eng 196(7):1216–1243MathSciNetCrossRefMATH
29.
go back to reference Oskay C, Fish J (2008) On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems. Comput Mech 42(2):181–195CrossRefMATH Oskay C, Fish J (2008) On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems. Comput Mech 42(2):181–195CrossRefMATH
30.
go back to reference Sparks P, Oskay C (2016) The method of failure paths for reduced-order computational homogenization. Int J Multiscale Comput Eng 14(5):515–534CrossRef Sparks P, Oskay C (2016) The method of failure paths for reduced-order computational homogenization. Int J Multiscale Comput Eng 14(5):515–534CrossRef
31.
go back to reference Zhang X, Oskay C (2015) Eigenstrain based reduced order homogenization for polycrystalline materials. Comput Methods Appl Mech Eng 297:408–436MathSciNetCrossRef Zhang X, Oskay C (2015) Eigenstrain based reduced order homogenization for polycrystalline materials. Comput Methods Appl Mech Eng 297:408–436MathSciNetCrossRef
32.
go back to reference Leonhardt F, Walther R (1962) Contribution to the treatment of shear in reinforced concrete, Technical Translation 1172. National Research Council of Canada Leonhardt F, Walther R (1962) Contribution to the treatment of shear in reinforced concrete, Technical Translation 1172. National Research Council of Canada
33.
go back to reference Bresler B, Scordelis AC (1963) Shear strength of reinforced concrete beams title no 60–4. J Am Concr Inst 60(1):51–74 Bresler B, Scordelis AC (1963) Shear strength of reinforced concrete beams title no 60–4. J Am Concr Inst 60(1):51–74
34.
go back to reference Hughes TJR, Feijóo GR, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24MathSciNetCrossRefMATH Hughes TJR, Feijóo GR, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24MathSciNetCrossRefMATH
35.
38.
go back to reference Reddy JN (1990) A general non-linear third-order theory of plates with moderate thickness. Int J Non-Linear Mech 25(6):677–686CrossRefMATH Reddy JN (1990) A general non-linear third-order theory of plates with moderate thickness. Int J Non-Linear Mech 25(6):677–686CrossRefMATH
39.
go back to reference Reddy JN (1997) On locking-free shear deformable beam finite elements. Comput Methods Apps Mech Eng 149:113–132CrossRefMATH Reddy JN (1997) On locking-free shear deformable beam finite elements. Comput Methods Apps Mech Eng 149:113–132CrossRefMATH
40.
go back to reference Bažant ZP, Pijaudier-Cabot G (1989) Measurement of characteristic length of nonlocal continuum. J Eng Mech 115(4):755–767CrossRef Bažant ZP, Pijaudier-Cabot G (1989) Measurement of characteristic length of nonlocal continuum. J Eng Mech 115(4):755–767CrossRef
Metadata
Title
Towards practical multiscale approach for analysis of reinforced concrete structures
Authors
Arturo Moyeda
Jacob Fish
Publication date
08-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 4/2018
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1521-1

Other articles of this Issue 4/2018

Computational Mechanics 4/2018 Go to the issue