Skip to main content
Top
Published in: Neural Computing and Applications 4/2010

01-06-2010 | Original Article

Neural network modeling of time-dependent creep deformations in masonry structures

Published in: Neural Computing and Applications | Issue 4/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stresses and deformations in concrete and masonry structures can be significantly altered by creep. Thus, neglecting creep could result in un-conservative design of new structures and/or underestimation of the level of its effect on stress redistribution in existing structures. Brickwork has substantial creep strain that is difficult to predict because of its dependence on many uncontrolled variables. Reliable and accurate prediction models for the long-term, time-dependent creep deformation of brickwork structures are needed. Artificial intelligence techniques are suitable for such applications. A model based on radial basis function neural networks (RBFNN) is proposed for predicting creep and is compared to a multi-layer perceptron neural network (MLPNN) model recently developed for the same purpose. Accurate prediction of creep was achieved due to the simple architecture and fast training procedure of RBFNN model especially when compared to MLPNN model. The RBFNN model shows good agreement with experimental creep data from brickwork assemblages collected over the last 15 years.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ameny P, Jessop EL, Loov RE (1980) Strength, elastic and creep properties of concrete masonry. Int J Mason Constr 1(1):33–39 Ameny P, Jessop EL, Loov RE (1980) Strength, elastic and creep properties of concrete masonry. Int J Mason Constr 1(1):33–39
2.
go back to reference Anand SC, Rahman MA (1991) Numerical modeling of creep in composite masonry walls. J Struct Eng ASCE 117(7):2149–2165CrossRef Anand SC, Rahman MA (1991) Numerical modeling of creep in composite masonry walls. J Struct Eng ASCE 117(7):2149–2165CrossRef
3.
go back to reference Anzani A, Binda L, Mirabella Roberti G (2000) The effect of heavy persistent actions into the behaviour of ancient masonry. Mater Struct 33:251–261CrossRef Anzani A, Binda L, Mirabella Roberti G (2000) The effect of heavy persistent actions into the behaviour of ancient masonry. Mater Struct 33:251–261CrossRef
4.
go back to reference Anzani A, Garavaglia E, Binda L (2009) Long-term damage of historic masonry: a probabilistic model. Construct Build Mater 23:713–724CrossRef Anzani A, Garavaglia E, Binda L (2009) Long-term damage of historic masonry: a probabilistic model. Construct Build Mater 23:713–724CrossRef
5.
go back to reference Bazant ZP, Ferreti D (2001) Asymptotic temporal and spatial of coupled creep, aging, diffusion and fracture process In: Ulm FJ, Bazant ZP, Wittmann FH (eds) Proceedings of creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, El-Sevier Science Ltd., pp 121–145 Bazant ZP, Ferreti D (2001) Asymptotic temporal and spatial of coupled creep, aging, diffusion and fracture process In: Ulm FJ, Bazant ZP, Wittmann FH (eds) Proceedings of creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, El-Sevier Science Ltd., pp 121–145
6.
go back to reference Binda L, Gatti G, Mangano G, Poggi C, Sacchi Landriani G (1992) The collapse of the civic tower of Pavia: a survey of the materials and structure. Mason Int 6(1):11–20 Binda L, Gatti G, Mangano G, Poggi C, Sacchi Landriani G (1992) The collapse of the civic tower of Pavia: a survey of the materials and structure. Mason Int 6(1):11–20
7.
go back to reference Bishop CM (1996) Neural networks for pattern recognition, 1st edn. Oxford University Press, UKMATH Bishop CM (1996) Neural networks for pattern recognition, 1st edn. Oxford University Press, UKMATH
8.
go back to reference Brooks JJ, Neville AM (1978) Predicting long-term creep and shrinkage from short-term tests. Mag Concr Res 30(103):51–61CrossRef Brooks JJ, Neville AM (1978) Predicting long-term creep and shrinkage from short-term tests. Mag Concr Res 30(103):51–61CrossRef
9.
go back to reference Carpenter W, Barthelemy JF (1994) Common misconceptions about neural networks as approximators. ASCE J Comp Civil Eng 8(3):345–358CrossRef Carpenter W, Barthelemy JF (1994) Common misconceptions about neural networks as approximators. ASCE J Comp Civil Eng 8(3):345–358CrossRef
10.
go back to reference Demuth H, Beale M (2001) Neural network toolbox for use with MATLAB®. The Mathworks Inc., MA Demuth H, Beale M (2001) Neural network toolbox for use with MATLAB®. The Mathworks Inc., MA
11.
go back to reference Duda RI, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, NYMATH Duda RI, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, NYMATH
12.
go back to reference Efe MO, Kaynak O, Wilamowski BM, Yu X (2001) Radial basis function neural networks in variable structure control of a class of biochemical processes. In: Proceedings of the 27th annual conference of the IEEE industrial electronics society (IECON’ 01), pp 13–18 Efe MO, Kaynak O, Wilamowski BM, Yu X (2001) Radial basis function neural networks in variable structure control of a class of biochemical processes. In: Proceedings of the 27th annual conference of the IEEE industrial electronics society (IECON’ 01), pp 13–18
13.
go back to reference Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, LondonMATH Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, LondonMATH
14.
go back to reference Gardner J, Lockman MJ (2001) Design provisions for drying shrinkage and creep of normal strength concrete. ACI Mater J 98(2):159–167 Gardner J, Lockman MJ (2001) Design provisions for drying shrinkage and creep of normal strength concrete. ACI Mater J 98(2):159–167
15.
go back to reference Gardner NJ, Zhao JW (1993) Creep and shrinkage revisited. ACI Mater J 90(3):236–246 Gardner NJ, Zhao JW (1993) Creep and shrinkage revisited. ACI Mater J 90(3):236–246
17.
go back to reference Ham FM, Kostanic I (2001) Principles of neurocomputing for science and engineering. McGraw-Hill, Singapore Ham FM, Kostanic I (2001) Principles of neurocomputing for science and engineering. McGraw-Hill, Singapore
18.
go back to reference Hamilton HR III, Badger CCR (2000) Creep losses in post-tensioned concrete masonry. TMS J 18:1 Hamilton HR III, Badger CCR (2000) Creep losses in post-tensioned concrete masonry. TMS J 18:1
19.
go back to reference Hannant DJ (1968) The mechanism of creep in concrete. Mater Struct 1(5):403–410 Hannant DJ (1968) The mechanism of creep in concrete. Mater Struct 1(5):403–410
20.
go back to reference Hartman EJ, Keeler JD, Kowalski JM (1990) Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput 2(2):210–215CrossRef Hartman EJ, Keeler JD, Kowalski JM (1990) Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput 2(2):210–215CrossRef
21.
go back to reference Harvey RJ, Hughes TG (1995) On the representation of masonry creep by rheological analogy. In: Proceedings of the ASCE structural congress 1, pp 385–396 Harvey RJ, Hughes TG (1995) On the representation of masonry creep by rheological analogy. In: Proceedings of the ASCE structural congress 1, pp 385–396
22.
go back to reference Harvey RJ, Lenczner D (1993) Creep prestress losses in concrete masonry. In: Proceedings of 5th RILEM international symposium on creep and shrinkage in concrete, Barcelona, Spain, pp 71–76 Harvey RJ, Lenczner D (1993) Creep prestress losses in concrete masonry. In: Proceedings of 5th RILEM international symposium on creep and shrinkage in concrete, Barcelona, Spain, pp 71–76
23.
go back to reference Hilsdorf HK, Müller HS (1979) Comparison of methods to predict time-dependent strains of concrete. Institute für Baustofftechnologie, Universität Karlsruhe (TH), Germany, p 91 Hilsdorf HK, Müller HS (1979) Comparison of methods to predict time-dependent strains of concrete. Institute für Baustofftechnologie, Universität Karlsruhe (TH), Germany, p 91
24.
go back to reference Hjorth JSU (1994) Computer intensive statistical methods: validation model selection and bootstrap. Chapman and Hall, LondonMATH Hjorth JSU (1994) Computer intensive statistical methods: validation model selection and bootstrap. Chapman and Hall, LondonMATH
25.
go back to reference Lenczner D (1969) Creep in model brickwork. In: Johnston FB (ed) Proceedings of designing engineering and construction with masonry products, Houston, Texas, USA (1958–1969) Lenczner D (1969) Creep in model brickwork. In: Johnston FB (ed) Proceedings of designing engineering and construction with masonry products, Houston, Texas, USA (1958–1969)
26.
go back to reference Lenczner D (1986) Creep and prestress losses in brick masonry. Struct Eng 64B(3):57–62 Lenczner D (1986) Creep and prestress losses in brick masonry. Struct Eng 64B(3):57–62
27.
go back to reference López C, Carol I, Murcia J (2001) Mesostructural modeling of basic creep at various stress levels. In: Ulm FJ, Bazant ZP, Wittmann FH (eds) Proceedings creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, El-Sevier Science Ltd., pp 101–106 López C, Carol I, Murcia J (2001) Mesostructural modeling of basic creep at various stress levels. In: Ulm FJ, Bazant ZP, Wittmann FH (eds) Proceedings creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, El-Sevier Science Ltd., pp 101–106
28.
go back to reference Martinez WL, Martinez AR (2002) Computational statistics handbook with MATLAB®. Chapman & Hall/CRC Press, NY Martinez WL, Martinez AR (2002) Computational statistics handbook with MATLAB®. Chapman & Hall/CRC Press, NY
29.
go back to reference Masonry Design for buildings (limit states design)—structures (design) (1994) CSA-S304.1-94. Ontario, Canada Masonry Design for buildings (limit states design)—structures (design) (1994) CSA-S304.1-94. Ontario, Canada
30.
go back to reference Masonry in Buildings. Revisions of Australian standards-SAA (1995) SAA-AS 3700/1988. Standards Association of Australia, Sydney Masonry in Buildings. Revisions of Australian standards-SAA (1995) SAA-AS 3700/1988. Standards Association of Australia, Sydney
31.
go back to reference Model code for concrete structures (1993) CEP-FIP model code 90. Comité Euro-International du Beton (CEB)—Fédération Internationale de la Précontrainte (FIP), Thomas Telford Ltd, London Model code for concrete structures (1993) CEP-FIP model code 90. Comité Euro-International du Beton (CEB)—Fédération Internationale de la Précontrainte (FIP), Thomas Telford Ltd, London
32.
go back to reference Moody J, Darken CJ (1989) Fast learning in networks of locally tuned processing units. Neural Comput 1(2):281–294CrossRef Moody J, Darken CJ (1989) Fast learning in networks of locally tuned processing units. Neural Comput 1(2):281–294CrossRef
33.
go back to reference Morgan DR (1974) Possible mechanisms of influence of admixtures on drying shrinkage and creep in cement paste and concrete. Mater Struct 7(40):283–309 Morgan DR (1974) Possible mechanisms of influence of admixtures on drying shrinkage and creep in cement paste and concrete. Mater Struct 7(40):283–309
34.
go back to reference Neville AM, Dilger WH, Brooks JJ (1983) Creep of plain and structural concrete, 1st edn. Construction Press, London Neville AM, Dilger WH, Brooks JJ (1983) Creep of plain and structural concrete, 1st edn. Construction Press, London
35.
go back to reference Reda Taha MM, Noureldin A, El-Sheimy N, Shrive NG (2003) Artificial neural network for predicting creep with an example application to structural masonry. Can J Civil Eng 30:523–532CrossRef Reda Taha MM, Noureldin A, El-Sheimy N, Shrive NG (2003) Artificial neural network for predicting creep with an example application to structural masonry. Can J Civil Eng 30:523–532CrossRef
36.
go back to reference Sayed-Ahmed E, Shrive NG, Tilleman D (1998) Creep deformations of clay masonry structures: a parametric study. Can J Civil Eng 25(1):67–80CrossRef Sayed-Ahmed E, Shrive NG, Tilleman D (1998) Creep deformations of clay masonry structures: a parametric study. Can J Civil Eng 25(1):67–80CrossRef
37.
go back to reference Schultz AE, Scolforo M (1992) Engineering design provisions for prestressed masonry, part 2—steel stresses and other considerations. TMS J 10:2 Schultz AE, Scolforo M (1992) Engineering design provisions for prestressed masonry, part 2—steel stresses and other considerations. TMS J 10:2
38.
go back to reference Shao J, Tu D (1995) The jackknife and bootstrap. Springer, NYMATH Shao J, Tu D (1995) The jackknife and bootstrap. Springer, NYMATH
39.
go back to reference Shrive NG, England GL (1981) Effect of time dependent movements in composite and post-tensioned masonry. Int J Mason Constr 1(3):25–29 Shrive NG, England GL (1981) Effect of time dependent movements in composite and post-tensioned masonry. Int J Mason Constr 1(3):25–29
40.
go back to reference Shrive NG, Reda Taha MM (2003) Effects of creep on new masonry structures. In: Proceedings of the eighth international conference on structural studies, repairs and maintenance of heritage architecture, Halkidiki, Greece Shrive NG, Reda Taha MM (2003) Effects of creep on new masonry structures. In: Proceedings of the eighth international conference on structural studies, repairs and maintenance of heritage architecture, Halkidiki, Greece
41.
go back to reference Taneja R, Shrive NG, Huizer A (1986) Loss of prestress in post-tensioned hollow masonry walls. In: Proceedings of ASCE, advances in analysis of masonry structures, pp 76–93 Taneja R, Shrive NG, Huizer A (1986) Loss of prestress in post-tensioned hollow masonry walls. In: Proceedings of ASCE, advances in analysis of masonry structures, pp 76–93
42.
go back to reference Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering, 1st edn. Wiley, NY Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering, 1st edn. Wiley, NY
43.
go back to reference Van Zijl GPAG (1999) A Numerical formulation for masonry creep, shrinkage and cracking. Series 11—engineering mechanisms 01. Delft University Press, The Netherlands Van Zijl GPAG (1999) A Numerical formulation for masonry creep, shrinkage and cracking. Series 11—engineering mechanisms 01. Delft University Press, The Netherlands
44.
go back to reference Warren D, Lenczner D (1982) Measurement of the creep strain distribution in an axially loaded brickwork wall. In: Proceedings of the second North American masonry conference Warren D, Lenczner D (1982) Measurement of the creep strain distribution in an axially loaded brickwork wall. In: Proceedings of the second North American masonry conference
Metadata
Title
Neural network modeling of time-dependent creep deformations in masonry structures
Publication date
01-06-2010
Published in
Neural Computing and Applications / Issue 4/2010
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-009-0318-3

Other articles of this Issue 4/2010

Neural Computing and Applications 4/2010 Go to the issue

Premium Partner