Skip to main content
Top
Published in: Designs, Codes and Cryptography 11/2021

01-11-2021

New PcN and APcN functions over finite fields

Authors: Yanan Wu, Nian Li, Xiangyong Zeng

Published in: Designs, Codes and Cryptography | Issue 11/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Functions with low c-differential uniformity were proposed in 2020 and attracted lots of attention, especially the PcN and APcN functions, due to their applications in cryptography. The objective of this paper is to study PcN and APcN functions. As a consequence, we propose two classes of PcN functions and three classes of APcN functions by using the cyclotomic technique and the switching method. In addition, four classes of PcN or APcN functions are presented by virtue of the (generalized) AGW criterion.
Literature
1.
go back to reference Akbary A., Ghioca B., Wang Q.: On constructing permutations of finite fields. Finite Fields Appl. 17(1), 51–67 (2011).MathSciNetCrossRef Akbary A., Ghioca B., Wang Q.: On constructing permutations of finite fields. Finite Fields Appl. 17(1), 51–67 (2011).MathSciNetCrossRef
2.
4.
5.
go back to reference Borisov N., Chew M., Johnson R., Wagner B.: Multiplicative Differentials. In: Daemen J., Rijmen V. (eds.) Fast Software Encryption. LNCS, vol. 2365. Springer, Berlin, Heidelberg (2002). Borisov N., Chew M., Johnson R., Wagner B.: Multiplicative Differentials. In: Daemen J., Rijmen V. (eds.) Fast Software Encryption. LNCS, vol. 2365. Springer, Berlin, Heidelberg (2002).
6.
go back to reference Budaghyan L., Helleseth T.: New perfect nonlinear multinomials over \({\mathbb{F}}_{p^{2k}}\) for any odd prime \(p\). In: Golomb S.W., Parker M.G., Pott A., Winterhof A. (eds.) Sequences and Their Applications. LNCS, vol. 5203. Springer, Berlin, Heidelberg (2008). Budaghyan L., Helleseth T.: New perfect nonlinear multinomials over \({\mathbb{F}}_{p^{2k}}\) for any odd prime \(p\). In: Golomb S.W., Parker M.G., Pott A., Winterhof A. (eds.) Sequences and Their Applications. LNCS, vol. 5203. Springer, Berlin, Heidelberg (2008).
7.
go back to reference Coulter R., Matthews R.: Planar functions and planes of Lenz–Barlotti class II. Designs. Codes Cryptogr. 10(2), 167–184 (1997).MathSciNetCrossRef Coulter R., Matthews R.: Planar functions and planes of Lenz–Barlotti class II. Designs. Codes Cryptogr. 10(2), 167–184 (1997).MathSciNetCrossRef
9.
go back to reference Dembowski P., Ostrom T.: Planes of order \(n\) with collineation groups of order \(n^{2}\). Math. Z. 103(3), 239–258 (1968).MathSciNetCrossRef Dembowski P., Ostrom T.: Planes of order \(n\) with collineation groups of order \(n^{2}\). Math. Z. 103(3), 239–258 (1968).MathSciNetCrossRef
10.
11.
go back to reference Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): A new case for \(n\) divisible by 5. In: Proceedings of the Finite Fields and Applications, pp. 113–121. Augsburg, Germany (1999). Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): A new case for \(n\) divisible by 5. In: Proceedings of the Finite Fields and Applications, pp. 113–121. Augsburg, Germany (1999).
12.
go back to reference Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): the Welch case. IEEE Trans. Inf. Theory 45(4), 1271–1275 (1999).MathSciNetCrossRef Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): the Welch case. IEEE Trans. Inf. Theory 45(4), 1271–1275 (1999).MathSciNetCrossRef
13.
go back to reference Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): the Niho case. Inf. Comput. 151(1–2), 57–72 (1999).MathSciNetCrossRef Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): the Niho case. Inf. Comput. 151(1–2), 57–72 (1999).MathSciNetCrossRef
14.
go back to reference Ellingsen P., Felke P., Riera C., Stănică P., Tkachenko A.: \(C\)-differentials, multiplicative uniformity and (almost) perfect \(c\)-nonlinearity. IEEE Trans. Inf. Theory 66(9), 5781–5789 (2020).MathSciNetCrossRef Ellingsen P., Felke P., Riera C., Stănică P., Tkachenko A.: \(C\)-differentials, multiplicative uniformity and (almost) perfect \(c\)-nonlinearity. IEEE Trans. Inf. Theory 66(9), 5781–5789 (2020).MathSciNetCrossRef
15.
go back to reference Hasan S., Pal M., Riera C., Stănică P.: On the \(c\)-differential uniformity of certain maps over finite fields. Des. Codes Cryptogr. 89(2), 221–239 (2021).MathSciNetCrossRef Hasan S., Pal M., Riera C., Stănică P.: On the \(c\)-differential uniformity of certain maps over finite fields. Des. Codes Cryptogr. 89(2), 221–239 (2021).MathSciNetCrossRef
16.
go back to reference Li N., Helleseth T., Tang X.: Further results on a class of permutation polynomials over finite fields. Finite Fields Appl. 22, 16–23 (2013).MathSciNetCrossRef Li N., Helleseth T., Tang X.: Further results on a class of permutation polynomials over finite fields. Finite Fields Appl. 22, 16–23 (2013).MathSciNetCrossRef
17.
19.
go back to reference Nyberg K.: Differnetially uniform mappings for cryptography. In: Helleseth T. (ed.) Proceedings of the EUROCRYPT 1993, vol. 765, pp. 55–64. LNCS. Springer, Heidelberg (1994). Nyberg K.: Differnetially uniform mappings for cryptography. In: Helleseth T. (ed.) Proceedings of the EUROCRYPT 1993, vol. 765, pp. 55–64. LNCS. Springer, Heidelberg (1994).
20.
go back to reference Stănică P.: Low \(c\)-differential and \(c\)-boomerang uniformity of the swapped inverse function. Discret. Math. 344(10), (2021). Stănică P.: Low \(c\)-differential and \(c\)-boomerang uniformity of the swapped inverse function. Discret. Math. 344(10), (2021).
21.
go back to reference Stănică P., Geary A.: The \(c\)-differential behavior of the inverse function under the EA-equivalence. Cryptogr. Commun. 13(2), 295–306 (2021).MathSciNetCrossRef Stănică P., Geary A.: The \(c\)-differential behavior of the inverse function under the EA-equivalence. Cryptogr. Commun. 13(2), 295–306 (2021).MathSciNetCrossRef
23.
go back to reference Tu Z., Zeng X., Jiang Y., Tang X.: A class of \({\rm {AP}}c{\rm {N}}\) power functions over finite fields of even characteristi. arXiv:2107.06464v1. Tu Z., Zeng X., Jiang Y., Tang X.: A class of \({\rm {AP}}c{\rm {N}}\) power functions over finite fields of even characteristi. arXiv:​2107.​06464v1.
26.
go back to reference Zha Z., Hu L.: Some classes of power functions with low \(c\)-differential uniformity over finite fields. Des. Codes Cryptogr. 89, 1193–1210 (2021).MathSciNetCrossRef Zha Z., Hu L.: Some classes of power functions with low \(c\)-differential uniformity over finite fields. Des. Codes Cryptogr. 89, 1193–1210 (2021).MathSciNetCrossRef
27.
go back to reference Zha Z., Kyureghyan G.M., Wang X.: Perfect nonlinear binomials and their semifields. Finite Fields Appl. 15(2), 125–133 (2009).MathSciNetCrossRef Zha Z., Kyureghyan G.M., Wang X.: Perfect nonlinear binomials and their semifields. Finite Fields Appl. 15(2), 125–133 (2009).MathSciNetCrossRef
Metadata
Title
New PcN and APcN functions over finite fields
Authors
Yanan Wu
Nian Li
Xiangyong Zeng
Publication date
01-11-2021
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 11/2021
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00946-9

Other articles of this Issue 11/2021

Designs, Codes and Cryptography 11/2021 Go to the issue

Premium Partner