Skip to main content
Top

2018 | OriginalPaper | Chapter

9. Non-contact Micro- and Nanowelding

Authors : Rasheedat Modupe Mahamood, Esther Titilayo Akinlabi

Published in: Advanced Noncontact Cutting and Joining Technologies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Micro- and nanoscale welding or joining processes are needed in miniaturisation or microsystem fabrication such as microelectromechanical systems (MEMS) and carbon nanotubes (CNTs). The constant strive for miniaturisation that necessitates that products are manufactured smaller and more lighter comes with the challenge of having smaller parts that require to be joined or assembled at a micro- or nanoscale level. The ability to weld at micro- and nanoscale levels is key to the efficient and effective fabrication of miniaturised components and products. This need has necessitated the development of welding processes that have the capability to join these delicate and fragile parts. The conventional joining process could cause heat damage to the welded part because of the large input from such processes. Also, the tools of these conventional welding processes may even be larger than the miniaturised parts that makes them unsuitable in fabrication of parts at micro- and nanoscale levels. Micro- and nanowelding are performed under powerful microscope. In this chapter, non-contact micro- and nanowelding processes are discussed. Two types of these advanced welding processes discussed are the advanced non-contact fusion welding and solid-state welding processes. Laser micro/nanowelding and electron beam micro/nanowelding are the two fusion-state micro/nanowelding processes that are presented in this chapter. For the solid-state micro/nanowelding processes, ultrasonic micro/nanowelding and resistant micro/nanowelding are presented. In micro- and nanowelding processes, the main challenge is the tight operational tolerance that needs to be met and the processing parameters are found to play an important role in achieving the desired results. The focus of this chapter is on the research developments in this field. The working principles, advantages, limitations and areas of application of these welding processes are explained in Chaps. 7 and 8.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. El Kadiri, Y. Bienvenu, K. Solanki, M.F. Horstemeyer, P.T. Wang, Creep and tensile behaviors of Fe–Cr–Al foils and laser microwelds at high temperature. Mater. Sci. Eng. A 421, 168–181 (2006)CrossRef H. El Kadiri, Y. Bienvenu, K. Solanki, M.F. Horstemeyer, P.T. Wang, Creep and tensile behaviors of Fe–Cr–Al foils and laser microwelds at high temperature. Mater. Sci. Eng. A 421, 168–181 (2006)CrossRef
2.
go back to reference X. Chen, D. Brox, B. Assadsangabi, M. Sultan Mohamed Ali, K. Takahata, A stainless-steel-based implantable pressure sensor chip and its integration by microwelding. Sens. Actuators A 257, 134–144 (2017)CrossRef X. Chen, D. Brox, B. Assadsangabi, M. Sultan Mohamed Ali, K. Takahata, A stainless-steel-based implantable pressure sensor chip and its integration by microwelding. Sens. Actuators A 257, 134–144 (2017)CrossRef
3.
go back to reference A. Ascari, A. Fortunato, G. Guerrini, E. Liverani, A. Lutey, Long pulse laser micro welding of commercially pure titanium thin sheets. Procedia Eng. 184, 274–283 (2017)CrossRef A. Ascari, A. Fortunato, G. Guerrini, E. Liverani, A. Lutey, Long pulse laser micro welding of commercially pure titanium thin sheets. Procedia Eng. 184, 274–283 (2017)CrossRef
4.
go back to reference B.-C. Kim, T.-H. Kim, J.-S. Kim, K.-B. Kim, H.-Y. Lee, Investigation on the effect of laser pulse shape during Nd:YAG laser microwelding of thin al sheet by numerical simulation. Metall. Mater. Trans. A 33a, 1449 (2002)CrossRef B.-C. Kim, T.-H. Kim, J.-S. Kim, K.-B. Kim, H.-Y. Lee, Investigation on the effect of laser pulse shape during Nd:YAG laser microwelding of thin al sheet by numerical simulation. Metall. Mater. Trans. A 33a, 1449 (2002)CrossRef
5.
go back to reference G.S. Zou, Y.D. Huang, A. Pequegnat, X.G. Li, M.I. Khan, Y. Zhou, Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 low-carbon vacuum melted stainless steel: part I. Mechanism of joint formation. Metall. Mater. Trans. A 43a, 1223 (2012)CrossRef G.S. Zou, Y.D. Huang, A. Pequegnat, X.G. Li, M.I. Khan, Y. Zhou, Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 low-carbon vacuum melted stainless steel: part I. Mechanism of joint formation. Metall. Mater. Trans. A 43a, 1223 (2012)CrossRef
6.
go back to reference Y.D. Huang, A. Pequegnat, G.S. Zou, J.C. Feng, M.I. Khan, Y. Zhou, Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 Lvm stainless steel: part Ii. Effect of orientation on joining mechanism. Metall. Mater. Trans. A 43a, 1234 (2012)CrossRef Y.D. Huang, A. Pequegnat, G.S. Zou, J.C. Feng, M.I. Khan, Y. Zhou, Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 Lvm stainless steel: part Ii. Effect of orientation on joining mechanism. Metall. Mater. Trans. A 43a, 1234 (2012)CrossRef
7.
go back to reference W.-S. Chang, S.-J. Na, A study on heat source equations for the prediction of weld shape and thermal deformation in laser microwelding. Metall. Mater. Trans. B. 33a, 757 (2002)CrossRef W.-S. Chang, S.-J. Na, A study on heat source equations for the prediction of weld shape and thermal deformation in laser microwelding. Metall. Mater. Trans. B. 33a, 757 (2002)CrossRef
8.
go back to reference W. Shi, J. Huang, Y. Xie, Y. Li, F. An, Laser micro-welding technology for Cu–Al dissimilar metals and mechanisms of weld defect formation. Int. J. Adv. Manuf. Technol. 93, 4197–4201 (2017)CrossRef W. Shi, J. Huang, Y. Xie, Y. Li, F. An, Laser micro-welding technology for Cu–Al dissimilar metals and mechanisms of weld defect formation. Int. J. Adv. Manuf. Technol. 93, 4197–4201 (2017)CrossRef
9.
go back to reference H.-T. Liao, Z.-W. Chen, A study on fiber laser micro-spot welding of thin stainless steel using response surface methodology and simulated annealing approach. Int. J. Adv. Manuf. Technol. 67, 1015–1025 (2013)CrossRef H.-T. Liao, Z.-W. Chen, A study on fiber laser micro-spot welding of thin stainless steel using response surface methodology and simulated annealing approach. Int. J. Adv. Manuf. Technol. 67, 1015–1025 (2013)CrossRef
10.
go back to reference M. Rohde, C. Markert, W. Pfleging, Laser micro-welding of aluminium alloys: experimental studies and numerical modelling. Int. J. Adv. Manuf. Technol. 50, 207–215 (2010)CrossRef M. Rohde, C. Markert, W. Pfleging, Laser micro-welding of aluminium alloys: experimental studies and numerical modelling. Int. J. Adv. Manuf. Technol. 50, 207–215 (2010)CrossRef
12.
go back to reference B. Mehlmann, E. Gehlen, A. Olowinsky, A. Gillner, Laser micro welding for ribbon bonding. Phys. Procedia 56, 776–781 (2014)CrossRef B. Mehlmann, E. Gehlen, A. Olowinsky, A. Gillner, Laser micro welding for ribbon bonding. Phys. Procedia 56, 776–781 (2014)CrossRef
13.
go back to reference T. Ussing, L.V. Petersen, C.B. Nielsen, B. Helbo, L. Højslet, Micro laser welding of polymer microstructures using low power laser diodes. Int. J. Adv. Manuf. Technol. 33, 198–205 (2007)CrossRef T. Ussing, L.V. Petersen, C.B. Nielsen, B. Helbo, L. Højslet, Micro laser welding of polymer microstructures using low power laser diodes. Int. J. Adv. Manuf. Technol. 33, 198–205 (2007)CrossRef
14.
go back to reference A. Patschger, J. Bliedtner, J.P. Bergmann, Approaches to increase process efficiency in laser micro welding. Phys. Procedia 41, 592–602 (2013)CrossRef A. Patschger, J. Bliedtner, J.P. Bergmann, Approaches to increase process efficiency in laser micro welding. Phys. Procedia 41, 592–602 (2013)CrossRef
15.
go back to reference P. Dong, H. Li, W. Wang, J. Zhou, Microstructural characterization of laser micro-welded Nitinol wires. Mater. Charact. 135, 40–45 (2018)CrossRef P. Dong, H. Li, W. Wang, J. Zhou, Microstructural characterization of laser micro-welded Nitinol wires. Mater. Charact. 135, 40–45 (2018)CrossRef
16.
go back to reference H. Mostaan, M. Shamanian, S. Hasani, M. Safari, J.A. Szpunar, Nd:Yag laser micro-welding of ultra-thin Feco−V magnetic alloy: Optimization of weld strength. Trans. Nonferrous Met. Soc. China 27, 1735–1746 (2017)CrossRef H. Mostaan, M. Shamanian, S. Hasani, M. Safari, J.A. Szpunar, Nd:Yag laser micro-welding of ultra-thin Feco−V magnetic alloy: Optimization of weld strength. Trans. Nonferrous Met. Soc. China 27, 1735–1746 (2017)CrossRef
17.
go back to reference A. Hozoorbakhsh, M.I.S. Ismail, N.B.A. Aziz, A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding. Int. Commun. Heat Mass Transfer 68, 178–187 (2015)CrossRef A. Hozoorbakhsh, M.I.S. Ismail, N.B.A. Aziz, A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding. Int. Commun. Heat Mass Transfer 68, 178–187 (2015)CrossRef
18.
go back to reference M. Baruah, S. Bag, Influence of pulsation in thermo-mechanical analysis on laser microwelding of Ti6Al4V alloy. Opt. Laser Technol. 90, 40–51 (2017)CrossRef M. Baruah, S. Bag, Influence of pulsation in thermo-mechanical analysis on laser microwelding of Ti6Al4V alloy. Opt. Laser Technol. 90, 40–51 (2017)CrossRef
19.
go back to reference C. Yuhua, M. Yuqing, L. Weiwei, H. Peng, Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt. Laser Technol. 91, 197–202 (2017)CrossRef C. Yuhua, M. Yuqing, L. Weiwei, H. Peng, Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt. Laser Technol. 91, 197–202 (2017)CrossRef
20.
go back to reference U. Reisgen, T. Dorfmuller, Developments in micro-electron beam welding. Microsyst. Technol. 14, 1871–1877 (2008)CrossRef U. Reisgen, T. Dorfmuller, Developments in micro-electron beam welding. Microsyst. Technol. 14, 1871–1877 (2008)CrossRef
21.
go back to reference U. Dilthey, T. Dorfmuller, Micro electron beam welding. Microsyst. Technol. 12, 626–631 (2006)CrossRef U. Dilthey, T. Dorfmuller, Micro electron beam welding. Microsyst. Technol. 12, 626–631 (2006)CrossRef
22.
go back to reference Q. Yang, S. Bai, G. Wang, J. Bai, Local reconstruction and controllable nanospot welding of multiwalled carbon nanotubes under mild electron beam irradiation. Mater. Lett. 60, 2433–2437 (2006)CrossRef Q. Yang, S. Bai, G. Wang, J. Bai, Local reconstruction and controllable nanospot welding of multiwalled carbon nanotubes under mild electron beam irradiation. Mater. Lett. 60, 2433–2437 (2006)CrossRef
23.
go back to reference G. Smolka, A. Gillner, L. Bosse, R. Lützeler, Micro electron beam welding and laser machining—Potentials of beam welding methods in the micro-system technology. Microsyst. Technol. 10, 187–192 (2004)CrossRef G. Smolka, A. Gillner, L. Bosse, R. Lützeler, Micro electron beam welding and laser machining—Potentials of beam welding methods in the micro-system technology. Microsyst. Technol. 10, 187–192 (2004)CrossRef
24.
go back to reference W.X. Chan, S.H. Ng, K.H.H. Li, W.-T. Park, Y.-J. Yoon, Micro-ultrasonic welding using thermoplastic-elastomeric compositefilm. J. Mater. Process. Technol. 236, 183–188 (2016)CrossRef W.X. Chan, S.H. Ng, K.H.H. Li, W.-T. Park, Y.-J. Yoon, Micro-ultrasonic welding using thermoplastic-elastomeric compositefilm. J. Mater. Process. Technol. 236, 183–188 (2016)CrossRef
25.
go back to reference X. Sánchez-Sánchez, M. Hernández-Avila, L.E. Elizalde, O. Martínez, I. Ferrer, A. Elías-Zuñiga, Micro injection molding processing of UHMWPE using ultrasonic vibration energy. Mater. Design 132, 1–12 (2017)CrossRef X. Sánchez-Sánchez, M. Hernández-Avila, L.E. Elizalde, O. Martínez, I. Ferrer, A. Elías-Zuñiga, Micro injection molding processing of UHMWPE using ultrasonic vibration energy. Mater. Design 132, 1–12 (2017)CrossRef
26.
go back to reference B. Zhao, Y. Wang, Y. Zhan, Decrease of contact resistance at the interface of carbon nanotube/electrode by nanowelding. Electron. Mater. Lett. 13(2), 168–173 (2017)CrossRef B. Zhao, Y. Wang, Y. Zhan, Decrease of contact resistance at the interface of carbon nanotube/electrode by nanowelding. Electron. Mater. Lett. 13(2), 168–173 (2017)CrossRef
27.
go back to reference K. Mistewicz, M. Nowak, R. Wrzalik, J. Śleziona, J. Wieczorek, A. Guiseppi-Elie, Ultrasonic processing of SbSI nanowires for their application to gas sensors. Ultrasonics 69, 67–73 (2016)CrossRef K. Mistewicz, M. Nowak, R. Wrzalik, J. Śleziona, J. Wieczorek, A. Guiseppi-Elie, Ultrasonic processing of SbSI nanowires for their application to gas sensors. Ultrasonics 69, 67–73 (2016)CrossRef
28.
go back to reference B. Zhao, Y. Wang, C. Liu, L. Zhang, X. Liu, Y. Zhang, Ultrasonic nano welding of SiC microparticles on Al surface. Appl. Surf. Sci. 258, 5786–5789 (2012)CrossRef B. Zhao, Y. Wang, C. Liu, L. Zhang, X. Liu, Y. Zhang, Ultrasonic nano welding of SiC microparticles on Al surface. Appl. Surf. Sci. 258, 5786–5789 (2012)CrossRef
29.
go back to reference B. Zhao, C. Chen, B. Yadian, P. Liu, Z. Li, X. Dong, Y. Zhang, Effects of welding head on the carbon nanotube field emission in ultrasonic nano welding. Thin Solid Films 517, 2012–2015 (2009)CrossRef B. Zhao, C. Chen, B. Yadian, P. Liu, Z. Li, X. Dong, Y. Zhang, Effects of welding head on the carbon nanotube field emission in ultrasonic nano welding. Thin Solid Films 517, 2012–2015 (2009)CrossRef
30.
go back to reference B. Zhao, G. Jiang, H. Qi, Joining aluminum sheets with conductive ceramic films by ultrasonic nano welding. Ceram. Int. 42, 8098–8101 (2016)CrossRef B. Zhao, G. Jiang, H. Qi, Joining aluminum sheets with conductive ceramic films by ultrasonic nano welding. Ceram. Int. 42, 8098–8101 (2016)CrossRef
31.
go back to reference Z. Chen, Joint formation mechanism and strength in resistance microwelding of 316L stainless steel to Pt wire. J. Mater. Sci. 42, 5756–5765 (2007)CrossRef Z. Chen, Joint formation mechanism and strength in resistance microwelding of 316L stainless steel to Pt wire. J. Mater. Sci. 42, 5756–5765 (2007)CrossRef
32.
go back to reference S. Fukumoto, Y. Zhou, Mechanism of resistance microwelding of crossed fine nickel wires. Metall. Mater. Trans. A 35, 3165 (2004)CrossRef S. Fukumoto, Y. Zhou, Mechanism of resistance microwelding of crossed fine nickel wires. Metall. Mater. Trans. A 35, 3165 (2004)CrossRef
33.
go back to reference S. Fukumoto, Z. Chen, Y. Zhou, Interfacial phenomena and joint strength in resistance microwelding of crossed Au-plated Ni wires. Metall. Mater. Trans. A 36, 2717 (2005)CrossRef S. Fukumoto, Z. Chen, Y. Zhou, Interfacial phenomena and joint strength in resistance microwelding of crossed Au-plated Ni wires. Metall. Mater. Trans. A 36, 2717 (2005)CrossRef
34.
go back to reference M.I. Khan, J.M. Kim, M.L. Kuntz, Y. Zhou, Bonding mechanisms in resistance microwelding of 316 low-carbon vacuum melted stainless steel wires. Metall. Mater. Trans. A 40A, 910–919 (2009)CrossRef M.I. Khan, J.M. Kim, M.L. Kuntz, Y. Zhou, Bonding mechanisms in resistance microwelding of 316 low-carbon vacuum melted stainless steel wires. Metall. Mater. Trans. A 40A, 910–919 (2009)CrossRef
35.
go back to reference B. Tam, A. Pequegnat, M.I. Khan, Y. Zhou, Resistance microwelding of Ti-55.8 wt pct Ni Nitinol wires and the effects of pseudoelasticity. Metall. Mater. Trans. A 43, 2969–2978 (2012)CrossRef B. Tam, A. Pequegnat, M.I. Khan, Y. Zhou, Resistance microwelding of Ti-55.8 wt pct Ni Nitinol wires and the effects of pseudoelasticity. Metall. Mater. Trans. A 43, 2969–2978 (2012)CrossRef
36.
go back to reference R.M. Mahamood, E.T. Akinlabi, in Chapter 21 - Laser-assisted additive fabrication of micro-sized coatings. Woodhead Publishing Series in Welding and Other Joining Technologies, Advances in Laser Materials Processing, ed by J. Lawrence, Second Edition (Woodhead Publishing, Cambridge, 2018), pp. 635–664CrossRef R.M. Mahamood, E.T. Akinlabi, in Chapter 21 - Laser-assisted additive fabrication of micro-sized coatings. Woodhead Publishing Series in Welding and Other Joining Technologies, Advances in Laser Materials Processing, ed by J. Lawrence, Second Edition (Woodhead Publishing, Cambridge, 2018), pp. 635–664CrossRef
37.
go back to reference G. Zhao, Z. Wei, J. Du, W. Liu, X. Wang, Y. Yao, Additive manufacturing of Sn63Pb37 component by micro-coating. Procedia Eng. 157, 193–199 (2016)CrossRef G. Zhao, Z. Wei, J. Du, W. Liu, X. Wang, Y. Yao, Additive manufacturing of Sn63Pb37 component by micro-coating. Procedia Eng. 157, 193–199 (2016)CrossRef
38.
go back to reference R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, Revolutionary additive manufacturing: An overview. Laser Eng. 27, 161–178 (2014) R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, Revolutionary additive manufacturing: An overview. Laser Eng. 27, 161–178 (2014)
41.
go back to reference R.M. Mahamood, E.T. Akinlabi, S.A. Akinlabi, Laser power and scanning speed influence on the mechanical property of laser metal deposited titanium-alloy. Lasers Manuf. Mater. Process. 2(1), 43–55 (2015)CrossRef R.M. Mahamood, E.T. Akinlabi, S.A. Akinlabi, Laser power and scanning speed influence on the mechanical property of laser metal deposited titanium-alloy. Lasers Manuf. Mater. Process. 2(1), 43–55 (2015)CrossRef
42.
go back to reference S. Pityana, R.M. Mahamood, E.T. Akinlabi, M. Shukla, Effect of gas flow rate and powder flow rate on properties of laser metal deposited Ti6Al4V. 2013 International Multi-conference of Engineering and Computer Science (IMECS 2013), 2013, pp. 848–851 S. Pityana, R.M. Mahamood, E.T. Akinlabi, M. Shukla, Effect of gas flow rate and powder flow rate on properties of laser metal deposited Ti6Al4V. 2013 International Multi-conference of Engineering and Computer Science (IMECS 2013), 2013, pp. 848–851
43.
go back to reference R.M. Mahamood, E.T. Akinlabi, Effect of processing parameters on wear resistance property of laser material deposited titanium-alloy composite. J. Optoelectron. Adv. Mater. 17(9–10), 1348–1360 (2015) R.M. Mahamood, E.T. Akinlabi, Effect of processing parameters on wear resistance property of laser material deposited titanium-alloy composite. J. Optoelectron. Adv. Mater. 17(9–10), 1348–1360 (2015)
44.
go back to reference R.M. Mahamood, E.T. Akinlabi, Effect of laser power on surface finish during laser metal deposition process. WCECS 2, 965–969 (2014) R.M. Mahamood, E.T. Akinlabi, Effect of laser power on surface finish during laser metal deposition process. WCECS 2, 965–969 (2014)
45.
go back to reference M. Shukla, R.M. Mahamood, E.T. Akinlabi, S. Pityana, Effect of laser power and powder flow rate on properties of laser metal deposited Ti6Al4V. World Acad. Sci. Technol. 6, 44–48 (2012) M. Shukla, R.M. Mahamood, E.T. Akinlabi, S. Pityana, Effect of laser power and powder flow rate on properties of laser metal deposited Ti6Al4V. World Acad. Sci. Technol. 6, 44–48 (2012)
47.
go back to reference R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, Scanning velocity influence on microstructure, microhardness and wear resistance performance on laser deposited Ti6Al4V/TiC composite. Mater. Des. 50, 656–666 (2013)CrossRef R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, Scanning velocity influence on microstructure, microhardness and wear resistance performance on laser deposited Ti6Al4V/TiC composite. Mater. Des. 50, 656–666 (2013)CrossRef
48.
go back to reference M.R. Mahamood, Laser Metal Deposition Process of Metals, Alloys, and Composite Materials (Springer, Cham, 2017) M.R. Mahamood, Laser Metal Deposition Process of Metals, Alloys, and Composite Materials (Springer, Cham, 2017)
49.
go back to reference M.R. Mahamood, E.T. Akinlabi, Functionally Graded Materials (Springer Science Publisher, Cham, 2017)CrossRef M.R. Mahamood, E.T. Akinlabi, Functionally Graded Materials (Springer Science Publisher, Cham, 2017)CrossRef
50.
go back to reference R.M. Mahamood, E.T. Akinlabi, Achieving mass customization through additive manufacturing, in Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future, ed. by C. Schlick, S. Trzcieliński, (Springer International Publishing, Cham, 2016), pp. 385–390CrossRef R.M. Mahamood, E.T. Akinlabi, Achieving mass customization through additive manufacturing, in Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future, ed. by C. Schlick, S. Trzcieliński, (Springer International Publishing, Cham, 2016), pp. 385–390CrossRef
51.
go back to reference M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2013)CrossRef M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2013)CrossRef
52.
go back to reference M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons 60(5), 677–688 (2017)CrossRef M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons 60(5), 677–688 (2017)CrossRef
53.
go back to reference S. Singh, S. Ramakrishna, Biomedical applications of additive manufacturing: Present and future. Curr. Opin. Biomed. Eng. 2, 105–115 (2017)CrossRef S. Singh, S. Ramakrishna, Biomedical applications of additive manufacturing: Present and future. Curr. Opin. Biomed. Eng. 2, 105–115 (2017)CrossRef
54.
go back to reference S. Bose, D. Ke, H. Sahasrabudhe, A. Bandyopadhyay, Additive manufacturing of biomaterials. Prog. Mater. Sci. 93, 45–111 (2018)CrossRef S. Bose, D. Ke, H. Sahasrabudhe, A. Bandyopadhyay, Additive manufacturing of biomaterials. Prog. Mater. Sci. 93, 45–111 (2018)CrossRef
55.
go back to reference E. T. Akinlabi, M. R. Mahamood, S. A. Akinlabi (eds.), Advanced Manufacturing Using Laser Material Processing (IGI Global, Hershey, PA, 2016) E. T. Akinlabi, M. R. Mahamood, S. A. Akinlabi (eds.), Advanced Manufacturing Using Laser Material Processing (IGI Global, Hershey, PA, 2016)
56.
go back to reference R.M. Mahamood, E.T. Akinlabi, Laser additive manufacturing, in Advanced Manufacturing Using Laser Material Processing, ed. by E. T. Akinlabi, M. R. Mahamood, S. A. Akinlabi, (IGI Global, Hershey, PA, 2016), pp. 1–23 R.M. Mahamood, E.T. Akinlabi, Laser additive manufacturing, in Advanced Manufacturing Using Laser Material Processing, ed. by E. T. Akinlabi, M. R. Mahamood, S. A. Akinlabi, (IGI Global, Hershey, PA, 2016), pp. 1–23
57.
go back to reference R.M. Mahamood, Laser metal deposition process, in Advanced Manufacturing Using Laser Material Processing, ed. by E. T. Akinlabi, M. R. Mahamood, S. A. Akinlabi, (IGI Global, Hershey, PA, 2016), pp. 46–59 R.M. Mahamood, Laser metal deposition process, in Advanced Manufacturing Using Laser Material Processing, ed. by E. T. Akinlabi, M. R. Mahamood, S. A. Akinlabi, (IGI Global, Hershey, PA, 2016), pp. 46–59
Metadata
Title
Non-contact Micro- and Nanowelding
Authors
Rasheedat Modupe Mahamood
Esther Titilayo Akinlabi
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-75118-4_9

Premium Partners