Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 5-6/2020

24-08-2020 | ORIGINAL ARTICLE

Non-linear model of energy consumption for in-process control in electrical discharge machining

Authors: Kanka Goswami, G. L. Samuel

Published in: The International Journal of Advanced Manufacturing Technology | Issue 5-6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The stochastic nature in the electrical discharge machining (EDM) is inherent to the process. The process instabilities like short-circuiting and arcing instances damage the workpiece and reduce machining efficiency. Pseudo-empirical or empirical relationships are presently in use for in-process control of parameters like discharge efficiency, energy consumption, and surface roughness. In this paper, a field-programmable gate array (FPGA)–based control strategy for discharge stabilisation is proposed, and a non-linear model for energy consumption is formulated to predict the in-process energy consumption. The model captures the dynamic behaviour of the EDM process. A novel method of pulse discrimination based on the pulse train gradient is used to determine the pulse duration, classify the pulses and finally calculate the discharge energy for building the model. A lumped control parameter named as gap condition number or “Gc number” is proposed to quantify the amount of debris and contaminants like soot and suspended particles in the electrode gap. Numerical simulations at various gap conditions and analysis for stability and sensitivity at different operating scenarios are studied. The simulation shows that the model converges to a single root for Gc number up to 1.93, undergoes periodic oscillations between two roots for the values between 1.93 and 2.42 and exhibits chaos for greater Gc numbers. Stability analysis of the model finds that the values of the non-dimensionalised discharge energy for which the energy oscillations during the discharge avoids arcing or short-circuiting are 60% of the maximum discharge energy. The present model has an increased monostability of 20% in comparison to a similar model and has a correlation of 63.48% with the experimental data. The proposed control strategy can be implemented to achieve stability control over the process, eventually improving the quality of machining.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Liu K, Lauwers B, Reynaerts D (2010) Process capabilities of micro-EDM and its applications. Int J Adv Manuf Technol 47:11–19CrossRef Liu K, Lauwers B, Reynaerts D (2010) Process capabilities of micro-EDM and its applications. Int J Adv Manuf Technol 47:11–19CrossRef
2.
go back to reference Kunieda M, Hayasaka A, Yang XD, Sano S, Araie I (2007) Study on nano EDM using capacity coupled pulse generator. Ann CIRP 56(1):213–216CrossRef Kunieda M, Hayasaka A, Yang XD, Sano S, Araie I (2007) Study on nano EDM using capacity coupled pulse generator. Ann CIRP 56(1):213–216CrossRef
3.
go back to reference Rajurkar KP, Sundaram MM, Malshe AP (Jan. 2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26CrossRef Rajurkar KP, Sundaram MM, Malshe AP (Jan. 2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26CrossRef
4.
go back to reference Qian J, Yang F, Wang J, Lauwers B, Reynaerts D (2015) Material removal mechanism in low-energy micro-EDM process. CIRP Ann - Manuf Technol 64(1):225–228CrossRef Qian J, Yang F, Wang J, Lauwers B, Reynaerts D (2015) Material removal mechanism in low-energy micro-EDM process. CIRP Ann - Manuf Technol 64(1):225–228CrossRef
5.
go back to reference Yang F, Qian J, Wang J, Reynaerts D (2018) Simulation and experimental analysis of alternating-current phenomenon in micro-EDM with a RC-type generator. J Mater Process Technol 255(200):865–875CrossRef Yang F, Qian J, Wang J, Reynaerts D (2018) Simulation and experimental analysis of alternating-current phenomenon in micro-EDM with a RC-type generator. J Mater Process Technol 255(200):865–875CrossRef
6.
go back to reference Murray JW, Sun J, Patil DV, Wood TA, Clare AT (2016) Physical and electrical characteristics of EDM debris. J Mater Process Technol 229:54–60CrossRef Murray JW, Sun J, Patil DV, Wood TA, Clare AT (2016) Physical and electrical characteristics of EDM debris. J Mater Process Technol 229:54–60CrossRef
7.
go back to reference Yoshida M, Kunieda M (1998) Study on the distribution of scattered debris generated by a single pulse discharge in EDM process. Int J Electr Mach 3:39–46CrossRef Yoshida M, Kunieda M (1998) Study on the distribution of scattered debris generated by a single pulse discharge in EDM process. Int J Electr Mach 3:39–46CrossRef
8.
go back to reference Mujumdar SS, Curreli D, Kapoor SG, Ruzic D (2014) A model of micro electro-discharge machining plasma discharge in deionized water. J Manuf Sci Eng 136(3):031011CrossRef Mujumdar SS, Curreli D, Kapoor SG, Ruzic D (2014) A model of micro electro-discharge machining plasma discharge in deionized water. J Manuf Sci Eng 136(3):031011CrossRef
9.
go back to reference Schumacher BM (1990) About the role of debris in the gap during electrical discharge machining. CIRP Ann - Manuf Technol 39(1):197–199CrossRef Schumacher BM (1990) About the role of debris in the gap during electrical discharge machining. CIRP Ann - Manuf Technol 39(1):197–199CrossRef
10.
go back to reference DiBitonto D, Eubank P, Patel M, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66(9):4095–4103 DiBitonto D, Eubank P, Patel M, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66(9):4095–4103
11.
go back to reference Patel MR, Barrufet MA, Eubank PT, DiBitonto DD (1989) Theoretical models of the electrical discharge machining process. II. The anode erosion model. J Appl Phys 66(9):4104–4111CrossRef Patel MR, Barrufet MA, Eubank PT, DiBitonto DD (1989) Theoretical models of the electrical discharge machining process. II. The anode erosion model. J Appl Phys 66(9):4104–4111CrossRef
12.
go back to reference Eubank PT, Patel MR, Barrufet MA, Bozkurt B (1993) Theoretical models of the electrical discharge machining process. III. the variable mass, cylindrical plasma model. J Appl Phys 73(11):7900–7909 Eubank PT, Patel MR, Barrufet MA, Bozkurt B (1993) Theoretical models of the electrical discharge machining process. III. the variable mass, cylindrical plasma model. J Appl Phys 73(11):7900–7909
13.
go back to reference Joshi SN, Pande SS (2010) Thermo-physical modeling of die-sinking EDM process. J Manuf Process 12(1):45–56CrossRef Joshi SN, Pande SS (2010) Thermo-physical modeling of die-sinking EDM process. J Manuf Process 12(1):45–56CrossRef
14.
go back to reference Giridharan A, Samuel GL (2015) Modeling and analysis of crater formation during wire electrical discharge turning (WEDT) process. Int J Adv Manuf Technol 77(5–8):1229–1247CrossRef Giridharan A, Samuel GL (2015) Modeling and analysis of crater formation during wire electrical discharge turning (WEDT) process. Int J Adv Manuf Technol 77(5–8):1229–1247CrossRef
15.
go back to reference Marafona J, Chousal JAG (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46(6):595–602CrossRef Marafona J, Chousal JAG (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46(6):595–602CrossRef
16.
go back to reference Klocke F, Schneider S, Harst S, Welling D, Klink A (2015) Energy-based approaches for multi-scale modelling of material loadings during electric discharge machining ( EDM ). Procedia CIRP 31:191–196CrossRef Klocke F, Schneider S, Harst S, Welling D, Klink A (2015) Energy-based approaches for multi-scale modelling of material loadings during electric discharge machining ( EDM ). Procedia CIRP 31:191–196CrossRef
17.
go back to reference Yeo SH, Kurnia W, Tan PC (2008) Critical assessment and numerical comparison of electro-thermal models in EDM. J Mater Process Technol 203(1–3):241–251CrossRef Yeo SH, Kurnia W, Tan PC (2008) Critical assessment and numerical comparison of electro-thermal models in EDM. J Mater Process Technol 203(1–3):241–251CrossRef
18.
go back to reference Singh A, Ghosh A (1999) A thermo-electric model of material removal during electric discharge machining. Int J Mach Tools Manuf 39(4):669–682 Singh A, Ghosh A (1999) A thermo-electric model of material removal during electric discharge machining. Int J Mach Tools Manuf 39(4):669–682
19.
go back to reference Gatto A, Sofroniou M, Spaletta G, Bassoli E (2015) On the chaotic nature of electro-discharge machining. Int J Adv Manuf Technol 79(5–8):985–996CrossRef Gatto A, Sofroniou M, Spaletta G, Bassoli E (2015) On the chaotic nature of electro-discharge machining. Int J Adv Manuf Technol 79(5–8):985–996CrossRef
20.
go back to reference Gatto A, Bassoli E, Denti L, Iuliano L (2013) Bridges of debris in the EDD process: Going beyond the thermo-electrical model. J Mater Process Technol 213(3):349–360CrossRef Gatto A, Bassoli E, Denti L, Iuliano L (2013) Bridges of debris in the EDD process: Going beyond the thermo-electrical model. J Mater Process Technol 213(3):349–360CrossRef
21.
go back to reference Wang P, Li B, Shi G, Lin T, Wang B (2018) Non-linear mechanism in electrical discharge machining process. Int J Adv Manuf Technol 97:1687–1696CrossRef Wang P, Li B, Shi G, Lin T, Wang B (2018) Non-linear mechanism in electrical discharge machining process. Int J Adv Manuf Technol 97:1687–1696CrossRef
22.
go back to reference Dauw DF, Snoeys R, Dekeyser W (1983) Advanced pulse discriminating system for E D M process analysis and control. CIRP Ann Technol 32(2):541–549CrossRef Dauw DF, Snoeys R, Dekeyser W (1983) Advanced pulse discriminating system for E D M process analysis and control. CIRP Ann Technol 32(2):541–549CrossRef
23.
go back to reference Çoǧun C (1990) A technique and its application for evaluation of material removal contributions of pulses in electric discharge machining (EDM). Int J Mach Tools Manuf 30(1):19–31CrossRef Çoǧun C (1990) A technique and its application for evaluation of material removal contributions of pulses in electric discharge machining (EDM). Int J Mach Tools Manuf 30(1):19–31CrossRef
24.
go back to reference Yeo SH, Aligiri E, Tan PC, Zarepour H (2009) A new pulse discriminating system for micro-EDM. Mater Manuf Process 24(12):1297–1305CrossRef Yeo SH, Aligiri E, Tan PC, Zarepour H (2009) A new pulse discriminating system for micro-EDM. Mater Manuf Process 24(12):1297–1305CrossRef
25.
go back to reference Mahardika M, Mitsui K (2008) A new method for monitoring micro-electric discharge machining processes. Int J Mach Tools Manuf 48:446–458CrossRef Mahardika M, Mitsui K (2008) A new method for monitoring micro-electric discharge machining processes. Int J Mach Tools Manuf 48:446–458CrossRef
26.
go back to reference M. CoteaţǍ, A. Floca, O. Dodun, N. Ionescu, G. Nagîţ, and L. SlǍtineanu, “Pulse generator for obtaining surfaces of small dimensions by electrical discharge machining,” Procedia CIRP, vol. 42, no. Isem Xviii, pp. 715–720, 2016. M. CoteaţǍ, A. Floca, O. Dodun, N. Ionescu, G. Nagîţ, and L. SlǍtineanu, “Pulse generator for obtaining surfaces of small dimensions by electrical discharge machining,” Procedia CIRP, vol. 42, no. Isem Xviii, pp. 715–720, 2016.
27.
go back to reference Williams EM, Woodford JB, Smith ER (1954) Recent developments in the theory and design of electric spark machine tools. Am Inst Electr Eng Part II Appl Ind Trans 73(2):83–88 Williams EM, Woodford JB, Smith ER (1954) Recent developments in the theory and design of electric spark machine tools. Am Inst Electr Eng Part II Appl Ind Trans 73(2):83–88
28.
go back to reference Strogatz SH (2018) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press Strogatz SH (2018) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press
Metadata
Title
Non-linear model of energy consumption for in-process control in electrical discharge machining
Authors
Kanka Goswami
G. L. Samuel
Publication date
24-08-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 5-6/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05953-z

Other articles of this Issue 5-6/2020

The International Journal of Advanced Manufacturing Technology 5-6/2020 Go to the issue

Premium Partners