Skip to main content
Top
Published in: Meccanica 1/2016

29-05-2015

Non-similar solution of the forced convection of laminar gaseous slip flow over a flat plate with viscous dissipation: linear stability analysis for local similar solution

Authors: Elhoucine Essaghir, Youssef Haddout, Abdelaziz Oubarra, Jawad Lahjomri

Published in: Meccanica | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Forced convection of laminar nearly incompressible gaseous slip flow over an isothermal flat plate at low Mach number with viscous dissipation is considered. The non-similar solutions of hydrodynamical and thermal boundary layers equations with velocity-slip and temperature-jump at the wall are obtained numerically by using the implicit finite difference method. The effects of the modified boundary layer Knudsen number, i.e., the slip parameter and the Eckert number on the heat transfer characteristics are presented graphically and discussed. The numerical results show that for small Eckert number, the slip parameter does not have significant effect on the local heat transfer in the continuum and in slip flow regimes while for the large Eckert numbers, its effect depends that the plate being colder or warmer than the free stream. In addition, we develop a linear stability analysis, based on the traditional normal-mode approach, by assuming local parallel flow approximation, to study the effect of slip parameter on the stability of local similar solution. This approach leads to the usual Orr–Sommerfeld equation which governs the perturbation stream function satisfying slip boundary condition. This equation is solved numerically by using a powerful method based on spectral Chebyshev collocation. For no slip flow, the results for the eigenvalues and the corresponding wave numbers are found in excellent agreement with previous available numerical calculations that supports the validity of our results. Furthermore, the neutral curves of stability in the Reynolds-wave number plane are obtained, for the first time, for the boundary layer in the slip flow regime. The results show that the effect of slip parameter is to increase the critical Reynolds numbers for instability and to decrease the most unstable wave numbers. It is concluded that the rarefaction has a stabilizing effect on the Blasius flow and suggests that the transition to turbulence could be delayed in the slip flow regime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York
2.
go back to reference Blasius H (1908) Grenzschichten in flussigkeiten mit kleiner reibung. Z Math Phys 56:1–37 Blasius H (1908) Grenzschichten in flussigkeiten mit kleiner reibung. Z Math Phys 56:1–37
3.
go back to reference Polhausen K (1921) Zur naherungsweisen integration der differentialgleichungen der laminaren reibungsschicht. Z Angew Math Mech 1:252–268CrossRef Polhausen K (1921) Zur naherungsweisen integration der differentialgleichungen der laminaren reibungsschicht. Z Angew Math Mech 1:252–268CrossRef
5.
go back to reference Magyari E (2008) The moving plate thermometer. Int J Therm Sci 47:1436–1441CrossRef Magyari E (2008) The moving plate thermometer. Int J Therm Sci 47:1436–1441CrossRef
6.
go back to reference Weyburne DW (2008) Approximate heat transfer coefficients based on variable thermophysical properties for laminar flow over a uniformly heated flat plate. Heat Mass Transf 44:805–813CrossRefADS Weyburne DW (2008) Approximate heat transfer coefficients based on variable thermophysical properties for laminar flow over a uniformly heated flat plate. Heat Mass Transf 44:805–813CrossRefADS
8.
go back to reference Ahammad Basha D, Prasanna S, Venkashan SP (2012) Mixed convection from an upward facing horizontal flat plate: effect of conduction and radiation. Heat Mass Transf 48:2125–2131CrossRefADS Ahammad Basha D, Prasanna S, Venkashan SP (2012) Mixed convection from an upward facing horizontal flat plate: effect of conduction and radiation. Heat Mass Transf 48:2125–2131CrossRefADS
10.
go back to reference Aziz A (2009) A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 14:1064–1068MathSciNetCrossRefADS Aziz A (2009) A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 14:1064–1068MathSciNetCrossRefADS
11.
go back to reference Makinde OD, Sibanda P (2008) Magnetohydrodynamic mixed convective flow and heat and mass transfer past a vertical plate in a porous medium with constant wall suction. ASME J Heat Transf 130:112602CrossRef Makinde OD, Sibanda P (2008) Magnetohydrodynamic mixed convective flow and heat and mass transfer past a vertical plate in a porous medium with constant wall suction. ASME J Heat Transf 130:112602CrossRef
12.
go back to reference Cortell R (2008) Similarity solutions for flow and heat transfer of a quiescent fluid over a non-linearly stretching surface. J Mater Process Technol 2003:176–183 Cortell R (2008) Similarity solutions for flow and heat transfer of a quiescent fluid over a non-linearly stretching surface. J Mater Process Technol 2003:176–183
13.
go back to reference Rogers DF (1992) Laminar flow analysis. Cambridge University Press, CambridgeMATH Rogers DF (1992) Laminar flow analysis. Cambridge University Press, CambridgeMATH
14.
go back to reference Martin MJ, Boyd ID (2001) Blasius boundary layer solution with slip flow conditions. In: Bartel TJ and Gallis MA (eds) Rarefied gas dynamics: 22nd international symposium. American Institute of Physics, Sydney, Australia, pp 518–523 Martin MJ, Boyd ID (2001) Blasius boundary layer solution with slip flow conditions. In: Bartel TJ and Gallis MA (eds) Rarefied gas dynamics: 22nd international symposium. American Institute of Physics, Sydney, Australia, pp 518–523
15.
go back to reference Anderson HI (2002) Slip flow past a stretching surface. Acta Mech 158:121–125CrossRef Anderson HI (2002) Slip flow past a stretching surface. Acta Mech 158:121–125CrossRef
16.
go back to reference Fang T, Lee CF (2005) A moving wall boundary layer flow of a slightly rarefied gas free stream over a moving flat plate. Appl Math Lett 18:487–495MATHMathSciNetCrossRef Fang T, Lee CF (2005) A moving wall boundary layer flow of a slightly rarefied gas free stream over a moving flat plate. Appl Math Lett 18:487–495MATHMathSciNetCrossRef
17.
go back to reference Vedantam NK, Parthasarathy RN (2006) Effects of slip on the flow characteristics of a laminar flat plate boundary layer. ASME J Fluids Eng Summer Meet 1:1551–1560. doi:10.1115/FEDSM2006-98151 Vedantam NK, Parthasarathy RN (2006) Effects of slip on the flow characteristics of a laminar flat plate boundary layer. ASME J Fluids Eng Summer Meet 1:1551–1560. doi:10.​1115/​FEDSM2006-98151
18.
go back to reference Aziz A (2010) Hydromagnetic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition. Commun Nonlinear Sci Numer Simul 15:573–580MathSciNetCrossRefADS Aziz A (2010) Hydromagnetic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition. Commun Nonlinear Sci Numer Simul 15:573–580MathSciNetCrossRefADS
19.
go back to reference Noghrehabadi AR, Pourrajab R, Ghalambaz M (2012) Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int J Therm Sci 54:253–261CrossRef Noghrehabadi AR, Pourrajab R, Ghalambaz M (2012) Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int J Therm Sci 54:253–261CrossRef
20.
go back to reference Bhattacharyya K, Mukhopadhyay S, Layek GC (2011) MHD boundary layer slip flow and heat transfer over a flat plate. Chin Phys Lett 28(2):024701–024704CrossRef Bhattacharyya K, Mukhopadhyay S, Layek GC (2011) MHD boundary layer slip flow and heat transfer over a flat plate. Chin Phys Lett 28(2):024701–024704CrossRef
21.
go back to reference Rahman MM (2011) Locally similar solutions for hydromagnetic and thermal slip flow boundary layers over a flat plate with variable fluid properties and convective surface boundary condition. Meccanica 46:1127–1143MATHMathSciNetCrossRef Rahman MM (2011) Locally similar solutions for hydromagnetic and thermal slip flow boundary layers over a flat plate with variable fluid properties and convective surface boundary condition. Meccanica 46:1127–1143MATHMathSciNetCrossRef
22.
go back to reference Das K (2012) Impact of thermal radiation on MHD slip flow over a flat plate with variable fluid properties. Heat Mass Transf 48:767–778CrossRefADS Das K (2012) Impact of thermal radiation on MHD slip flow over a flat plate with variable fluid properties. Heat Mass Transf 48:767–778CrossRefADS
23.
go back to reference Yazdi MH, Shahrir A, Hashim I, Sopian K (2011) Effects of viscous dissipation on the slip mhd flow and heat transfer past a permeable surface with convective boundary conditions. Energies 4:2273–2294CrossRef Yazdi MH, Shahrir A, Hashim I, Sopian K (2011) Effects of viscous dissipation on the slip mhd flow and heat transfer past a permeable surface with convective boundary conditions. Energies 4:2273–2294CrossRef
24.
go back to reference Cao K, Baker J (2009) Slip effects on mixed convective flow and heat transfer from a vertical plate. Int J Heat Mass Transf 52:3829–3841MATHCrossRef Cao K, Baker J (2009) Slip effects on mixed convective flow and heat transfer from a vertical plate. Int J Heat Mass Transf 52:3829–3841MATHCrossRef
25.
go back to reference Sparrow EM, Quack H, Boerner CJ (1970) Local non similarity boundary layer solutions. Am Inst Aeronaut Astronaut J 8:1936–1942MATHCrossRef Sparrow EM, Quack H, Boerner CJ (1970) Local non similarity boundary layer solutions. Am Inst Aeronaut Astronaut J 8:1936–1942MATHCrossRef
26.
go back to reference Sparrow EM, Yu HS (1971) Local non similarity thermal boundary layer solutions. ASME J Heat Transf 93:328–334CrossRef Sparrow EM, Yu HS (1971) Local non similarity thermal boundary layer solutions. ASME J Heat Transf 93:328–334CrossRef
27.
go back to reference Lahjomri J, Oubarra A (2013) Hydrodynamic and thermal characteristics of laminar slip flow over a horizontal isothermal flat plate. ASME J Heat Transf 135(2):021704-1–021704-9CrossRef Lahjomri J, Oubarra A (2013) Hydrodynamic and thermal characteristics of laminar slip flow over a horizontal isothermal flat plate. ASME J Heat Transf 135(2):021704-1–021704-9CrossRef
28.
go back to reference Martin MJ, Boyd ID (2006) Momentum and heat transfer in a laminar boundary layer with slip flow. J Thermophys Heat Transfer 20(4):710–719CrossRef Martin MJ, Boyd ID (2006) Momentum and heat transfer in a laminar boundary layer with slip flow. J Thermophys Heat Transfer 20(4):710–719CrossRef
29.
go back to reference Martin MJ, Boyd ID (2010) Falkner-Skan flow over a wedge with slip boundary conditions. J Thermophys Heat Transf 24(2):263–270CrossRef Martin MJ, Boyd ID (2010) Falkner-Skan flow over a wedge with slip boundary conditions. J Thermophys Heat Transf 24(2):263–270CrossRef
30.
go back to reference Martin MJ, Cai C, Boyd ID (2012) Slip flow in magnetohydrodynamic boundary layer. Am Inst Aeronaut Astronaut J 3295:1–7 Martin MJ, Cai C, Boyd ID (2012) Slip flow in magnetohydrodynamic boundary layer. Am Inst Aeronaut Astronaut J 3295:1–7
31.
go back to reference Tollmien W (1929) Über die entstehung der turbulenz. Nachr Ges Wiss Göttingen: 21–24, English translation NACA TM 609, 1931 Tollmien W (1929) Über die entstehung der turbulenz. Nachr Ges Wiss Göttingen: 21–24, English translation NACA TM 609, 1931
32.
go back to reference Schlichting H (1933) Berechnung der anfachung kleiner störungen bei der plattenströmung. Z Angew Math Mech 13:171–174MATHCrossRef Schlichting H (1933) Berechnung der anfachung kleiner störungen bei der plattenströmung. Z Angew Math Mech 13:171–174MATHCrossRef
33.
go back to reference Schubauer GB, Skramstad HK (1947) Laminar boundary layer oscillations and the stability of laminar flow. J Aeronaut Sci 14:69–78CrossRef Schubauer GB, Skramstad HK (1947) Laminar boundary layer oscillations and the stability of laminar flow. J Aeronaut Sci 14:69–78CrossRef
34.
go back to reference Jordinson R (1971) Spectrum of eigenvalues of the Orr–Sommerfeld equation for Blasius flow. Phys Fluids 14:2536CrossRefADS Jordinson R (1971) Spectrum of eigenvalues of the Orr–Sommerfeld equation for Blasius flow. Phys Fluids 14:2536CrossRefADS
35.
go back to reference Mack LM (1976) A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J Fluid Mech 73(3):497–520MATHCrossRefADS Mack LM (1976) A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J Fluid Mech 73(3):497–520MATHCrossRefADS
36.
go back to reference Van Stijn THL, Van de Vooren AI (1980) An accurate method for solving the Orr–Sommerfeld equation. J Eng Math 14(1):17–26 Van Stijn THL, Van de Vooren AI (1980) An accurate method for solving the Orr–Sommerfeld equation. J Eng Math 14(1):17–26
37.
go back to reference Theofilis V (1994) The discrete temporal eigenvalue spectrum of the generalised Hiemenz flow as solution of the Orr–Sommerfeld equation. J Eng Math 28(3):241–259MATHMathSciNetCrossRef Theofilis V (1994) The discrete temporal eigenvalue spectrum of the generalised Hiemenz flow as solution of the Orr–Sommerfeld equation. J Eng Math 28(3):241–259MATHMathSciNetCrossRef
38.
go back to reference Danabasoglu G, Biringen S (1990) A Chebyshev matrix method for the spatial modes of the Orr–Sommerfeld equation. Int J Numer Meth Fluids 11(7):1033–1037MATHCrossRef Danabasoglu G, Biringen S (1990) A Chebyshev matrix method for the spatial modes of the Orr–Sommerfeld equation. Int J Numer Meth Fluids 11(7):1033–1037MATHCrossRef
39.
go back to reference Canuto C, Quarteroni A, Hussaini MY, Zang TA (2007) Spectral methods: evolution to complex geometries and applications to fluid dynamics. Springer, New York Canuto C, Quarteroni A, Hussaini MY, Zang TA (2007) Spectral methods: evolution to complex geometries and applications to fluid dynamics. Springer, New York
40.
go back to reference He Q, Wang XP (2008) The effect of the boundary slip on the stability of shear flow. J Appl Math Mech Zamm 88(9):729–734MATHCrossRef He Q, Wang XP (2008) The effect of the boundary slip on the stability of shear flow. J Appl Math Mech Zamm 88(9):729–734MATHCrossRef
41.
go back to reference Driscoll TA, Bornemann F, Trefethen LN (2008) The Chebop system for automatic solution of differential equations. BIT Numer Math 48:701–723MATHMathSciNetCrossRef Driscoll TA, Bornemann F, Trefethen LN (2008) The Chebop system for automatic solution of differential equations. BIT Numer Math 48:701–723MATHMathSciNetCrossRef
42.
go back to reference Schlichting H (1979) Boundary layer theory, 7th edn. McGraw-Hill, New YorkMATH Schlichting H (1979) Boundary layer theory, 7th edn. McGraw-Hill, New YorkMATH
43.
go back to reference Schaaf SA and Talbot L (1959) Handbook of supersonic aerodynamics. Section 16: mechanics of rarefied gases, NAVORD report 1488, 5. Edited by the Johns Hopkins University, Maryland Schaaf SA and Talbot L (1959) Handbook of supersonic aerodynamics. Section 16: mechanics of rarefied gases, NAVORD report 1488, 5. Edited by the Johns Hopkins University, Maryland
44.
Metadata
Title
Non-similar solution of the forced convection of laminar gaseous slip flow over a flat plate with viscous dissipation: linear stability analysis for local similar solution
Authors
Elhoucine Essaghir
Youssef Haddout
Abdelaziz Oubarra
Jawad Lahjomri
Publication date
29-05-2015
Publisher
Springer Netherlands
Published in
Meccanica / Issue 1/2016
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0204-2

Other articles of this Issue 1/2016

Meccanica 1/2016 Go to the issue

Premium Partners