Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 11/2019

29-07-2019 | Research Article - Computer Engineering and Computer Science

Non-singular Terminal Sliding Mode Control of Robot Manipulators with \(H_\infty \) Trajectory Tracking Performance

Authors: Ruchika, Naveen Kumar, Dinanath

Published in: Arabian Journal for Science and Engineering | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper develops a novel non-singular terminal sliding mode control scheme for trajectory tracking of robot manipulators in the presence of external disturbances and uncertainties. Firstly, with the introduction of two nonlinear terms, a newly terminal sliding surface is designed. Then utilizing this sliding surface, a novel non-singular terminal sliding mode controller is proposed to eliminate the reaching interval, singularity issue and subsequently with this controller, the finite time error convergence is also assured. In the proposed controller, radial basis function neural network is employed to approximate highly uncertain nonlinear dynamics of robot manipulators using update laws derived with Lyapunov approach. Meanwhile, the effects of approximation errors are attenuated with \(H_\infty \) performance criterion by introducing a robust term into the controller. As a result of proposed approach, asymptotic convergence of tracking errors is achieved within finite time and the approximation errors are attenuated to desired levels. The numerical simulation result shows the effectiveness of proposed controller for the case of microbot type robot manipulator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bailey, E.; Arapostathis, A.: Simple sliding mode control applied to robot manipulators. Int. J. Control 25(4), 1197–1209 (1987)CrossRefMATH Bailey, E.; Arapostathis, A.: Simple sliding mode control applied to robot manipulators. Int. J. Control 25(4), 1197–1209 (1987)CrossRefMATH
2.
go back to reference Capisani, L.M.; Ferrara, A.: Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments. IEEE Trans. Ind. Electron. 59(8), 3189–3198 (2012)CrossRef Capisani, L.M.; Ferrara, A.: Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments. IEEE Trans. Ind. Electron. 59(8), 3189–3198 (2012)CrossRef
3.
go back to reference Lewis, F.L.; Dawson, D.M.; Abadallah, C.T.: Robot Manipulator and Control. Taylor and Francis, Bristol (2004) Lewis, F.L.; Dawson, D.M.; Abadallah, C.T.: Robot Manipulator and Control. Taylor and Francis, Bristol (2004)
4.
go back to reference Moldoveanu, F.: Sliding mode controller design for robot manipulators. Bull. Transilv. Univ. Brasov 7(2), 97–104 (2014) Moldoveanu, F.: Sliding mode controller design for robot manipulators. Bull. Transilv. Univ. Brasov 7(2), 97–104 (2014)
5.
go back to reference Edwards, C.; Spurgeon, S.K.: Sliding Mode Control. Theory and Applications. Taylor and Francis, Bristol (1998)CrossRefMATH Edwards, C.; Spurgeon, S.K.: Sliding Mode Control. Theory and Applications. Taylor and Francis, Bristol (1998)CrossRefMATH
6.
go back to reference Lanzon, A.; Richards, R.J.: Trajectory/force control of robot manipulators using sliding mode and adaptive control. In: Proceedings of the American Control Conference (San Diego), vol. 3, pp. 1940–1944 (1999) Lanzon, A.; Richards, R.J.: Trajectory/force control of robot manipulators using sliding mode and adaptive control. In: Proceedings of the American Control Conference (San Diego), vol. 3, pp. 1940–1944 (1999)
7.
go back to reference Venkataraman, S.T.; Gulati, S.: Control of nonlinear system using terminal sliding mode control. J. Dyn. Syst. Meas. Control 115(3), 554–560 (1993)CrossRefMATH Venkataraman, S.T.; Gulati, S.: Control of nonlinear system using terminal sliding mode control. J. Dyn. Syst. Meas. Control 115(3), 554–560 (1993)CrossRefMATH
8.
go back to reference Man, Z.H.; Paplinski, A.P.; Wu, H.R.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulator. IEEE Trans. Autom. Control 39(12), 2464–2469 (1994)MathSciNetCrossRefMATH Man, Z.H.; Paplinski, A.P.; Wu, H.R.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulator. IEEE Trans. Autom. Control 39(12), 2464–2469 (1994)MathSciNetCrossRefMATH
9.
go back to reference Tan, C.; Yu, X.H.; Man, Z.H.: Terminal sliding mode observers for a class of nonlinear systems. Automatica 46(8), 1401–1404 (2010)MathSciNetCrossRefMATH Tan, C.; Yu, X.H.; Man, Z.H.: Terminal sliding mode observers for a class of nonlinear systems. Automatica 46(8), 1401–1404 (2010)MathSciNetCrossRefMATH
12.
go back to reference Man, Z.; Yu, X.H.: Terminal sliding mode control of MIMO linear systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(11), 1065–1070 (1997)MathSciNetCrossRef Man, Z.; Yu, X.H.: Terminal sliding mode control of MIMO linear systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(11), 1065–1070 (1997)MathSciNetCrossRef
13.
go back to reference Yu, X.; Zhihong, M.; Feng, Y.; Guan, Z.: Nonsingular terminal sliding mode control of a class of nonlinear dynamical systems. IFAC Proc. 35(1), 161–165 (2002)CrossRef Yu, X.; Zhihong, M.; Feng, Y.; Guan, Z.: Nonsingular terminal sliding mode control of a class of nonlinear dynamical systems. IFAC Proc. 35(1), 161–165 (2002)CrossRef
14.
go back to reference Yang, Y.; Chen, H.; Zhang, L.: Nonsingular terminal sliding-mode control for nonlinear robot manipulators with uncertain parameters. In: Proceedings of the IEEE Conference on Robotics and Biomimetics, Zhuhai, China, pp. 1227-1232 (2015). Yang, Y.; Chen, H.; Zhang, L.: Nonsingular terminal sliding-mode control for nonlinear robot manipulators with uncertain parameters. In: Proceedings of the IEEE Conference on Robotics and Biomimetics, Zhuhai, China, pp. 1227-1232 (2015).
15.
go back to reference Asl, R.M.; Hagh, Y.S.; Palm, R.: Robust control by adaptive nonsingular terminal sliding mode control. Eng. Appl. Artif. Intell. 59, 205–217 (2017)CrossRef Asl, R.M.; Hagh, Y.S.; Palm, R.: Robust control by adaptive nonsingular terminal sliding mode control. Eng. Appl. Artif. Intell. 59, 205–217 (2017)CrossRef
16.
go back to reference Zhiqiang, M.; Guanghui, S.: Dual terminal sliding mode control design for rigid robotic manipulator. J. Frankl. Inst. 355(18), 9127–9149 (2018)MathSciNetCrossRefMATH Zhiqiang, M.; Guanghui, S.: Dual terminal sliding mode control design for rigid robotic manipulator. J. Frankl. Inst. 355(18), 9127–9149 (2018)MathSciNetCrossRefMATH
17.
go back to reference Jun, L.; Xiaoguang, W.; Yuqi, W.; Qi, L.: Continous terminal sliding mode control of a 6-DOF wire driven parallel robot. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1757–1762 (2017) Jun, L.; Xiaoguang, W.; Yuqi, W.; Qi, L.: Continous terminal sliding mode control of a 6-DOF wire driven parallel robot. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1757–1762 (2017)
18.
go back to reference Lewis, F.L.; Jagannathan, S.; Yesilidirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor and Francis, Bristol (1999) Lewis, F.L.; Jagannathan, S.; Yesilidirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor and Francis, Bristol (1999)
19.
go back to reference Kumar, N.; Panwar, V.; Sukavanam, N.: Neural network control of coordinated multiple manipulator systems. In: Proceedings of International Conference on Computing: Theory and Applications (ICCTA’07), India, pp. 250–256 (2007) Kumar, N.; Panwar, V.; Sukavanam, N.: Neural network control of coordinated multiple manipulator systems. In: Proceedings of International Conference on Computing: Theory and Applications (ICCTA’07), India, pp. 250–256 (2007)
20.
go back to reference Kim, J.; Kumar, N.; Panwar, V.; Borm, J.H.; Chai, J.: Adaptive neural controller for visual serving of robot manipulators with camera-in-hand configuration. J. Mech. Sci. Technol. 26(8), 2313–2323 (2012)CrossRef Kim, J.; Kumar, N.; Panwar, V.; Borm, J.H.; Chai, J.: Adaptive neural controller for visual serving of robot manipulators with camera-in-hand configuration. J. Mech. Sci. Technol. 26(8), 2313–2323 (2012)CrossRef
21.
go back to reference Ge, S.S.; Hang, C.C.; Woon, L.C.: Adaptive neural network control of robot manipulators in task space. IEEE Trans. Ind. Electron. 44(6), 746–752 (1997)CrossRef Ge, S.S.; Hang, C.C.; Woon, L.C.: Adaptive neural network control of robot manipulators in task space. IEEE Trans. Ind. Electron. 44(6), 746–752 (1997)CrossRef
22.
go back to reference Benhellal, B.; Hamerlain, M.; Rahmani, Y.: Decoupled adaptive neuro-interval type-2 fuzzy sliding mode control applied in a 3D crane system. Arab. J. Sci. Eng. 43, 2725–2733 (2017)CrossRef Benhellal, B.; Hamerlain, M.; Rahmani, Y.: Decoupled adaptive neuro-interval type-2 fuzzy sliding mode control applied in a 3D crane system. Arab. J. Sci. Eng. 43, 2725–2733 (2017)CrossRef
23.
go back to reference Wang, L.; Chai, T.; Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009)CrossRef Wang, L.; Chai, T.; Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009)CrossRef
24.
go back to reference Zhang, H.; Du, M.; Bu, W.: Sliding mode controller with RBF neural network for manipulator trajectory tracking. IAENG Int. J. Appl. Math. 45, 334–342 (2015)MathSciNet Zhang, H.; Du, M.; Bu, W.: Sliding mode controller with RBF neural network for manipulator trajectory tracking. IAENG Int. J. Appl. Math. 45, 334–342 (2015)MathSciNet
25.
go back to reference Rahmani, M.; Ghanbari, A.; Ettefagh, M.M.: Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator. Mech. Syst. Signal Process. 80, 117–136 (2016)CrossRef Rahmani, M.; Ghanbari, A.; Ettefagh, M.M.: Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator. Mech. Syst. Signal Process. 80, 117–136 (2016)CrossRef
26.
go back to reference Panwar, V.: Wavelet neural network-based \(h_{\infty }\) trajectory tracking for robot manipulators using fast terminal sliding mode control. Robotica 35(7), 1488–1503 (2017)CrossRef Panwar, V.: Wavelet neural network-based \(h_{\infty }\) trajectory tracking for robot manipulators using fast terminal sliding mode control. Robotica 35(7), 1488–1503 (2017)CrossRef
27.
go back to reference Wang, L.; Chai, T.; Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009)CrossRef Wang, L.; Chai, T.; Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009)CrossRef
28.
go back to reference Ngo, Q.H.; Nguyen, N.P.; Nguyen, C.N.; Tran, T.H.; Ha, Q.P.: Fuzzy sliding mode control of an offshore container crane. Ocean Eng. 140, 125–134 (2017)CrossRef Ngo, Q.H.; Nguyen, N.P.; Nguyen, C.N.; Tran, T.H.; Ha, Q.P.: Fuzzy sliding mode control of an offshore container crane. Ocean Eng. 140, 125–134 (2017)CrossRef
29.
go back to reference Nechadi, E.; Harmas, M.N.; Hamzaoui, A.; Essounbouli, N.: A new robust adaptive fuzzy sliding mode power system stabilizer. Electr. Power Energy Syst. 42, 1–7 (2012)CrossRef Nechadi, E.; Harmas, M.N.; Hamzaoui, A.; Essounbouli, N.: A new robust adaptive fuzzy sliding mode power system stabilizer. Electr. Power Energy Syst. 42, 1–7 (2012)CrossRef
30.
go back to reference Qian, D.; Fan, G.: Neural-network-based terminal sliding mode control for frequency stabilization of renewable power systems. IEEE/CAA J. Autom. Sin. 5(3), 706–717 (2018)MathSciNetCrossRef Qian, D.; Fan, G.: Neural-network-based terminal sliding mode control for frequency stabilization of renewable power systems. IEEE/CAA J. Autom. Sin. 5(3), 706–717 (2018)MathSciNetCrossRef
31.
go back to reference Rigatos, G.; Siano, P.; Raffo, G.: An H-infinity nonlinear control approach for multi-DOF robotic manipulators. Int. J. Nonlinear Dyn. Chaos Eng. Syst. 49(12), 1406–1411 (2016)MATH Rigatos, G.; Siano, P.; Raffo, G.: An H-infinity nonlinear control approach for multi-DOF robotic manipulators. Int. J. Nonlinear Dyn. Chaos Eng. Syst. 49(12), 1406–1411 (2016)MATH
32.
go back to reference Wang, M.; Ren, X.; Chen, Q.: Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance. ISA Trans. 72, 147–160 (2018)CrossRef Wang, M.; Ren, X.; Chen, Q.: Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance. ISA Trans. 72, 147–160 (2018)CrossRef
33.
go back to reference Kumar, N.; Borm, J.H.; Panwar, V.; Chai, J.: Enhancing precision performance of trajectory tracking controller for robot manipulators using RBFNN and adaptive bound. Appl. Math. Comput. 231, 320–328 (2014)MathSciNetMATH Kumar, N.; Borm, J.H.; Panwar, V.; Chai, J.: Enhancing precision performance of trajectory tracking controller for robot manipulators using RBFNN and adaptive bound. Appl. Math. Comput. 231, 320–328 (2014)MathSciNetMATH
34.
go back to reference Bhat, S.P.; Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)MathSciNetCrossRefMATH Bhat, S.P.; Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)MathSciNetCrossRefMATH
35.
go back to reference Yu, S.; Yu, X.; Shirinzadeh, B.; Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)MathSciNetCrossRefMATH Yu, S.; Yu, X.; Shirinzadeh, B.; Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)MathSciNetCrossRefMATH
36.
go back to reference Abramowitz, M.; Stegun, I.A.: Handbook of Mathematical Functions: with Formulas, Graphs, Mathematical Tables. Dover, New York (1972)MATH Abramowitz, M.; Stegun, I.A.: Handbook of Mathematical Functions: with Formulas, Graphs, Mathematical Tables. Dover, New York (1972)MATH
37.
go back to reference Park, J.; Sandberg, J.W.: Universal approximation using radial-basis function networks. Neural Comput. 3, 246–257 (1991)CrossRef Park, J.; Sandberg, J.W.: Universal approximation using radial-basis function networks. Neural Comput. 3, 246–257 (1991)CrossRef
38.
go back to reference Wolovich, W.: Robotics: Basic Analysis and Design. Holt, Rinehart and Winston, New York (1987) Wolovich, W.: Robotics: Basic Analysis and Design. Holt, Rinehart and Winston, New York (1987)
Metadata
Title
Non-singular Terminal Sliding Mode Control of Robot Manipulators with Trajectory Tracking Performance
Authors
Ruchika
Naveen Kumar
Dinanath
Publication date
29-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 11/2019
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04049-5

Other articles of this Issue 11/2019

Arabian Journal for Science and Engineering 11/2019 Go to the issue

Research Article - Computer Engineering and Computer Science

Accessibility Testing of European Health-Related Websites

Research Article - Computer Engineering and Computer Science

UFC: A Unified POI Recommendation Framework

Research Article - Computer Engineering and Computer Science

A Novel Distance Metric Based on Differential Evolution

Premium Partners