Skip to main content
Top
Published in: Wireless Personal Communications 2/2019

24-10-2018

Non-uniform Quantized Data Fusion Rule for Data Rate Saving and Reducing Control Channel Overhead for Cooperative Spectrum Sensing in Cognitive Radio Networks

Authors: Arpita Chakraborty, Jyoti Sekhar Banerjee, Abir Chattopadhyay

Published in: Wireless Personal Communications | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper a pretty new concept of non-uniform quantized data fusion (N-QDF) rule reducing control channel data overhead has been proposed for energy detection based cooperative spectrum sensing scheme in cognitive radio networks. To strike a balance between efficient detection performance and less complexity, the network has to allow soften hard or quantized data fusion (QDF) technique though this technique incurs few bit overhead on the control channel from each user. Again lower bit QDF causes loss of more information, where as higher bit QDF increases detection probability at the cost of some extra bits per user. Here lies the beauty of NQDF scheme which uses variable number of bits: more number of bits for lower energy region—thus increases detection probability for a given false alarm, and less number of bits for higher energy region—thus data rate gets saved which in turn alleviates control channel overhead. A holistic simulation study has been done in this very paper where the performance of variable bit NQDF scheme is compared with different uniform bit i.e. 2, 3, 4, 5 QDF with respect to different parameters to validate our proposed scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference FCC, ET Docket No 03-322 notice of proposed rule making and order, Dec 2003. FCC, ET Docket No 03-322 notice of proposed rule making and order, Dec 2003.
2.
go back to reference Banerjee, J. S., Chakraborty, A., & Chattopadhyay, A. (2018). Reliable best-relay selection for secondary transmission in co-operation based cognitive radio systems: A multi-criteria approach. Journal of Mechanics of Continua and Mathematical Sciences, 13(2), 24–42.CrossRef Banerjee, J. S., Chakraborty, A., & Chattopadhyay, A. (2018). Reliable best-relay selection for secondary transmission in co-operation based cognitive radio systems: A multi-criteria approach. Journal of Mechanics of Continua and Mathematical Sciences, 13(2), 24–42.CrossRef
3.
go back to reference Chakraborty, A., Banerjee, J. S., & Chattopadhyay, A. (2017). Non-uniform quantized data fusion rule alleviating control channel overhead for cooperative spectrum sensing in cognitive radio networks. In Advance Computing Conference (IACC), 2017 IEEE 7th International (pp. 210–215). IEEE. Chakraborty, A., Banerjee, J. S., & Chattopadhyay, A. (2017). Non-uniform quantized data fusion rule alleviating control channel overhead for cooperative spectrum sensing in cognitive radio networks. In Advance Computing Conference (IACC), 2017 IEEE 7th International (pp. 210–215). IEEE.
4.
go back to reference Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefMATH Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefMATH
5.
go back to reference Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.CrossRefMATH Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.CrossRefMATH
6.
go back to reference Akyildiz, I. F., Lee, W. Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810–836.CrossRef Akyildiz, I. F., Lee, W. Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810–836.CrossRef
7.
go back to reference Banerjee, J. S., & Chakraborty, A. (2015). Fundamentals of software defined radio and cooperative spectrum sensing: a step ahead of cognitive radio networks. In N. Kaabouch & W. Hu (Eds.), Handbook of research on software-defined and cognitive radio technologies for dynamic spectrum management (pp. 499–543). Hershey, PA: Information Science Reference.CrossRef Banerjee, J. S., & Chakraborty, A. (2015). Fundamentals of software defined radio and cooperative spectrum sensing: a step ahead of cognitive radio networks. In N. Kaabouch & W. Hu (Eds.), Handbook of research on software-defined and cognitive radio technologies for dynamic spectrum management (pp. 499–543). Hershey, PA: Information Science Reference.CrossRef
8.
go back to reference Banerjee, J. S., & Chakraborty, A. (2014). Modeling of software defined radio architecture and cognitive radio, the next generation dynamic and smart spectrum access technology. In M. H. Rehmani & Y. Faheem (Eds.), Cognitive radio sensor networks: Applications, architectures, and challenges (pp. 127–158). Hershey, PA: Information Science Reference.CrossRef Banerjee, J. S., & Chakraborty, A. (2014). Modeling of software defined radio architecture and cognitive radio, the next generation dynamic and smart spectrum access technology. In M. H. Rehmani & Y. Faheem (Eds.), Cognitive radio sensor networks: Applications, architectures, and challenges (pp. 127–158). Hershey, PA: Information Science Reference.CrossRef
9.
go back to reference Banerjee, J. S., Chakraborty, A., & Karmakar, K. (2013). Architecture of cognitive radio networks. In N. Meghanathan & Y. B. Reddy (Eds.), Cognitive radio technology applications for wireless and mobile ad hoc networks (pp. 125–152). Hershey, PA: Information Science Reference.CrossRef Banerjee, J. S., Chakraborty, A., & Karmakar, K. (2013). Architecture of cognitive radio networks. In N. Meghanathan & Y. B. Reddy (Eds.), Cognitive radio technology applications for wireless and mobile ad hoc networks (pp. 125–152). Hershey, PA: Information Science Reference.CrossRef
10.
go back to reference Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
11.
go back to reference Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio application. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio application. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef
12.
go back to reference Jiang, T., & Qu, D. (2008). On minimum sensing error with spectrum sensing using counting rule in cognitive radio networks. In Proceedings of 4th annual international conference on wireless internet (WICON’08), Brussels, Belgium (pp. 1–9). Jiang, T., & Qu, D. (2008). On minimum sensing error with spectrum sensing using counting rule in cognitive radio networks. In Proceedings of 4th annual international conference on wireless internet (WICON’08), Brussels, Belgium (pp. 1–9).
13.
go back to reference Digham, F. F., Alouini, M.-S., & Simon, M. K. (2003). On the energy detection of unknown signals over fading channels. In Proceedings of IEEE international conference on communications (Vol. 5, pp. 3575–3579). Digham, F. F., Alouini, M.-S., & Simon, M. K. (2003). On the energy detection of unknown signals over fading channels. In Proceedings of IEEE international conference on communications (Vol. 5, pp. 3575–3579).
14.
go back to reference Chakraborty, A., & Banerjee, J. S. (2013). An advance Q learning (AQL) approach for path planning and obstacle avoidance of a mobile robot. International Journal of Intelligent Mechatronics and Robotics, 3(1), 53–73.CrossRef Chakraborty, A., & Banerjee, J. S. (2013). An advance Q learning (AQL) approach for path planning and obstacle avoidance of a mobile robot. International Journal of Intelligent Mechatronics and Robotics, 3(1), 53–73.CrossRef
15.
go back to reference Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Proceedings of Asilomar conference on signals, systems, and computers (Vol. 1, pp. 772–776). Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Proceedings of Asilomar conference on signals, systems, and computers (Vol. 1, pp. 772–776).
16.
go back to reference Peh, E., & Liang, Y.-C. (2007). Optimization for cooperative sensing in cognitive radio networks. In WCNC 11-15 (pp. 27–32). Peh, E., & Liang, Y.-C. (2007). Optimization for cooperative sensing in cognitive radio networks. In WCNC 11-15 (pp. 27–32).
17.
go back to reference Unnikrishnan, J., & Veeravalli, V. V. (2007). Cooperative spectrum sensing and detection for cognitive radio. In IEEE GLOBCOM (pp. 2972–2976). Unnikrishnan, J., & Veeravalli, V. V. (2007). Cooperative spectrum sensing and detection for cognitive radio. In IEEE GLOBCOM (pp. 2972–2976).
18.
go back to reference Akyildiz, F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication (Elsevier) Journal, 4(1), 40–62.CrossRef Akyildiz, F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication (Elsevier) Journal, 4(1), 40–62.CrossRef
19.
go back to reference Zhang, W., Mallik, R., & Letaief, K. (2008). Cooperative spectrum sensing optimization in cognitive radio networks. In Proceedings of IEEE international conference on communications (pp. 3411–3415). Zhang, W., Mallik, R., & Letaief, K. (2008). Cooperative spectrum sensing optimization in cognitive radio networks. In Proceedings of IEEE international conference on communications (pp. 3411–3415).
20.
go back to reference Ganesan, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio—Part I: Two user networks. IEEE Transactions on Wireless Communications, 6(6), 2204–2213.CrossRef Ganesan, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio—Part I: Two user networks. IEEE Transactions on Wireless Communications, 6(6), 2204–2213.CrossRef
21.
go back to reference Ganesan, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio—Part II: Multiuser networks. IEEE Transactions on Wireless Communications, 6(6), 2214–2222.CrossRef Ganesan, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio—Part II: Multiuser networks. IEEE Transactions on Wireless Communications, 6(6), 2214–2222.CrossRef
22.
go back to reference Mishra, S. M., Sahai, A., & Brodersen, R. W. (2006). Cooperative sensing among cognitive radios. In Proceedings of IEEE international conference on communications (Vol. 4, pp. 1658–1663). Mishra, S. M., Sahai, A., & Brodersen, R. W. (2006). Cooperative sensing among cognitive radios. In Proceedings of IEEE international conference on communications (Vol. 4, pp. 1658–1663).
23.
go back to reference Ghasemi, A., & Sousa, E. S. (2005). Collaborative spectrum sensing for opportunistic access in fading environments. In Proceedings of IEEE international symposium on new frontiers in dynamic spectrum access networks (pp. 131–136). Ghasemi, A., & Sousa, E. S. (2005). Collaborative spectrum sensing for opportunistic access in fading environments. In Proceedings of IEEE international symposium on new frontiers in dynamic spectrum access networks (pp. 131–136).
24.
go back to reference Ma, J., & Li, Y. (2007). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. In Proceedings of IEEE Global Telecommunications Conference (pp. 3139–3143). Ma, J., & Li, Y. (2007). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. In Proceedings of IEEE Global Telecommunications Conference (pp. 3139–3143).
25.
go back to reference Teguig, D., Scheers, B., & Le Nir, V. (2012). Data fusion schemes for cooperative spectrum sensing in cognitive radio networks. In 2012 Military Proceedings of IEEE international conference on communications and information systems conference (MCC). IEEE, 2012. Teguig, D., Scheers, B., & Le Nir, V. (2012). Data fusion schemes for cooperative spectrum sensing in cognitive radio networks. In 2012 Military Proceedings of IEEE international conference on communications and information systems conference (MCC). IEEE, 2012.
26.
go back to reference Banerjee, J. S., Chakraborty, A., & Chattopadhyay, A. (2018). Relay node selection using analytical hierarchy process (AHP) for secondary transmission in multi-user cooperative cognitive radio systems. In Advances in Electronics, Communication and Computing (pp. 745–754). Singapore: Springer.CrossRef Banerjee, J. S., Chakraborty, A., & Chattopadhyay, A. (2018). Relay node selection using analytical hierarchy process (AHP) for secondary transmission in multi-user cooperative cognitive radio systems. In Advances in Electronics, Communication and Computing (pp. 745–754). Singapore: Springer.CrossRef
27.
go back to reference Banerjee, J. S., Chakraborty, A., & Chattopadhyay, A. (2017). Fuzzy based relay selection for secondary transmission in cooperative cognitive radio networks. In Advances in Optical Science and Engineering (pp. 279–287). Singapore: Springer.CrossRef Banerjee, J. S., Chakraborty, A., & Chattopadhyay, A. (2017). Fuzzy based relay selection for secondary transmission in cooperative cognitive radio networks. In Advances in Optical Science and Engineering (pp. 279–287). Singapore: Springer.CrossRef
28.
go back to reference Banerjee, J. S., & Karmakar, K. (2012). A comparative study on cognitive radio implementation issues. International Journal of Computer Applications, 45(15), 44–51.CrossRef Banerjee, J. S., & Karmakar, K. (2012). A comparative study on cognitive radio implementation issues. International Journal of Computer Applications, 45(15), 44–51.CrossRef
29.
go back to reference Banerjee, J. S., Chakraborty, A., & Chattopadhyay, A. (2018). A novel best relay selection protocol for cooperative cognitive radio systems using fuzzy AHP. Journal of Mechanics of Continua and Mathematical Sciences, 13(2), 72–87.CrossRef Banerjee, J. S., Chakraborty, A., & Chattopadhyay, A. (2018). A novel best relay selection protocol for cooperative cognitive radio systems using fuzzy AHP. Journal of Mechanics of Continua and Mathematical Sciences, 13(2), 72–87.CrossRef
Metadata
Title
Non-uniform Quantized Data Fusion Rule for Data Rate Saving and Reducing Control Channel Overhead for Cooperative Spectrum Sensing in Cognitive Radio Networks
Authors
Arpita Chakraborty
Jyoti Sekhar Banerjee
Abir Chattopadhyay
Publication date
24-10-2018
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2019
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-6054-1

Other articles of this Issue 2/2019

Wireless Personal Communications 2/2019 Go to the issue