Skip to main content
Top
Published in: Calcolo 1/2018

01-03-2018

Nonlinear Galerkin methods for a system of PDEs with Turing instabilities

Authors: Konstantinos Spiliotis, Lucia Russo, Francesco Giannino, Salvatore Cuomo, Constantinos Siettos, Gerardo Toraldo

Published in: Calcolo | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We address and discuss the application of nonlinear Galerkin methods for the model reduction and numerical solution of partial differential equations (PDE) with Turing instabilities in comparison with standard (linear) Galerkin methods. The model considered is a system of PDEs modelling the pattern formation in vegetation dynamics. In particular, by constructing the approximate inertial manifold on the basis of the spectral decomposition of the solution, we implement the so-called Euler–Galerkin method and we compare its efficiency and accuracy versus the linear Galerkin methods. We compare the efficiency of the methods by (a) the accuracy of the computed bifurcation points, and, (b) by the computation of the Hausdorff distance between the limit sets obtained by the Galerkin methods and the ones obtained with a reference finite difference scheme. The efficiency with respect to the required CPU time is also accessed. For our illustrations we used three different ODE time integrators, from the Matlab ODE suite. Our results indicate that the performance of the Euler–Galerkin method is superior compared to the linear Galerkin method when either explicit or linearly implicit time integration scheme are adopted. For the particular problem considered, we found that the dimension of approximate inertial manifold is strongly affected by the lenght of the spatial domain. Indeeed, we show that the number of modes required to accurately describe the long time Turing pattern forming solutions increases as the domain increases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Adrover, A., Continillo, G., Crescitelli, S., Giona, M., Russo, L.: Wavelet-like collocation method for finite-dimensional reduction of distributed systems. Comput. Chem. Eng. 24(12), 2687–2703 (2000)CrossRef Adrover, A., Continillo, G., Crescitelli, S., Giona, M., Russo, L.: Wavelet-like collocation method for finite-dimensional reduction of distributed systems. Comput. Chem. Eng. 24(12), 2687–2703 (2000)CrossRef
2.
go back to reference Adrover, A., Continillo, G., Crescitelli, S., Gionaa, M., Russo, L.: Construction of approximate inertial manifold by decimation of collocation equations of distributed parameter systems. Comput. Chem. Eng. 26(1), 113–123 (2002)CrossRef Adrover, A., Continillo, G., Crescitelli, S., Gionaa, M., Russo, L.: Construction of approximate inertial manifold by decimation of collocation equations of distributed parameter systems. Comput. Chem. Eng. 26(1), 113–123 (2002)CrossRef
3.
go back to reference Arrieta, J.M., Santamara, E.: Distance of attractors of reaction–diffusion equations in thin domains. J. Differ. Equ. 263(9), 5459–5506 (2017)MathSciNetCrossRef Arrieta, J.M., Santamara, E.: Distance of attractors of reaction–diffusion equations in thin domains. J. Differ. Equ. 263(9), 5459–5506 (2017)MathSciNetCrossRef
4.
go back to reference Bizon, K., Continillo, G., Russo, L., Smua, J.: On POD reduced models of tubular reactor with periodic regimes. Comput. Chem. Eng. 32(6), 1305–1315 (2008)CrossRef Bizon, K., Continillo, G., Russo, L., Smua, J.: On POD reduced models of tubular reactor with periodic regimes. Comput. Chem. Eng. 32(6), 1305–1315 (2008)CrossRef
5.
go back to reference Cartenì, F., Marasco, A., Bonanomi, G., Mazzoleni, S., Rietkerk, M., Giannino, F.: Negative plant soil feedback and ring formation in clonal plants. J. Theor. Biol. 313, 153–161 (2012)MathSciNetCrossRefMATH Cartenì, F., Marasco, A., Bonanomi, G., Mazzoleni, S., Rietkerk, M., Giannino, F.: Negative plant soil feedback and ring formation in clonal plants. J. Theor. Biol. 313, 153–161 (2012)MathSciNetCrossRefMATH
6.
go back to reference Chen, M., Temam, R.: Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns. Numer. Math. 64, 271–294 (1993)MathSciNetCrossRefMATH Chen, M., Temam, R.: Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns. Numer. Math. 64, 271–294 (1993)MathSciNetCrossRefMATH
7.
go back to reference Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer, Berlin (1989)CrossRefMATH Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer, Berlin (1989)CrossRefMATH
9.
go back to reference Dettori, L.: Spectral approximations of attractors of a class of semilinear parabolic equations. Galcolo 27, 139–168 (1990)MathSciNetMATH Dettori, L.: Spectral approximations of attractors of a class of semilinear parabolic equations. Galcolo 27, 139–168 (1990)MathSciNetMATH
10.
go back to reference Devulder, C., Marion, M.: Class of numerical algorithms for large time integration: the nonlinear Galerkin methods. SIAM J. Num. Anal. 29(2), 462–483 (1992)MathSciNetCrossRefMATH Devulder, C., Marion, M.: Class of numerical algorithms for large time integration: the nonlinear Galerkin methods. SIAM J. Num. Anal. 29(2), 462–483 (1992)MathSciNetCrossRefMATH
11.
go back to reference Dhooge, A., Govaerts, W., Kuznetsof, Y.A.: MatCont: a matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)MathSciNetCrossRefMATH Dhooge, A., Govaerts, W., Kuznetsof, Y.A.: MatCont: a matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)MathSciNetCrossRefMATH
12.
go back to reference Dubois, T., Jauberteau, F., Marion, M., Temam, R.: Subgrid modelling and the interaction of small and large wavelengths in turbulent flows. Comput. Phys. Commun. 65(1–3), 100–106 (1991)MathSciNetCrossRefMATH Dubois, T., Jauberteau, F., Marion, M., Temam, R.: Subgrid modelling and the interaction of small and large wavelengths in turbulent flows. Comput. Phys. Commun. 65(1–3), 100–106 (1991)MathSciNetCrossRefMATH
13.
14.
go back to reference Foias, C., Jolly, M.S., Kevrekidis, I.G., Sell, G.R., Titi, E.S.: On the computation of inertial manifolds. Phys. Lett. A 131(7), 433–437 (1988)MathSciNetCrossRef Foias, C., Jolly, M.S., Kevrekidis, I.G., Sell, G.R., Titi, E.S.: On the computation of inertial manifolds. Phys. Lett. A 131(7), 433–437 (1988)MathSciNetCrossRef
15.
go back to reference Garcia-Archilla, B.: Some practical experience with the time integration of dissipative equations. J. Comput. Phys. 122(1), 25–29 (1995)MathSciNetCrossRefMATH Garcia-Archilla, B.: Some practical experience with the time integration of dissipative equations. J. Comput. Phys. 122(1), 25–29 (1995)MathSciNetCrossRefMATH
16.
17.
go back to reference Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M., Meron, E.: Ecosystem engineers: from pattern formation to habitat creation. Phys. Rev. Lett. 93, 1–4 (2004)CrossRef Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M., Meron, E.: Ecosystem engineers: from pattern formation to habitat creation. Phys. Rev. Lett. 93, 1–4 (2004)CrossRef
19.
go back to reference Graham, M.D., Kevrekidis, I.G.: Alternative approaches to the Karhunen–Loeve decomposition for model reduction and data analysis. Comput. Chem. Eng. 20, 495–506 (1996)CrossRef Graham, M.D., Kevrekidis, I.G.: Alternative approaches to the Karhunen–Loeve decomposition for model reduction and data analysis. Comput. Chem. Eng. 20, 495–506 (1996)CrossRef
20.
go back to reference Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A + 2B 3B. B C. Chem. Eng. Sci. 39, 1087–1097 (1984)CrossRef Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A + 2B 3B. B C. Chem. Eng. Sci. 39, 1087–1097 (1984)CrossRef
22.
go back to reference Haken, H.: Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer, New York (1983)CrossRefMATH Haken, H.: Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer, New York (1983)CrossRefMATH
23.
go back to reference von Hardenberg, J., Meron, E., Shachak, M., Zarm, I.Y.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101–4 (2001)CrossRef von Hardenberg, J., Meron, E., Shachak, M., Zarm, I.Y.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101–4 (2001)CrossRef
24.
go back to reference Heywood, J., Rannacher, R.: On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method. SIAM J. Numer. Anal. 30(6), 1603–1621 (1993)MathSciNetCrossRefMATH Heywood, J., Rannacher, R.: On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method. SIAM J. Numer. Anal. 30(6), 1603–1621 (1993)MathSciNetCrossRefMATH
25.
go back to reference HilleRisLambers, R., Rietkerk, M., Bosch, F.V.D., Prins, H.H.T., Kroon, H.D.: Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50–61 (2001)CrossRef HilleRisLambers, R., Rietkerk, M., Bosch, F.V.D., Prins, H.H.T., Kroon, H.D.: Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50–61 (2001)CrossRef
26.
go back to reference Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)CrossRefMATH Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)CrossRefMATH
27.
go back to reference Hyman, J.M., Nicolaenko, B.: The Kuramoto–Sivashinsky equation: a bridge between PDEs and dynamical systems. Phys. D 18, 113–126 (1986)MathSciNetCrossRefMATH Hyman, J.M., Nicolaenko, B.: The Kuramoto–Sivashinsky equation: a bridge between PDEs and dynamical systems. Phys. D 18, 113–126 (1986)MathSciNetCrossRefMATH
28.
go back to reference Jolly, M.S., Kevrekidis, I.G., Titi, E.S.: Approximate inertial manifolds for the Kuramoto–Sivashinski equation: analysis and computations. Phys. D 44, 38–60 (1990)MathSciNetCrossRefMATH Jolly, M.S., Kevrekidis, I.G., Titi, E.S.: Approximate inertial manifolds for the Kuramoto–Sivashinski equation: analysis and computations. Phys. D 44, 38–60 (1990)MathSciNetCrossRefMATH
29.
30.
go back to reference Jones, D.A., Margolin, L.G., Titi, E.S.: On the effectiveness of the approximate inertial manifold a computational study. Theor. Comput. Fluid Dyn. 7, 243–260 (1995)CrossRefMATH Jones, D.A., Margolin, L.G., Titi, E.S.: On the effectiveness of the approximate inertial manifold a computational study. Theor. Comput. Fluid Dyn. 7, 243–260 (1995)CrossRefMATH
31.
go back to reference Kan, X., Duan, J., Kevrekidis, I.G., Roberts, A.J.: Simulating stochastic inertial manifolds by a backward–forward approach. SIAM J. Appl. Dyn. Syst. 12(1), 487–514 (2013)MathSciNetCrossRefMATH Kan, X., Duan, J., Kevrekidis, I.G., Roberts, A.J.: Simulating stochastic inertial manifolds by a backward–forward approach. SIAM J. Appl. Dyn. Syst. 12(1), 487–514 (2013)MathSciNetCrossRefMATH
33.
go back to reference Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–8 (1999)CrossRef Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–8 (1999)CrossRef
34.
go back to reference Lord, G.J.: Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg–Landau equation. SIAM J. Num. Anal. 34(4), 1483–1512 (1997)MathSciNetCrossRefMATH Lord, G.J.: Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg–Landau equation. SIAM J. Num. Anal. 34(4), 1483–1512 (1997)MathSciNetCrossRefMATH
35.
go back to reference Lu, F., Lin, K.K., Chorin, A.J.: Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation. Phys. D 340(1), 46–57 (2017)MathSciNetCrossRefMATH Lu, F., Lin, K.K., Chorin, A.J.: Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation. Phys. D 340(1), 46–57 (2017)MathSciNetCrossRefMATH
36.
go back to reference Lunasin, E., Titi, E.S.: Finite determining parameters feedback control for distributed nonlinear dissipative systems a computational study. Evol. Equ. Control Theory 6(4), 535–557 (2017)MathSciNetCrossRefMATH Lunasin, E., Titi, E.S.: Finite determining parameters feedback control for distributed nonlinear dissipative systems a computational study. Evol. Equ. Control Theory 6(4), 535–557 (2017)MathSciNetCrossRefMATH
37.
go back to reference Mach, J., Bene, M., Strachota, P.: Nonlinear Galerkin finite element method applied to the system of reaction diffusion equations in one space dimension. Comput. Math. Appl. 73(9), 2053–2065 (2017)MathSciNetCrossRefMATH Mach, J., Bene, M., Strachota, P.: Nonlinear Galerkin finite element method applied to the system of reaction diffusion equations in one space dimension. Comput. Math. Appl. 73(9), 2053–2065 (2017)MathSciNetCrossRefMATH
38.
go back to reference Marasco, A., Iuorio, A., Carten, F., Bonanomi, G., Tartakovsky, D., Mazzoleni, S., Giannino, F.: Vegetation pattern formation due to interactions between water availability and toxicity in plant–soil feedback. Bull. Math. Biol. 76, 2866–2883 (2014)MathSciNetCrossRefMATH Marasco, A., Iuorio, A., Carten, F., Bonanomi, G., Tartakovsky, D., Mazzoleni, S., Giannino, F.: Vegetation pattern formation due to interactions between water availability and toxicity in plant–soil feedback. Bull. Math. Biol. 76, 2866–2883 (2014)MathSciNetCrossRefMATH
39.
go back to reference Margolin, L.G., Titi, E.S., Wynne, S.: The postprocessing Galerkin and nonlinear Galerkin methods—A truncation analysis point of view. SIAM J. Num. Anal. 41(2), 695–714 (2003)MathSciNetCrossRefMATH Margolin, L.G., Titi, E.S., Wynne, S.: The postprocessing Galerkin and nonlinear Galerkin methods—A truncation analysis point of view. SIAM J. Num. Anal. 41(2), 695–714 (2003)MathSciNetCrossRefMATH
41.
go back to reference Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, Cambridge (1982) Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, Cambridge (1982)
43.
go back to reference Mengers, J.D., Powers, J.M.: One-dimensional slow invariant manifolds for fully coupled reaction and micro-scale diffusion. SIAM J. Appl. Dyn. Syst. 12(2), 560–595 (2013)MathSciNetCrossRefMATH Mengers, J.D., Powers, J.M.: One-dimensional slow invariant manifolds for fully coupled reaction and micro-scale diffusion. SIAM J. Appl. Dyn. Syst. 12(2), 560–595 (2013)MathSciNetCrossRefMATH
44.
go back to reference Meron, E., Gilad, E., von Hardenberg, J., Shachak, M., Zarmi, Y.: Vegetation patterns along a rainfall gradient. Chaos, Solitons & Fractals 19, 367–376 (2004)CrossRefMATH Meron, E., Gilad, E., von Hardenberg, J., Shachak, M., Zarmi, Y.: Vegetation patterns along a rainfall gradient. Chaos, Solitons & Fractals 19, 367–376 (2004)CrossRefMATH
45.
go back to reference Nicolaenko, B., Foias, C., Temam, R.: The connection between infinite dimensional and finite dimensional dynamical systems. In: Proceedings of the AMs-IMS-SIAM Joint Summer Research Conference, Contemporary Mathematics series (1989) Nicolaenko, B., Foias, C., Temam, R.: The connection between infinite dimensional and finite dimensional dynamical systems. In: Proceedings of the AMs-IMS-SIAM Joint Summer Research Conference, Contemporary Mathematics series (1989)
46.
go back to reference Pearson, J.E.: Complex patterns in a simple system. Science 261, 189–192 (1993)CrossRef Pearson, J.E.: Complex patterns in a simple system. Science 261, 189–192 (1993)CrossRef
47.
go back to reference Rietkerk, M., Boerlijst, M.C., van Langevelde, F., Hillerislambers, R., van de Koppel, J., Kumar, L., Prins, H.H.T., de Roos, A.M.: Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524530 (2002) Rietkerk, M., Boerlijst, M.C., van Langevelde, F., Hillerislambers, R., van de Koppel, J., Kumar, L., Prins, H.H.T., de Roos, A.M.: Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524530 (2002)
48.
go back to reference Rietkerk, M., Dekker, S.C., de Ruiter, P.C., van de Koppel, J.: Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004)CrossRef Rietkerk, M., Dekker, S.C., de Ruiter, P.C., van de Koppel, J.: Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004)CrossRef
50.
go back to reference Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001)CrossRefMATH Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001)CrossRefMATH
51.
go back to reference Russo, L., Adrover, A., Continillo, G., Crescitelli, S., Giona, M.: Dynamic behavior of a reaction/diffusion system: wavelet-like collocations and approximate inertial manifolds. Proc. Int. Conf. Control Oscil. Chaos 2, 356–359 (2000) Russo, L., Adrover, A., Continillo, G., Crescitelli, S., Giona, M.: Dynamic behavior of a reaction/diffusion system: wavelet-like collocations and approximate inertial manifolds. Proc. Int. Conf. Control Oscil. Chaos 2, 356–359 (2000)
52.
go back to reference Scheffer, M.: Critical Transitions in Nature and Society. Princeton University Press, Princeton (2009) Scheffer, M.: Critical Transitions in Nature and Society. Princeton University Press, Princeton (2009)
53.
go back to reference Scheffer, M., Carpenter, S., Foley, J., Folke, C., Walker, B.: Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)CrossRef Scheffer, M., Carpenter, S., Foley, J., Folke, C., Walker, B.: Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)CrossRef
54.
go back to reference Schmidtmann, O., Fuede, F., Seehafer, N.: Non linear Galegrkin methods for 3D magneto-hydrodynamic equations. Int. J. Bifurc. Chaos 7, 1497–1507 (1997)CrossRefMATH Schmidtmann, O., Fuede, F., Seehafer, N.: Non linear Galegrkin methods for 3D magneto-hydrodynamic equations. Int. J. Bifurc. Chaos 7, 1497–1507 (1997)CrossRefMATH
55.
go back to reference Sembera, J., Bene, M.: Nonlinear Galerkin method for reaction diffusion systems admitting invariant regions. J. Comput. Appl. Math. 136, 163–176 (2001)MathSciNetCrossRefMATH Sembera, J., Bene, M.: Nonlinear Galerkin method for reaction diffusion systems admitting invariant regions. J. Comput. Appl. Math. 136, 163–176 (2001)MathSciNetCrossRefMATH
57.
go back to reference Shen, J., Temam, R.: Nonlinear Galerkin method using Chebyshev and Legendre polynomials I. The one-dimensional case. SIAM J. Numer. Anal. 32, 215–234 (1989)MathSciNetCrossRefMATH Shen, J., Temam, R.: Nonlinear Galerkin method using Chebyshev and Legendre polynomials I. The one-dimensional case. SIAM J. Numer. Anal. 32, 215–234 (1989)MathSciNetCrossRefMATH
58.
go back to reference Sherratt, J.A., Lord, G.J.: Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor. Popul. Biol. 71, 1–11 (2007)CrossRefMATH Sherratt, J.A., Lord, G.J.: Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor. Popul. Biol. 71, 1–11 (2007)CrossRefMATH
59.
go back to reference Sirovich, L., Knight, B.W., Rodriguez, J.D.: Optimal low-dimensional dynamical approximations. Quart. Appl. Math. XLVIII, 535–548 (1990)MathSciNetCrossRefMATH Sirovich, L., Knight, B.W., Rodriguez, J.D.: Optimal low-dimensional dynamical approximations. Quart. Appl. Math. XLVIII, 535–548 (1990)MathSciNetCrossRefMATH
60.
go back to reference Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, Berlin (1997)CrossRefMATH Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, Berlin (1997)CrossRefMATH
62.
Metadata
Title
Nonlinear Galerkin methods for a system of PDEs with Turing instabilities
Authors
Konstantinos Spiliotis
Lucia Russo
Francesco Giannino
Salvatore Cuomo
Constantinos Siettos
Gerardo Toraldo
Publication date
01-03-2018
Publisher
Springer Milan
Published in
Calcolo / Issue 1/2018
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-018-0245-8

Other articles of this Issue 1/2018

Calcolo 1/2018 Go to the issue

Premium Partner