Skip to main content
Top
Published in: Optical and Quantum Electronics 5/2021

01-05-2021

Nonlinear interaction of elliptical q-Gaussian laser beams with plasmas with axial density ramp: effect of ponderomotive force

Authors: Naveen Gupta, Sandeep Kumar

Published in: Optical and Quantum Electronics | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Theoretical investigation on optical self action effects of intense q-Gaussian laser beams interacting with collisionless plasmas with axial density ramp has been presented. Emphasis are put on investigating the dynamics of beam width and axial phase of the laser beam. Effect of the ellipticity of the cross section of the laser beam also has been incorporated. Using variational theory based on Lagrangian formulation nonlinear partial differential equation (P.D.E) governing the evolution of beam amplitude has been reduced to a set of coupled ordinary differential equations for the beam widths of the laser beam along the transverse directions. The evolution equation for the axial phase of the laser beam has been obtained by the Fourier transform of the amplitude structure of the laser beam from coordinate space to \((k_x, k_y)\) space. The differential equations so obtained have been solved numerically to envision the effect of laser-plasma parameters on the propagation dynamics of the laser beam.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self-focusing and diffraction of light in a nonlinear medium. Usp. Fiz. Nauk. 93, 609–636 (1967)CrossRef Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self-focusing and diffraction of light in a nonlinear medium. Usp. Fiz. Nauk. 93, 609–636 (1967)CrossRef
go back to reference Anderson, D., Bonnedal, M.: Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105–109 (1979)ADSMathSciNetCrossRef Anderson, D., Bonnedal, M.: Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105–109 (1979)ADSMathSciNetCrossRef
go back to reference Anderson, D., Bonnedal, M., Lisak, M.: Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115–127 (1980)ADSCrossRef Anderson, D., Bonnedal, M., Lisak, M.: Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115–127 (1980)ADSCrossRef
go back to reference Askaryan, G.A.: Effects of the gradient of strong electromagnetic beam on electrons and atoms. Soviet Phys. JETP 15, 1088–1092 (1962) Askaryan, G.A.: Effects of the gradient of strong electromagnetic beam on electrons and atoms. Soviet Phys. JETP 15, 1088–1092 (1962)
go back to reference Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1965)ADSCrossRef Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1965)ADSCrossRef
go back to reference Cornolti, F., Lucchesi, M., Zambon, B.: Elliptic Gaussian beam selffocusing in nonlinear media. Opt. Commun. 75, 129–135 (1990)ADSCrossRef Cornolti, F., Lucchesi, M., Zambon, B.: Elliptic Gaussian beam selffocusing in nonlinear media. Opt. Commun. 75, 129–135 (1990)ADSCrossRef
go back to reference Deutsch, C., Furukawa, H., Mima, K., Murakami, M., Nishihara, K.: Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483–2486 (1996)ADSCrossRef Deutsch, C., Furukawa, H., Mima, K., Murakami, M., Nishihara, K.: Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483–2486 (1996)ADSCrossRef
go back to reference El Sayed, A., El Badawy, N., Mohamed, S., El Halafawy, F.Z.: Self-focusing of powerful CO2-laser beams in collisional plasmas. J. Opt. Soc. Am. 72, 1393–1397 (1982)ADSCrossRef El Sayed, A., El Badawy, N., Mohamed, S., El Halafawy, F.Z.: Self-focusing of powerful CO2-laser beams in collisional plasmas. J. Opt. Soc. Am. 72, 1393–1397 (1982)ADSCrossRef
go back to reference Feit, M.D., Fleck, J.A.: Self-trapping of a laser beam in a cylindrical plasma column. Appl. Phys. Lett. 28, 121–124 (1976)ADSCrossRef Feit, M.D., Fleck, J.A.: Self-trapping of a laser beam in a cylindrical plasma column. Appl. Phys. Lett. 28, 121–124 (1976)ADSCrossRef
go back to reference Feng, S., Winful, H.G.: Physical origin of the Gouy phase shift. Opt. Lett. 26, 485–487 (2001)ADSCrossRef Feng, S., Winful, H.G.: Physical origin of the Gouy phase shift. Opt. Lett. 26, 485–487 (2001)ADSCrossRef
go back to reference Gupta, N., Kumar, S.: Linear and nonlinear propagation characteristics of multi-Gaussian laser beams. Chin. Phys. B 29, 114210 (2020)ADSCrossRef Gupta, N., Kumar, S.: Linear and nonlinear propagation characteristics of multi-Gaussian laser beams. Chin. Phys. B 29, 114210 (2020)ADSCrossRef
go back to reference Gupta, N., Kumar, S.: Generation of second harmonics of q-Gaussian laser beams in collisional plasma with upward density ramp. Laser Phys. 30, 066003 (2020)ADSCrossRef Gupta, N., Kumar, S.: Generation of second harmonics of q-Gaussian laser beams in collisional plasma with upward density ramp. Laser Phys. 30, 066003 (2020)ADSCrossRef
go back to reference Gupta, D.N., Hur, M.S., Hwang, I., Suk, H., Sharma, A.K.: Plasma density ramp for relativistic self-focusing of an intense laser. J. Opt. Soc. Am. B 24, 1155–1159 (2007)ADSCrossRef Gupta, D.N., Hur, M.S., Hwang, I., Suk, H., Sharma, A.K.: Plasma density ramp for relativistic self-focusing of an intense laser. J. Opt. Soc. Am. B 24, 1155–1159 (2007)ADSCrossRef
go back to reference Gupta, D.N., Islam, M.R., Jang, D.G., Suk, H., Jaroszynski, D.A.: Self-focusing of a high-intensity laser in a collisional plasma under weak relativistic-ponderomotive nonlinearity. Phys. Plasmas 20, 123103 (2013)ADSCrossRef Gupta, D.N., Islam, M.R., Jang, D.G., Suk, H., Jaroszynski, D.A.: Self-focusing of a high-intensity laser in a collisional plasma under weak relativistic-ponderomotive nonlinearity. Phys. Plasmas 20, 123103 (2013)ADSCrossRef
go back to reference Habibi, M., Ghamari, F.: Significant enhancement in self-focusing of high-power laser beam through dense plasmas by ramp density profile. J. Opt. Soc. Am. B 32, 1429–1434 (2015)ADSCrossRef Habibi, M., Ghamari, F.: Significant enhancement in self-focusing of high-power laser beam through dense plasmas by ramp density profile. J. Opt. Soc. Am. B 32, 1429–1434 (2015)ADSCrossRef
go back to reference Hariharan, P., Robinson, P.A.: The gouy phase shift as a geometrical quantum effect. J. Mod. Opt. 43, 219–221 (1996)ADSMathSciNetMATH Hariharan, P., Robinson, P.A.: The gouy phase shift as a geometrical quantum effect. J. Mod. Opt. 43, 219–221 (1996)ADSMathSciNetMATH
go back to reference Hora, H.: Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882–886 (1975)ADSCrossRef Hora, H.: Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882–886 (1975)ADSCrossRef
go back to reference Khalkhal, E., Tavirani, M.R., Zali, M.R., Akbari, Z.: The evaluation of laser application in surgery: a review article. J. Lasers Med. Sci. 10, S104–S111 (2019)CrossRef Khalkhal, E., Tavirani, M.R., Zali, M.R., Akbari, Z.: The evaluation of laser application in surgery: a review article. J. Lasers Med. Sci. 10, S104–S111 (2019)CrossRef
go back to reference Konar, S., Sengupta, A.: Propagation of an elliptic Gaussian laser beam in a medium with saturable nonlinearity. J. Opt. Soc. Am. B 11, 1644–1646 (1994)ADSCrossRef Konar, S., Sengupta, A.: Propagation of an elliptic Gaussian laser beam in a medium with saturable nonlinearity. J. Opt. Soc. Am. B 11, 1644–1646 (1994)ADSCrossRef
go back to reference Kumar, H., Aggarwal, M., Richa, Gill, T.S.: Self-focusing of an elliptic-Gaussian laser beam in relativistic ponderomotive plasma using a ramp density profile. J. Opt. Soc. Am. B 35, 1635–1641 (2018)ADSCrossRef Kumar, H., Aggarwal, M., Richa, Gill, T.S.: Self-focusing of an elliptic-Gaussian laser beam in relativistic ponderomotive plasma using a ramp density profile. J. Opt. Soc. Am. B 35, 1635–1641 (2018)ADSCrossRef
go back to reference Kurniawan, K.H., Tjia, M., Kagawa, K.: Review of laser-induced plasma, its mechanism, and application to quantitative analysis of hydrogen and deuterium. Appl. Spectrosc. Rev. 49, 323–434 (2014)ADSCrossRef Kurniawan, K.H., Tjia, M., Kagawa, K.: Review of laser-induced plasma, its mechanism, and application to quantitative analysis of hydrogen and deuterium. Appl. Spectrosc. Rev. 49, 323–434 (2014)ADSCrossRef
go back to reference Leduc, M., Dugue, J., Simone, J.: Laser cooling, trapping, and Bose–Einstein condensation of atoms and molecules. Phys. Today 71, 37–42 (2018) Leduc, M., Dugue, J., Simone, J.: Laser cooling, trapping, and Bose–Einstein condensation of atoms and molecules. Phys. Today 71, 37–42 (2018)
go back to reference Nakatsutsumi, M., Davies, J.R., Kodama, R., Green, J.S., Lancaster, K.L., Akli, K.U., Beg, F.N., Chen, S.N., Clark, D., Freeman, R.R., Gregory, C.D., Habara, H., Heathcote, R., Hey, D.S., Highbarger, K., Jaanimagi, P., Key, M.H., Krushelnick, K., Ma, T., MacPhee, A., MacKinnon, A.J., Nakamura, H., Stephens, R.B., Storm, M., Tampo, M., Theobald, W., Van Woerkom, L., Weber, R.L., Wei, M.S., Woolsey, N.C., Norreys, P.A.: Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008)CrossRef Nakatsutsumi, M., Davies, J.R., Kodama, R., Green, J.S., Lancaster, K.L., Akli, K.U., Beg, F.N., Chen, S.N., Clark, D., Freeman, R.R., Gregory, C.D., Habara, H., Heathcote, R., Hey, D.S., Highbarger, K., Jaanimagi, P., Key, M.H., Krushelnick, K., Ma, T., MacPhee, A., MacKinnon, A.J., Nakamura, H., Stephens, R.B., Storm, M., Tampo, M., Theobald, W., Van Woerkom, L., Weber, R.L., Wei, M.S., Woolsey, N.C., Norreys, P.A.: Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008)CrossRef
go back to reference Patel, P.K., Key, M.H., Mackinnon, A.J., Berry, R., Borghesi, M., Chambers, D.M., Chen, H., Clarke, R., Damian, C., Eagleton, R., Freeman, R., Glenzer, S., Gregori, G., Heathcote, R., Hey, D., Izumi, N., Kar, S., King, J., Nikroo, A., Niles, A., Park, H.S., Pasley, J., Patel, N., Shepherd, R., Snavely, R.A., Steinman, D., Stoeckl, C., Storm, M., Theobald, W., Town, R., Van Maren, R., Wilks, S.C., Zhang, B.: Integrated laser-target interaction experiments on the RAL petawatt laser. Plasma Phys. Control. Fusion 47, B833–B840 (2005)CrossRef Patel, P.K., Key, M.H., Mackinnon, A.J., Berry, R., Borghesi, M., Chambers, D.M., Chen, H., Clarke, R., Damian, C., Eagleton, R., Freeman, R., Glenzer, S., Gregori, G., Heathcote, R., Hey, D., Izumi, N., Kar, S., King, J., Nikroo, A., Niles, A., Park, H.S., Pasley, J., Patel, N., Shepherd, R., Snavely, R.A., Steinman, D., Stoeckl, C., Storm, M., Theobald, W., Town, R., Van Maren, R., Wilks, S.C., Zhang, B.: Integrated laser-target interaction experiments on the RAL petawatt laser. Plasma Phys. Control. Fusion 47, B833–B840 (2005)CrossRef
go back to reference Pathak, N., Agarwal, P.C., Gill, T.S., Kaur, S.: Characteristics of spatiotemporal dynamics of a quadruple Gaussian laser beam in a relativistic ponderomotive magnetized plasma. J. Opt. Soc. Am. B 37, 2892–2900 (2020)ADSCrossRef Pathak, N., Agarwal, P.C., Gill, T.S., Kaur, S.: Characteristics of spatiotemporal dynamics of a quadruple Gaussian laser beam in a relativistic ponderomotive magnetized plasma. J. Opt. Soc. Am. B 37, 2892–2900 (2020)ADSCrossRef
go back to reference Patil, S.D., Takale, M.V.: Self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive regime using upward ramp of plasma density. Phys. Plasmas 20, 083101 (2013)ADSCrossRef Patil, S.D., Takale, M.V.: Self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive regime using upward ramp of plasma density. Phys. Plasmas 20, 083101 (2013)ADSCrossRef
go back to reference Purohit, G., Gaur, B., Rawat, P.: Propagation of two intense cosh-Gaussian laser beams in plasma in the relativistic-ponderomotive regime. J. Opt. Soc. Am. B 33, 1716–1722 (2016)ADSCrossRef Purohit, G., Gaur, B., Rawat, P.: Propagation of two intense cosh-Gaussian laser beams in plasma in the relativistic-ponderomotive regime. J. Opt. Soc. Am. B 33, 1716–1722 (2016)ADSCrossRef
go back to reference Roso, N.A., Moreira, R.C., Oliveira, J.B.: High power laser weapons and operational implications. J. Aerosp. Technol. Manag. 6, 231–236 (2014)CrossRef Roso, N.A., Moreira, R.C., Oliveira, J.B.: High power laser weapons and operational implications. J. Aerosp. Technol. Manag. 6, 231–236 (2014)CrossRef
go back to reference Sharma, A., Kourakis, I.: Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser Part. Beams 28, 479–489 (2010)ADSCrossRef Sharma, A., Kourakis, I.: Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser Part. Beams 28, 479–489 (2010)ADSCrossRef
go back to reference Singh, A., Gupta, N.: Higher harmonic generation by self-focused q-Gaussian laser beam in preformed collisionless plasma channel. Laser Part. Beams 32, 621–629 (2014)ADSCrossRef Singh, A., Gupta, N.: Higher harmonic generation by self-focused q-Gaussian laser beam in preformed collisionless plasma channel. Laser Part. Beams 32, 621–629 (2014)ADSCrossRef
go back to reference Singh, T., Kaul, S.S.: Self-focusing and self-phase modulation of elliptic Gaussian laser beam in a graded Kerr-medium. Indian J. Pure Appl. Phys. 37, 794–797 (1999) Singh, T., Kaul, S.S.: Self-focusing and self-phase modulation of elliptic Gaussian laser beam in a graded Kerr-medium. Indian J. Pure Appl. Phys. 37, 794–797 (1999)
go back to reference Singh, A., Walia, K.: Self-focusing of Gaussian laser beam through collisionless plasmas and its effect on second harmonic generation. J. Fusion Energy 30, 555–560 (2011)ADSCrossRef Singh, A., Walia, K.: Self-focusing of Gaussian laser beam through collisionless plasmas and its effect on second harmonic generation. J. Fusion Energy 30, 555–560 (2011)ADSCrossRef
go back to reference Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: In: Wolf, E. (ed.) Progress in Optics, vol. 13, p. 169–175. North Holland, Amsterdam (1976) Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: In: Wolf, E. (ed.) Progress in Optics, vol. 13, p. 169–175. North Holland, Amsterdam (1976)
go back to reference Spiers, B.T., Hill, M.P., Brown, C., Ceurvorst, L., Ratan, N., Savin, A.F., Allan, P., Floyd, E., Fyrth, J., Hobbs, L., James, S., Luis, J., Ramsay, M., Sircombe, N., Skidmore, J., Aboushelbaya, R., Mayr, M.W., Paddock, R., Wang, R.H.W., Norreys, P.A.: Whole-beam self-focusing in fusion-relevant plasma. Philos. Trans. R. Soc. A. 379, 20200159 (2021)ADSCrossRef Spiers, B.T., Hill, M.P., Brown, C., Ceurvorst, L., Ratan, N., Savin, A.F., Allan, P., Floyd, E., Fyrth, J., Hobbs, L., James, S., Luis, J., Ramsay, M., Sircombe, N., Skidmore, J., Aboushelbaya, R., Mayr, M.W., Paddock, R., Wang, R.H.W., Norreys, P.A.: Whole-beam self-focusing in fusion-relevant plasma. Philos. Trans. R. Soc. A. 379, 20200159 (2021)ADSCrossRef
go back to reference Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. 43, 267–270 (1979)ADS Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. 43, 267–270 (1979)ADS
go back to reference Tsallis, C.: Nonadditive entropy and nonextensive statistical mechanics—an overview after 20 years. Braz. J. Phys. 39, 337–356 (2009)ADSCrossRef Tsallis, C.: Nonadditive entropy and nonextensive statistical mechanics—an overview after 20 years. Braz. J. Phys. 39, 337–356 (2009)ADSCrossRef
go back to reference Wang, Y., Liang, Y., Yao, J., Yuan, C., Zhou, Z.: Nonlinear propagation characteristics of multi-Gaussian beams in collisionless plasmas. J. Opt. Soc. Am. B 35, 3088–3093 (2018)ADSCrossRef Wang, Y., Liang, Y., Yao, J., Yuan, C., Zhou, Z.: Nonlinear propagation characteristics of multi-Gaussian beams in collisionless plasmas. J. Opt. Soc. Am. B 35, 3088–3093 (2018)ADSCrossRef
go back to reference Yadav, M., Gupta, D.N., Sharma, S.C.: Electron plasma wave excitation by a q-Gaussian laser beam and subsequent electron acceleration. Phys. Plasmas 27, 093106 (2020)CrossRef Yadav, M., Gupta, D.N., Sharma, S.C.: Electron plasma wave excitation by a q-Gaussian laser beam and subsequent electron acceleration. Phys. Plasmas 27, 093106 (2020)CrossRef
Metadata
Title
Nonlinear interaction of elliptical q-Gaussian laser beams with plasmas with axial density ramp: effect of ponderomotive force
Authors
Naveen Gupta
Sandeep Kumar
Publication date
01-05-2021
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 5/2021
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-021-02905-z

Other articles of this Issue 5/2021

Optical and Quantum Electronics 5/2021 Go to the issue