Skip to main content
Top
Published in: Archive of Applied Mechanics 4/2020

07-01-2020 | Original

Nonlinear static bending of single-crystalline circular nanoplates with cubic material anisotropy

Authors: Abbas Assadi, Hossein Najaf

Published in: Archive of Applied Mechanics | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, a model is presented for nonlinear static bending of single circular nanoplates with cubic material anisotropy. The material anisotropy is modeled based on Zener ratio for which some new functions are presented to get closer formulations. The Ritz and Galerkin weighted residual methods are used to solve the derived nonlinear differential equation using different deflection surfaces defining two integral functions for material anisotropy in polar coordinate. The results show that the deflection surface remains approximately axisymmetric even at extreme material anisotropy levels similar to orthotropic materials. This is verified by FEM too. The comprehensive results are presented and discussed for the mostly used materials at MEMS/NEMS technology including Ag, Au, Al, Si, Ni, Mo, Cu and W single-crystalline nanoplates. It is observed that the size scale effects related to material surface stresses are greater for BCC nanoplates in comparison with FCC ones. Moreover, the Poisson’s ratio in [100] direction plays an essential role in the problem which is evaluated carefully. Finally, the effective Young’s modulus of the nanoplates with 10–80 nm of thickness is compared by the experiments for Ag nanowires using a correction factor due to lack of direct experiments for nanoplates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guével, X.L., Wang, F.Y., Stranik, O., Nooney, R., Gubala, V., McDonagh, C., MacCraith, B.D.: Synthesis, stabilization, and functionalization of silver nanoplates for biosensor applications. J. Phys. Chem. C 113, 16380–16386 (2009) Guével, X.L., Wang, F.Y., Stranik, O., Nooney, R., Gubala, V., McDonagh, C., MacCraith, B.D.: Synthesis, stabilization, and functionalization of silver nanoplates for biosensor applications. J. Phys. Chem. C 113, 16380–16386 (2009)
2.
go back to reference Ni, Y., Kan, C., Xu, J., Liu, Y.: The synthesis of high yield Au nanoplate and optimized optical properties. Superlattices Microstruct. 114, 124–142 (2018) Ni, Y., Kan, C., Xu, J., Liu, Y.: The synthesis of high yield Au nanoplate and optimized optical properties. Superlattices Microstruct. 114, 124–142 (2018)
3.
go back to reference Sun, Y., Xu, L., Yin, Z., Song, X.: Synthesis of copper submicro/nanoplates with high stability and their recyclable superior catalytic activity towards 4-nitrophenol reduction. J. Mater. Chem. A. 1, 12361–12370 (2013) Sun, Y., Xu, L., Yin, Z., Song, X.: Synthesis of copper submicro/nanoplates with high stability and their recyclable superior catalytic activity towards 4-nitrophenol reduction. J. Mater. Chem. A. 1, 12361–12370 (2013)
4.
go back to reference McDowell, M.T., Leach, A.M., Gall, K.: On the elastic modulus of metallic nanowires. Nano Lett. 8, 3613–3618 (2008) McDowell, M.T., Leach, A.M., Gall, K.: On the elastic modulus of metallic nanowires. Nano Lett. 8, 3613–3618 (2008)
5.
go back to reference Xu, F., Qin, Q., Mishra, A., Gu, Y., Zhu, Y.: Mechanical properties of Zno Nanowires under different loading modes. Nano Res. 3, 271–280 (2010) Xu, F., Qin, Q., Mishra, A., Gu, Y., Zhu, Y.: Mechanical properties of Zno Nanowires under different loading modes. Nano Res. 3, 271–280 (2010)
6.
go back to reference Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B Condens. Matter Mater. Phys. 73, 1–6 (2006) Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B Condens. Matter Mater. Phys. 73, 1–6 (2006)
7.
go back to reference He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008) He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)
8.
go back to reference Gurtin, M.E., Ian Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetMATH Gurtin, M.E., Ian Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetMATH
9.
go back to reference Shenoy, V.B.: Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys. Rev. B Condens. Matter Mater. Phys. 71, 1–11 (2005) Shenoy, V.B.: Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys. Rev. B Condens. Matter Mater. Phys. 71, 1–11 (2005)
10.
go back to reference Huang, D.W.: Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45, 568–579 (2008)MATH Huang, D.W.: Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45, 568–579 (2008)MATH
11.
go back to reference Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)MATH Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)MATH
12.
go back to reference Lu, P., He, L.H., Lee, H.P., Lu, C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006)MATH Lu, P., He, L.H., Lee, H.P., Lu, C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006)MATH
13.
go back to reference Liu, Y., Ji, X., Wang, D., He, J.: Modeling thin structures incorporated with surface effects by using layered shell elements. Eur. J. Mech. A/Solids 74, 139–144 (2019)MathSciNetMATH Liu, Y., Ji, X., Wang, D., He, J.: Modeling thin structures incorporated with surface effects by using layered shell elements. Eur. J. Mech. A/Solids 74, 139–144 (2019)MathSciNetMATH
14.
go back to reference Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014) Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)
15.
go back to reference Wang, K.F., Wang, B.L.: Vibration of nanoscale plates with surface energy via nonlocal elasticity. Phys. E Low-Dimensional Syst. Nanostruct. 44, 448–453 (2011) Wang, K.F., Wang, B.L.: Vibration of nanoscale plates with surface energy via nonlocal elasticity. Phys. E Low-Dimensional Syst. Nanostruct. 44, 448–453 (2011)
16.
go back to reference Liu, S., Yu, T., Lich, L.V., Yin, S., Bui, T.Q.: Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput. Struct. 212, 173–187 (2019) Liu, S., Yu, T., Lich, L.V., Yin, S., Bui, T.Q.: Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput. Struct. 212, 173–187 (2019)
17.
go back to reference Wang, K.F., Wang, B.L., Xu, M.H., Yu, A.B.: Influences of surface and interface energies on the nonlinear vibration of laminated nanoscale plates. Compos. Struct. 183, 423–433 (2017) Wang, K.F., Wang, B.L., Xu, M.H., Yu, A.B.: Influences of surface and interface energies on the nonlinear vibration of laminated nanoscale plates. Compos. Struct. 183, 423–433 (2017)
18.
go back to reference Yang, Y., Zou, J., Lee, K.Y., Li, X.F.: Bending of circular nanoplates with consideration of surface effects. Meccanica 53, 985–999 (2018)MathSciNetMATH Yang, Y., Zou, J., Lee, K.Y., Li, X.F.: Bending of circular nanoplates with consideration of surface effects. Meccanica 53, 985–999 (2018)MathSciNetMATH
19.
go back to reference Zhou, S., Zhang, R., Zhou, S., Li, A.: Free vibration analysis of bilayered circular micro-plate including surface effects. Appl. Math. Model. 70, 54–66 (2019)MathSciNet Zhou, S., Zhang, R., Zhou, S., Li, A.: Free vibration analysis of bilayered circular micro-plate including surface effects. Appl. Math. Model. 70, 54–66 (2019)MathSciNet
20.
go back to reference Assadi, A., Farshi, B.: Size dependent stability analysis of circular ultrathin films in elastic medium with consideration of surface energies. Phys. E Low-Dimensional Syst. Nanostruct. 43, 1111–1117 (2011) Assadi, A., Farshi, B.: Size dependent stability analysis of circular ultrathin films in elastic medium with consideration of surface energies. Phys. E Low-Dimensional Syst. Nanostruct. 43, 1111–1117 (2011)
21.
go back to reference Assadi, A., Farshi, B.: Vibration characteristics of circular nanoplates. J. Appl. Phys. 108, 1–5 (2010) Assadi, A., Farshi, B.: Vibration characteristics of circular nanoplates. J. Appl. Phys. 108, 1–5 (2010)
22.
go back to reference Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V., Sahmani, S.: Surface Stress Effect on the Vibrational Response of Circular Nanoplates With Various Edge Supports. J. Appl. Mech. 80, 021021 (2012) Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V., Sahmani, S.: Surface Stress Effect on the Vibrational Response of Circular Nanoplates With Various Edge Supports. J. Appl. Mech. 80, 021021 (2012)
23.
go back to reference Schilling, R., Schütz, H., Ghadimi, A.H., Sudhir, V., Wilson, D.J., Kippenberg, T.J.: Near-field integration of a SiN nanobeam and a \(\text{ SiO }_2\) microcavity for Heisenberg-limited displacement sensing. Phys. Rev. Appl. 5, 1–17 (2016) Schilling, R., Schütz, H., Ghadimi, A.H., Sudhir, V., Wilson, D.J., Kippenberg, T.J.: Near-field integration of a SiN nanobeam and a \(\text{ SiO }_2\) microcavity for Heisenberg-limited displacement sensing. Phys. Rev. Appl. 5, 1–17 (2016)
24.
go back to reference Gurtin, M.E., Markenscoff, X., Thurston, R.N.: Effect of surface stress on the natural frequency of thin crystals. Appl. Phys. Lett. 29, 529–530 (1976) Gurtin, M.E., Markenscoff, X., Thurston, R.N.: Effect of surface stress on the natural frequency of thin crystals. Appl. Phys. Lett. 29, 529–530 (1976)
25.
go back to reference Song, F., Huang, G.L., Park, H.S., Liu, X.N.: A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. Int. J. Solids Struct. 48, 2154–2163 (2011) Song, F., Huang, G.L., Park, H.S., Liu, X.N.: A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. Int. J. Solids Struct. 48, 2154–2163 (2011)
26.
go back to reference Karimi, M., Mirdamadi, H.R., Shahidi, A.R.: Shear vibration and buckling of double-layer orthotropic nanoplates based on RPT resting on elastic foundations by DQM including surface effects. Microsyst. Technol. 23, 765–797 (2017) Karimi, M., Mirdamadi, H.R., Shahidi, A.R.: Shear vibration and buckling of double-layer orthotropic nanoplates based on RPT resting on elastic foundations by DQM including surface effects. Microsyst. Technol. 23, 765–797 (2017)
27.
go back to reference Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the Young’s modulus of silicon? J. Microelectromechan. Syst. 19, 229–238 (2010) Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the Young’s modulus of silicon? J. Microelectromechan. Syst. 19, 229–238 (2010)
28.
go back to reference Keller, C., Habraken, A.M., Duchene, L.: Finite element investigation of size effects on the mechanical behavior of nickel single crystals. Mater. Sci. Eng. A 550, 342–349 (2012) Keller, C., Habraken, A.M., Duchene, L.: Finite element investigation of size effects on the mechanical behavior of nickel single crystals. Mater. Sci. Eng. A 550, 342–349 (2012)
29.
go back to reference Norris, A.N.: Poisson’s ratio in cubic materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 3385–3405 (2006)MathSciNetMATH Norris, A.N.: Poisson’s ratio in cubic materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 3385–3405 (2006)MathSciNetMATH
30.
go back to reference Hearmon, R.F.S.: The elastic constants of anisotropic materials. Adv. Phys. 18, 409 (1946) Hearmon, R.F.S.: The elastic constants of anisotropic materials. Adv. Phys. 18, 409 (1946)
31.
go back to reference Turley, J., Sines, G.: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J. Phys. D Appl. Phys. 4, 264–271 (1971) Turley, J., Sines, G.: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J. Phys. D Appl. Phys. 4, 264–271 (1971)
32.
go back to reference Vlassak, J.J., Nix, W.D.: Measuring the elastic properties of materials by means of indentation. J. Mech. Phys. Solids 42, 1223–1245 (1994) Vlassak, J.J., Nix, W.D.: Measuring the elastic properties of materials by means of indentation. J. Mech. Phys. Solids 42, 1223–1245 (1994)
33.
go back to reference Boyd, E.J., Uttamchandani, D.: Measurement of the anisotropy of young’s modulus in single-crystal silicon. J. Microelectromech. Syst. 21, 243–249 (2012) Boyd, E.J., Uttamchandani, D.: Measurement of the anisotropy of young’s modulus in single-crystal silicon. J. Microelectromech. Syst. 21, 243–249 (2012)
34.
go back to reference Feibelman, J.: Anisotropy of the stress on fcc(110) surfaces. Phys. Rev. B Condens. Matter 51, 867–875 (1995) Feibelman, J.: Anisotropy of the stress on fcc(110) surfaces. Phys. Rev. B Condens. Matter 51, 867–875 (1995)
35.
go back to reference Mouloodi, S., Khojasteh, J., Salehi, M., Mohebbi, S.: Size dependent free vibration analysis of multicrystalline nanoplates by considering surface effects as well as interface region. Int. J. Mech. Sci. 85, 160–167 (2014) Mouloodi, S., Khojasteh, J., Salehi, M., Mohebbi, S.: Size dependent free vibration analysis of multicrystalline nanoplates by considering surface effects as well as interface region. Int. J. Mech. Sci. 85, 160–167 (2014)
36.
go back to reference Assadi, A., Salehi, M., Akhlaghi, M.: Orientation dependent size effects in single crystalline anisotropic nanoplates with regard to surface energy. Phys. Lett. Sect. A Gen. At. Solid State Phys. 379, 1437–1444 (2015)MathSciNet Assadi, A., Salehi, M., Akhlaghi, M.: Orientation dependent size effects in single crystalline anisotropic nanoplates with regard to surface energy. Phys. Lett. Sect. A Gen. At. Solid State Phys. 379, 1437–1444 (2015)MathSciNet
37.
go back to reference Assadi, A., Akhlaghi, M., Salehi, M.: Some modifications in evaluation of the size effects related to surface stresses in nanostructures. Phys. E Low-Dimensional Syst. Nanostruct. 68, 190–201 (2015) Assadi, A., Akhlaghi, M., Salehi, M.: Some modifications in evaluation of the size effects related to surface stresses in nanostructures. Phys. E Low-Dimensional Syst. Nanostruct. 68, 190–201 (2015)
38.
go back to reference Mohammadzadeh-Keleshteri, M., Samie-Anarestani, S., Assadi, A.: Large deformation analysis of single-crystalline nanoplates with cubic anisotropy. Acta Mech. 228, 3345–3368 (2017)MathSciNetMATH Mohammadzadeh-Keleshteri, M., Samie-Anarestani, S., Assadi, A.: Large deformation analysis of single-crystalline nanoplates with cubic anisotropy. Acta Mech. 228, 3345–3368 (2017)MathSciNetMATH
39.
go back to reference Hertzberg, R.W., Vinci, R.P., Hertzberg, J.L.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York (2012) Hertzberg, R.W., Vinci, R.P., Hertzberg, J.L.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York (2012)
40.
go back to reference Zhu, R., Pan, E., Chung, P.W., Cai, X., Liew, K.M., Buldum, A.: Atomistic calculation of elastic moduli in strained silicon. Semicond. Sci. Technol. 21, 906–911 (2006) Zhu, R., Pan, E., Chung, P.W., Cai, X., Liew, K.M., Buldum, A.: Atomistic calculation of elastic moduli in strained silicon. Semicond. Sci. Technol. 21, 906–911 (2006)
41.
go back to reference Bar On, B., Altus, E., Tadmor, E.B.: Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling. Int. J. Solids Struct. 47, 1243–1252 (2010)MATH Bar On, B., Altus, E., Tadmor, E.B.: Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling. Int. J. Solids Struct. 47, 1243–1252 (2010)MATH
42.
go back to reference Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994) Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)
43.
go back to reference Khanaliloo, B., Jayakumar, H., Hryciw, A.C., Lake, D.P., Kaviani, H., Barclay, P.E.: Single-crystal diamond nanobeam waveguide optomechanics. Phys. Rev. X. 5, 1–21 (2015) Khanaliloo, B., Jayakumar, H., Hryciw, A.C., Lake, D.P., Kaviani, H., Barclay, P.E.: Single-crystal diamond nanobeam waveguide optomechanics. Phys. Rev. X. 5, 1–21 (2015)
44.
go back to reference Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC, Boca Raton (2006) Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC, Boca Raton (2006)
45.
go back to reference Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, Weinheim (2005)MATH Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, Weinheim (2005)MATH
46.
go back to reference Sathyamoorthy, M.: Transverse Shear and Rotatory Inertia Effects on Nonlinear Vibration of orthotropic circular plates. Comput. Struct. 14, 129–134 (1981)MATH Sathyamoorthy, M.: Transverse Shear and Rotatory Inertia Effects on Nonlinear Vibration of orthotropic circular plates. Comput. Struct. 14, 129–134 (1981)MATH
47.
go back to reference Fu, L., Waas, A.M.: Buckling of polar and rectilinearly orthotropic annuli under uniform internal or external pressure loading. Compos. Struct. 22, 47–57 (1992) Fu, L., Waas, A.M.: Buckling of polar and rectilinearly orthotropic annuli under uniform internal or external pressure loading. Compos. Struct. 22, 47–57 (1992)
48.
go back to reference Ying-jian, W.: Large deflection problem of thin orthotropic circular plate with variable thickness under uniform pressure. Appl. Math. Mech. 11, 343–353 (1990)MATH Ying-jian, W.: Large deflection problem of thin orthotropic circular plate with variable thickness under uniform pressure. Appl. Math. Mech. 11, 343–353 (1990)MATH
49.
go back to reference Sadd, M.H.: Elasticity: Theory, Applications, and Numerics, 3rd edn. Elsevier, Amsterdam (2014) Sadd, M.H.: Elasticity: Theory, Applications, and Numerics, 3rd edn. Elsevier, Amsterdam (2014)
50.
go back to reference Sapsathiarn, Y., Rajapakse, R.K.N.D.: Finite-element modeling of circular nanoplates. J. Nanomech. Micromech. 3, 59–66 (2013) Sapsathiarn, Y., Rajapakse, R.K.N.D.: Finite-element modeling of circular nanoplates. J. Nanomech. Micromech. 3, 59–66 (2013)
Metadata
Title
Nonlinear static bending of single-crystalline circular nanoplates with cubic material anisotropy
Authors
Abbas Assadi
Hossein Najaf
Publication date
07-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 4/2020
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01643-9

Other articles of this Issue 4/2020

Archive of Applied Mechanics 4/2020 Go to the issue

Premium Partners