Skip to main content
Top
Published in: Archive of Applied Mechanics 9/2020

03-06-2020 | Original

Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field

Authors: Amin Ghobadi, Yaghoub Tadi Beni, Hossein Golestanian

Published in: Archive of Applied Mechanics | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, a continuous-based thermo-electromechanic model has been developed by the Kirchhoff plate’s theory and the modified flexoelectric theory in order to study the size-dependent nonlinear free vibration of functionally graded flexoelectric nano-plate under the magnetic field. Using the Hamilton’s principle and variation method, the nonlinear governing differential equations of the nano-plate and their associated boundary conditions have been extracted and the governing equations solved by using Galerkin’s and perturbation methods. The electromechanical coupling (electromechanical stress) in the internal energy function causes nonlinearity in the governing equations. The applied magnetic field is a type of external static field along with the nano-plate thickness. The natural frequencies and related mode shapes have been determined in two modes of direct and inverse flexoelectric effects. Also, the effects of such factors as length scale parameters, geometric parameters, thermal, magnetic and electrical loadings were investigated. In the presence of flexoelectric effect, the results showed that the dependence of electromechanical behavior of the structure on size is found to be significant in nanoscales. Regarding the application of this type of nano-plate in the oscillators and considering the flexoelectric effect, the applied potential difference can play an important role in adjusting and controlling the frequency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Van Den Boomgaard, J., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974) Van Den Boomgaard, J., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974)
2.
go back to reference Buchanan George, R.: Layered versus multiphase magneto-electro-elastic composites. Compos. B 35(5), 413–420 (2004) Buchanan George, R.: Layered versus multiphase magneto-electro-elastic composites. Compos. B 35(5), 413–420 (2004)
3.
go back to reference Pan, E.: Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates. ASME J. Appl. Mech. 68(4), 608–618 (2001)MATH Pan, E.: Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates. ASME J. Appl. Mech. 68(4), 608–618 (2001)MATH
4.
go back to reference Heyliger, P.R., Ramirez, F., Pan, E.: Two-dimensional static fields in magnetoelectroelastic laminates. J. Intel. Mat. Syst. Struct. 15(9), 689–709 (2004) Heyliger, P.R., Ramirez, F., Pan, E.: Two-dimensional static fields in magnetoelectroelastic laminates. J. Intel. Mat. Syst. Struct. 15(9), 689–709 (2004)
5.
go back to reference Van Den Boomgaard, J., Dan Run, A.M.J.G., Van Suchtelen, J.: Magnetoelectricity in piezoelectric-magnetostrictive composites. Ferroelectrics 10(1), 295–298 (1976) Van Den Boomgaard, J., Dan Run, A.M.J.G., Van Suchtelen, J.: Magnetoelectricity in piezoelectric-magnetostrictive composites. Ferroelectrics 10(1), 295–298 (1976)
6.
go back to reference Van Den Boomgaard, J., Born, R.A.J.: A sintered magnetoelectric composite material BaTiO3-Ni (Co, Mn) Fe3O4. J. Mater. Sci. 13(7), 1538–1548 (1978) Van Den Boomgaard, J., Born, R.A.J.: A sintered magnetoelectric composite material BaTiO3-Ni (Co, Mn) Fe3O4. J. Mater. Sci. 13(7), 1538–1548 (1978)
7.
go back to reference Lopatin, S., Lopatin, I., Lisnevskaya, I.: Magnetoelectric PZT/ferrite composite material. Ferroelectrics 162(1), 63–68 (1994) Lopatin, S., Lopatin, I., Lisnevskaya, I.: Magnetoelectric PZT/ferrite composite material. Ferroelectrics 162(1), 63–68 (1994)
8.
go back to reference Srinivasan, G., Rasmussen, E.T., Levin, B.J., Hayes, R.: Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B. 65(13), 1–7 (2002) Srinivasan, G., Rasmussen, E.T., Levin, B.J., Hayes, R.: Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B. 65(13), 1–7 (2002)
9.
go back to reference Alessandroni, S., Andreaus, U., dell’Isola, F., Porfiri, M.: Piezo-electro-mechanical (PEM) Kirchhoff-Love plates. Eur. J. Mech. A/Solids. 23(4), 689–702 (2004)MATH Alessandroni, S., Andreaus, U., dell’Isola, F., Porfiri, M.: Piezo-electro-mechanical (PEM) Kirchhoff-Love plates. Eur. J. Mech. A/Solids. 23(4), 689–702 (2004)MATH
10.
go back to reference Zhai, J., Cai, N., Shi, Z., Lin, Y., Nan, C.W.: Coupled magnetodielectric properties of laminated PbZr0.53Ti0\(\_\)47O3/NiFe2O4 ceramics. J. Appl. Phys. 95(10), 5685–5690 (2004) Zhai, J., Cai, N., Shi, Z., Lin, Y., Nan, C.W.: Coupled magnetodielectric properties of laminated PbZr0.53Ti0\(\_\)47O3/NiFe2O4 ceramics. J. Appl. Phys. 95(10), 5685–5690 (2004)
11.
go back to reference Wu, C.P., Tsai, Y.H.: Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int. J. Eng. Sci. 45(9), 744–769 (2007) Wu, C.P., Tsai, Y.H.: Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int. J. Eng. Sci. 45(9), 744–769 (2007)
12.
go back to reference Huang, D.J., Ding, H.J., Chen, W.Q.: Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading. Eur. J. Mech. A. Solids 29(3), 356–69 (2010) Huang, D.J., Ding, H.J., Chen, W.Q.: Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading. Eur. J. Mech. A. Solids 29(3), 356–69 (2010)
13.
go back to reference Wang, Y., Xu, R., Ding, H.: Axisymmetric bending of functionally graded circular magneto-electro-elastic plates. Eur. J. Mech. A. Solids 30(6), 999–1011 (2011)MathSciNetMATH Wang, Y., Xu, R., Ding, H.: Axisymmetric bending of functionally graded circular magneto-electro-elastic plates. Eur. J. Mech. A. Solids 30(6), 999–1011 (2011)MathSciNetMATH
14.
go back to reference Lang, Z., Xuewu, L.: Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic circular cylindrical shells. Appl. Math. Modell. 37(4), 2279–92 (2013)MathSciNetMATH Lang, Z., Xuewu, L.: Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic circular cylindrical shells. Appl. Math. Modell. 37(4), 2279–92 (2013)MathSciNetMATH
15.
go back to reference Lao, C.S., Kuang, Q., Wang, Z.L., Park, M.C., Deng, Y.: Polymer functionalized piezoelectric-FET as humidity/chemical nano-sensors. Appl. Phys. Lett. 26(90), 1–3 (2007) Lao, C.S., Kuang, Q., Wang, Z.L., Park, M.C., Deng, Y.: Polymer functionalized piezoelectric-FET as humidity/chemical nano-sensors. Appl. Phys. Lett. 26(90), 1–3 (2007)
16.
go back to reference Tanner, S.M., Gray, J.M., Rogers, C.T., Bertness, K.A., Sanford, N.A.: High-Q GaN nanowire resonators and oscillators. Appl. Phys. Lett. 91(20), 203117 (2007) Tanner, S.M., Gray, J.M., Rogers, C.T., Bertness, K.A., Sanford, N.A.: High-Q GaN nanowire resonators and oscillators. Appl. Phys. Lett. 91(20), 203117 (2007)
17.
go back to reference Farajpour, A., Mohammadi, M., Shahidi, A.R., Mahzoon, M.: Axisymmetric buckling of the circular graphene plates with the nonlocal continuum plate model. Physica E 43(10), 1820–1825 (2011) Farajpour, A., Mohammadi, M., Shahidi, A.R., Mahzoon, M.: Axisymmetric buckling of the circular graphene plates with the nonlocal continuum plate model. Physica E 43(10), 1820–1825 (2011)
18.
go back to reference Shah-Mohammadi-Azar, A., Khanchehgardan, A., Rezazadeh, G., Shabani, R.: Mechanical response of a piezoelectrically sandwiched nano-beam based on the nonlocal theory. Int. J. Eng Trans. C Aspects. 26(12), 1515–1524 (2013) Shah-Mohammadi-Azar, A., Khanchehgardan, A., Rezazadeh, G., Shabani, R.: Mechanical response of a piezoelectrically sandwiched nano-beam based on the nonlocal theory. Int. J. Eng Trans. C Aspects. 26(12), 1515–1524 (2013)
19.
go back to reference Shabani, R., Sharafkhani, N., Gharebagh, V.M.: Static and dynamic response of carbon nanotube-based nano-tweezers. Int. J. Eng. Trans. A Basics. 24(4), 377–385 (2011) Shabani, R., Sharafkhani, N., Gharebagh, V.M.: Static and dynamic response of carbon nanotube-based nano-tweezers. Int. J. Eng. Trans. A Basics. 24(4), 377–385 (2011)
20.
go back to reference Malekzadeh, P., Shojaee, M.: Free vibration of nano-plates based on a nonlocal two-variable refined plate theory. Compos. Struct. 95, 443–453 (2013) Malekzadeh, P., Shojaee, M.: Free vibration of nano-plates based on a nonlocal two-variable refined plate theory. Compos. Struct. 95, 443–453 (2013)
21.
go back to reference Khanchehgardan, A., Shah-MohammadiAzar, A., Rezazadeh, G., Shabani, R.: Thermo-elastic damping in nano-beam resonators based on nonlocal theory. Int. J. Eng. Trans. C Aspects. 26(12), 1505–1514 (2013) Khanchehgardan, A., Shah-MohammadiAzar, A., Rezazadeh, G., Shabani, R.: Thermo-elastic damping in nano-beam resonators based on nonlocal theory. Int. J. Eng. Trans. C Aspects. 26(12), 1505–1514 (2013)
22.
go back to reference Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nano-structures. Science 303(5658), 661–663 (2004) Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nano-structures. Science 303(5658), 661–663 (2004)
23.
go back to reference Martin, L.W., Crane, S.P., Chu, Y.H., Holcomb, M.B., Gajek, M., Huijben, M., Yang, C.H., Balke, N., Rames, R.: Multiferroics and magnetoelectrics: Thin films and nano-structures. J. Phys.: Condens. Matter 20(43), 434220 (2008) Martin, L.W., Crane, S.P., Chu, Y.H., Holcomb, M.B., Gajek, M., Huijben, M., Yang, C.H., Balke, N., Rames, R.: Multiferroics and magnetoelectrics: Thin films and nano-structures. J. Phys.: Condens. Matter 20(43), 434220 (2008)
24.
go back to reference Wang, Y., Hu, J.M., Lin, Y., Nan, C.W.: Multiferroic magnetoelectric composite nano-structures. NPG Asia Mater. 2(2), 61–68 (2019) Wang, Y., Hu, J.M., Lin, Y., Nan, C.W.: Multiferroic magnetoelectric composite nano-structures. NPG Asia Mater. 2(2), 61–68 (2019)
25.
go back to reference Prashanthi, K., Shaibani, P.M., Sohrabi, A.R., Natarajan, T.S., Thundat, T.: Nano-scale agnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys. Status Solidi R. 6(6), 244–246 (2012) Prashanthi, K., Shaibani, P.M., Sohrabi, A.R., Natarajan, T.S., Thundat, T.: Nano-scale agnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys. Status Solidi R. 6(6), 244–246 (2012)
26.
go back to reference Milazzo, A.: Large deflection of magneto-electro-elastic laminated plates. Appl. Math. Modell. 38(5–6), 1737–1752 (2014)MathSciNetMATH Milazzo, A.: Large deflection of magneto-electro-elastic laminated plates. Appl. Math. Modell. 38(5–6), 1737–1752 (2014)MathSciNetMATH
27.
go back to reference Jiangyi, C., Hualing, C., Ernian, P.: Free vibration of functionally graded, magnetoelectro-elastic, and multilayered plates. Acta Mech. Solida Sin. 19(2), 160–166 (2006) Jiangyi, C., Hualing, C., Ernian, P.: Free vibration of functionally graded, magnetoelectro-elastic, and multilayered plates. Acta Mech. Solida Sin. 19(2), 160–166 (2006)
28.
go back to reference Kumaravel, A., Ganesan, N., Sethuraman, R.: Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment. Multidiscip. Model. Mater. Struct. 3(4), 461–76 (2007) Kumaravel, A., Ganesan, N., Sethuraman, R.: Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment. Multidiscip. Model. Mater. Struct. 3(4), 461–76 (2007)
29.
go back to reference Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nano-structures due to the flexoelectric effect. Phys. Rev. B. 77(12), 125424 (2008) Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nano-structures due to the flexoelectric effect. Phys. Rev. B. 77(12), 125424 (2008)
30.
go back to reference Kogan, S.M.: Piezoelectric effect during inhomogeneous Deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State. 5, 2069–2070 (1964) Kogan, S.M.: Piezoelectric effect during inhomogeneous Deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State. 5, 2069–2070 (1964)
31.
go back to reference Bunch, J.S., Van Ver Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007) Bunch, J.S., Van Ver Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007)
32.
go back to reference Kogan, S.M.: Piezoelectric effect under an inhomogeneous strain and acoustic scattering of carriers in crystals. Fiz. Tverd. Tela 1(a 5), 2829–2831 (1963) Kogan, S.M.: Piezoelectric effect under an inhomogeneous strain and acoustic scattering of carriers in crystals. Fiz. Tverd. Tela 1(a 5), 2829–2831 (1963)
33.
go back to reference Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in non-piezoelectric materials due to nano-scale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B. 74(1), 014110 (2006) Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in non-piezoelectric materials due to nano-scale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B. 74(1), 014110 (2006)
34.
go back to reference Shen, S.P., Hu, S.L.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)MathSciNetMATH Shen, S.P., Hu, S.L.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)MathSciNetMATH
35.
go back to reference Li, A., Zhou, S., Qi, L., Chen, X.: A reformulated flexoelectric theory for isotropic dielectrics. J. Phys. D Appl. Phys. 48(46), 465502 (2015) Li, A., Zhou, S., Qi, L., Chen, X.: A reformulated flexoelectric theory for isotropic dielectrics. J. Phys. D Appl. Phys. 48(46), 465502 (2015)
36.
go back to reference Chen, Y., Lee, J.D., Eskandarian, A.: Atomistic viewpoint of the applicability of micro-continuum theories. Int. J. Solids Struct. 41(8), 2085–2097 (2004)MATH Chen, Y., Lee, J.D., Eskandarian, A.: Atomistic viewpoint of the applicability of micro-continuum theories. Int. J. Solids Struct. 41(8), 2085–2097 (2004)MATH
37.
go back to reference Wang, F.C., Zhao, Y.P.: Structural evolution of the silicon nanowire via molecular dynamics simulations: the double-strand atomic chain and the monatomic chain. Arch. Appl. Mech. 85(3), 323–329 (2015) Wang, F.C., Zhao, Y.P.: Structural evolution of the silicon nanowire via molecular dynamics simulations: the double-strand atomic chain and the monatomic chain. Arch. Appl. Mech. 85(3), 323–329 (2015)
38.
go back to reference Janghorban, M.: Two different types of differential quadrature methods for static analysis of microbeams based on nonlocal thermal elasticity theory in thermal environment. Arch. Appl. Mech. 82(5), 669–675 (2012)MATH Janghorban, M.: Two different types of differential quadrature methods for static analysis of microbeams based on nonlocal thermal elasticity theory in thermal environment. Arch. Appl. Mech. 82(5), 669–675 (2012)MATH
39.
go back to reference Akgöz, B., Civalek, O.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224(9), 2185–2201 (2013)MathSciNetMATH Akgöz, B., Civalek, O.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224(9), 2185–2201 (2013)MathSciNetMATH
40.
go back to reference Akgöz, B., Civalek, O.: A new trigonometric beam model for buckling of strain gradient microbeams. Int. J. Mech. Sci. 81, 88–94 (2014) Akgöz, B., Civalek, O.: A new trigonometric beam model for buckling of strain gradient microbeams. Int. J. Mech. Sci. 81, 88–94 (2014)
41.
42.
go back to reference Numanoğlu, H.M., Akgöz, B., Civalek, O.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018) Numanoğlu, H.M., Akgöz, B., Civalek, O.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018)
43.
go back to reference Akgöz, B., Civalek, O.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20(4), 606–616 (2014)MathSciNet Akgöz, B., Civalek, O.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20(4), 606–616 (2014)MathSciNet
44.
go back to reference Zhu, B.B., Wang, J.G., Li, G.Q.: A kind of selective algorithm for the calculation of the state vectors in the multi-layered magneto-electro-elastic media. J. Hefei Univ. Technol. 27(9), 1028–1032 (2004) Zhu, B.B., Wang, J.G., Li, G.Q.: A kind of selective algorithm for the calculation of the state vectors in the multi-layered magneto-electro-elastic media. J. Hefei Univ. Technol. 27(9), 1028–1032 (2004)
45.
go back to reference Guan, Q., He, S.R.: Two-dimensional analysis of piezoelectric/piezomagnetic and elastic media. Compos. Struct. 69(2), 229–237 (2005)MathSciNet Guan, Q., He, S.R.: Two-dimensional analysis of piezoelectric/piezomagnetic and elastic media. Compos. Struct. 69(2), 229–237 (2005)MathSciNet
46.
go back to reference Guan, Q., He, S.R.: Three-dimensional analysis of piezoelectric/piezomagnetic elastic media. Compos. Struct. 72(4), 419–428 (2006) Guan, Q., He, S.R.: Three-dimensional analysis of piezoelectric/piezomagnetic elastic media. Compos. Struct. 72(4), 419–428 (2006)
47.
go back to reference Wang, J.G., Chen, L.F., Fang, S.S.: State vector approach to analysis of multilayered magneto-electro-elastic plates. Int. J. Solids Struct. 40(7), 1669–1680 (2003)MATH Wang, J.G., Chen, L.F., Fang, S.S.: State vector approach to analysis of multilayered magneto-electro-elastic plates. Int. J. Solids Struct. 40(7), 1669–1680 (2003)MATH
48.
go back to reference Wang, J.G., Fang, S.S., Chen, L.F.: The state vector methods for space axisymmetric problems in multilayered piezoelectric media. Int. J. Solids Struct. 39(15), 3959–3970 (2002)MATH Wang, J.G., Fang, S.S., Chen, L.F.: The state vector methods for space axisymmetric problems in multilayered piezoelectric media. Int. J. Solids Struct. 39(15), 3959–3970 (2002)MATH
49.
go back to reference Chen, W.Q., Kang, Y.L., Ding, H.J.: On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. J. Sound Vib. 279(1–2), 237–251 (2005) Chen, W.Q., Kang, Y.L., Ding, H.J.: On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. J. Sound Vib. 279(1–2), 237–251 (2005)
50.
go back to reference Yao, W.A.: Symplectic solution system and Saint-Venant principle on anti-plane problem of magneto-electro-elastic solids. J. Dalian Univ. Technol. 44(5), 630–633 (2004) Yao, W.A.: Symplectic solution system and Saint-Venant principle on anti-plane problem of magneto-electro-elastic solids. J. Dalian Univ. Technol. 44(5), 630–633 (2004)
51.
go back to reference Pan, E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech. 68(4), 608–618 (2001)MATH Pan, E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech. 68(4), 608–618 (2001)MATH
52.
go back to reference Pan, E., Han, F.: Exact solution for functionally graded and layered magneto-electro-elastic plates. Int. J. Eng. Sci. 43(3–4), 321–339 (2005) Pan, E., Han, F.: Exact solution for functionally graded and layered magneto-electro-elastic plates. Int. J. Eng. Sci. 43(3–4), 321–339 (2005)
53.
go back to reference Ramirez, F., Heyliger, P.R., Pan, E.: Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mech. Adv. Mater. Struct. 13(3), 249–266 (2006) Ramirez, F., Heyliger, P.R., Pan, E.: Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mech. Adv. Mater. Struct. 13(3), 249–266 (2006)
54.
go back to reference Annigeri, A.R., Ganesan, N., Swarnamani, S.: Free vibration behavior of multiphase and layered magneto-electro-elastic beam. J. Sound Vib. 299(1–2), 44–63 (2007) Annigeri, A.R., Ganesan, N., Swarnamani, S.: Free vibration behavior of multiphase and layered magneto-electro-elastic beam. J. Sound Vib. 299(1–2), 44–63 (2007)
55.
go back to reference Wu, C.P., Lu, Y.C.: A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Compos. Struct. 90(3), 363–372 (2009) Wu, C.P., Lu, Y.C.: A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Compos. Struct. 90(3), 363–372 (2009)
56.
go back to reference Wu, C.P., Tsai, Y.H.: Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci. 46(9), 843–857 (2008)MATH Wu, C.P., Tsai, Y.H.: Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci. 46(9), 843–857 (2008)MATH
57.
go back to reference Li, Y.S.: Buckling analysis of magneto-electro-elastic plate resting on Pasternak elastic foundation. Mech. Res. Commun. 56, 104–114 (2014) Li, Y.S.: Buckling analysis of magneto-electro-elastic plate resting on Pasternak elastic foundation. Mech. Res. Commun. 56, 104–114 (2014)
58.
go back to reference Liu, C., Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Thermo-electromechanical vibration of piezoelectric nano-plates based on the nonlocal theory. Compos. Struct. 106, 167–174 (2013) Liu, C., Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Thermo-electromechanical vibration of piezoelectric nano-plates based on the nonlocal theory. Compos. Struct. 106, 167–174 (2013)
59.
go back to reference Hadjesfandiari, A.R.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50(18), 2781–2791 (2013) Hadjesfandiari, A.R.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50(18), 2781–2791 (2013)
60.
go back to reference Li, A.Q., Zhou, S.J., Zhou, S.S., Wang, B.L.: Size dependent analysis of a three-layer microbeam including electromechanical coupling. Compos. Struct. 116(1), 120–7 (2014) Li, A.Q., Zhou, S.J., Zhou, S.S., Wang, B.L.: Size dependent analysis of a three-layer microbeam including electromechanical coupling. Compos. Struct. 116(1), 120–7 (2014)
61.
go back to reference Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Free vibration of size-dependent magneto-electro-elastic nano-plates based on the nonlocal theory. Acta. Mech. Sin. 30(4), 516–525 (2014)MathSciNetMATH Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Free vibration of size-dependent magneto-electro-elastic nano-plates based on the nonlocal theory. Acta. Mech. Sin. 30(4), 516–525 (2014)MathSciNetMATH
62.
go back to reference Liang, X., Shen, S.P.: Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. Int. J. Appl. Mech. 05(02), 1350015-1350015-16 (2013) Liang, X., Shen, S.P.: Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. Int. J. Appl. Mech. 05(02), 1350015-1350015-16 (2013)
63.
go back to reference Hu, S.L., Shen, S.P.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Contin. 13(1), 63–87 (2009) Hu, S.L., Shen, S.P.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Contin. 13(1), 63–87 (2009)
64.
go back to reference Li, Y.S., Cai, Z.Y., Shi, S.Y.: Buckling and free vibration of magnetoelectroelastic nano-plate based on nonlocal theory. Compos. Struct. 111(1), 522–529 (2014) Li, Y.S., Cai, Z.Y., Shi, S.Y.: Buckling and free vibration of magnetoelectroelastic nano-plate based on nonlocal theory. Compos. Struct. 111(1), 522–529 (2014)
65.
go back to reference Liu, M.F., Chang, T.P.: Closed form expression for the vibration problem of a transversely isotropic magneto-electro-elastic plate. J. Appl. Mech. 77(2), 024502 (2010) Liu, M.F., Chang, T.P.: Closed form expression for the vibration problem of a transversely isotropic magneto-electro-elastic plate. J. Appl. Mech. 77(2), 024502 (2010)
66.
go back to reference Farajpour, A., Hairi Yazdi, M.R., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nano-plates. Compos. Struct. 140, 323–336 (2016) Farajpour, A., Hairi Yazdi, M.R., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nano-plates. Compos. Struct. 140, 323–336 (2016)
67.
go back to reference Razavi, S., Shooshtari, A.R.: Nonlinear free vibration of magneto-electro-elastic rectangular plates. Compos. Struct. 119, 377–384 (2015) Razavi, S., Shooshtari, A.R.: Nonlinear free vibration of magneto-electro-elastic rectangular plates. Compos. Struct. 119, 377–384 (2015)
68.
go back to reference Wang, C.M., Ke, L.L., Roy Chowdhury, A.N., Yang, J., Kitipornchai, S., Fernando, D.: Critical examination of midplane and neutral plane formulations for vibration analysis of FGM beams. Eng. Struct. 130, 275–281 (2017) Wang, C.M., Ke, L.L., Roy Chowdhury, A.N., Yang, J., Kitipornchai, S., Fernando, D.: Critical examination of midplane and neutral plane formulations for vibration analysis of FGM beams. Eng. Struct. 130, 275–281 (2017)
69.
go back to reference Barati, M.R.: Investigating nonlinear vibration of closed circuit flexoelectric nano-beams with surface effects via Hamiltonian method. Microsyst. Technol. 24(4), 1841–1851 (2017) Barati, M.R.: Investigating nonlinear vibration of closed circuit flexoelectric nano-beams with surface effects via Hamiltonian method. Microsyst. Technol. 24(4), 1841–1851 (2017)
70.
go back to reference Liang, X., Yang, W., Hu, S., Shen, S.: Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. J. Phys. D Appl. Phys. 49(11), 115307 (2016) Liang, X., Yang, W., Hu, S., Shen, S.: Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. J. Phys. D Appl. Phys. 49(11), 115307 (2016)
71.
go back to reference Zhang, C., Zhang, L., Shen, X., Chen, W.: Enhancing magnetoelectric effect in multiferroic composite bilayers via flexoelectricity. J. Appl. Phys. 119(13), 134102 (2016) Zhang, C., Zhang, L., Shen, X., Chen, W.: Enhancing magnetoelectric effect in multiferroic composite bilayers via flexoelectricity. J. Appl. Phys. 119(13), 134102 (2016)
72.
go back to reference Tadi Beni, Y.: Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mater. Syst. Struct. 27(16), 2199–2215 (2016) Tadi Beni, Y.: Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mater. Syst. Struct. 27(16), 2199–2215 (2016)
73.
go back to reference Alibeigi, B., Tadi Beni, Y., Mehralian, F.: On the thermal buckling of magneto-electro- elastic piezoelectric nanobeams. Eur. Phys. J. Plus. 133(3), 1–18 (2018) Alibeigi, B., Tadi Beni, Y., Mehralian, F.: On the thermal buckling of magneto-electro- elastic piezoelectric nanobeams. Eur. Phys. J. Plus. 133(3), 1–18 (2018)
74.
go back to reference Omidian, R., Tadi Beni, Y., Mehralian, F.: Analysis of size-dependent smart flexoelectric nanobeams. Eur. Phys. J. Plus. 132(481), 1–19 (2017) Omidian, R., Tadi Beni, Y., Mehralian, F.: Analysis of size-dependent smart flexoelectric nanobeams. Eur. Phys. J. Plus. 132(481), 1–19 (2017)
75.
go back to reference Habibi, B., Tadi Beni, Y., Mehralian, F.: Free vibration of magneto-electro-elastic nanobeams based on modified couple stress theory in thermal environment. Mech. Adv. Mater. Struct. 267, 601–613 (2019) Habibi, B., Tadi Beni, Y., Mehralian, F.: Free vibration of magneto-electro-elastic nanobeams based on modified couple stress theory in thermal environment. Mech. Adv. Mater. Struct. 267, 601–613 (2019)
76.
go back to reference Ebnali samani, M., Tadi Beni, Y.: Size dependent thermo-mechanical buckling of the flexoelectric nanobeam. Mater. Res. Exp. 5(8), 085018 (2018) Ebnali samani, M., Tadi Beni, Y.: Size dependent thermo-mechanical buckling of the flexoelectric nanobeam. Mater. Res. Exp. 5(8), 085018 (2018)
77.
go back to reference Mehralian, F., Tadi Beni, Y., Ansari, R.: On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure. Int. J. Mech. Sci. 119, 155–169 (2016) Mehralian, F., Tadi Beni, Y., Ansari, R.: On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure. Int. J. Mech. Sci. 119, 155–169 (2016)
78.
go back to reference Ebrahimi, N., Tadi Beni, Y.: Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel. Compos. Struct. 22(6), 1301–1336 (2016) Ebrahimi, N., Tadi Beni, Y.: Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel. Compos. Struct. 22(6), 1301–1336 (2016)
79.
go back to reference Mehralian, F., Tadi Beni, Y., Ansari, R.: Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell. Compos. Struct. 152, 45–61 (2016) Mehralian, F., Tadi Beni, Y., Ansari, R.: Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell. Compos. Struct. 152, 45–61 (2016)
80.
go back to reference Mehralian, F., Tadi Beni, Y.: Buckling of bimorph functionally graded piezoelectric cylindrical nanoshell. Proc. Inst. Mech. Eng. Part C. 232(19), 3538–3550 (2018) Mehralian, F., Tadi Beni, Y.: Buckling of bimorph functionally graded piezoelectric cylindrical nanoshell. Proc. Inst. Mech. Eng. Part C. 232(19), 3538–3550 (2018)
81.
go back to reference Fattahian Dehkordi, S., Tadi Beni, Y.: Electro-mechanical free vibration of single- walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. Int. J. Mech. Sci. 128, 125–139 (2017) Fattahian Dehkordi, S., Tadi Beni, Y.: Electro-mechanical free vibration of single- walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. Int. J. Mech. Sci. 128, 125–139 (2017)
82.
go back to reference Mehralian, F., Tadi Beni, Y.: Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory. J. Braz. Soc. Mech. Sci. Eng. 40(1), 1–27 (2018) Mehralian, F., Tadi Beni, Y.: Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory. J. Braz. Soc. Mech. Sci. Eng. 40(1), 1–27 (2018)
83.
go back to reference Zeighampour, H., Tadi Beni, Y.: Cylindrical thin-shell model based on modified strain gradient theory. Int. J. Eng. Sci. 78, 27–47 (2014)MathSciNetMATH Zeighampour, H., Tadi Beni, Y.: Cylindrical thin-shell model based on modified strain gradient theory. Int. J. Eng. Sci. 78, 27–47 (2014)MathSciNetMATH
84.
go back to reference Kheibari, F., Tadi Beni, Y.: Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model. Mater. Des. 114, 572–583 (2017) Kheibari, F., Tadi Beni, Y.: Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model. Mater. Des. 114, 572–583 (2017)
85.
go back to reference Ebrahimi, F., Barati, M.R.: Vibration analysis of size-dependent flexoelectric nano-plates incorporating surface and thermal effects. J. Mech. Adv. Mater. Struct. 25(7), 611–621 (2017) Ebrahimi, F., Barati, M.R.: Vibration analysis of size-dependent flexoelectric nano-plates incorporating surface and thermal effects. J. Mech. Adv. Mater. Struct. 25(7), 611–621 (2017)
86.
go back to reference Shojaeian, M., Tadi Beni, Y.: Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens. Actuators A 232, 49–62 (2015) Shojaeian, M., Tadi Beni, Y.: Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens. Actuators A 232, 49–62 (2015)
87.
go back to reference Shojaeian, M., Tadi Beni, Y., Ataei, H.: Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory. Acta Astronaut. 118, 62–71 (2016) Shojaeian, M., Tadi Beni, Y., Ataei, H.: Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory. Acta Astronaut. 118, 62–71 (2016)
88.
go back to reference Ghobadi, A., Tadi Beni, Y., Golestanian, H.: Size dependent nonlinear bending analysis of a flexoelectric functionally graded nano-plate under thermo-electro-mechanical loads. J. Solid Mech. 12(1), 33–56 (2020) Ghobadi, A., Tadi Beni, Y., Golestanian, H.: Size dependent nonlinear bending analysis of a flexoelectric functionally graded nano-plate under thermo-electro-mechanical loads. J. Solid Mech. 12(1), 33–56 (2020)
89.
go back to reference Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R.: Spontaneous flexoelectric/ flexomagnetic effect in nanoferroics. Phys. Rev. B. 79(16), 165433 (2009) Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R.: Spontaneous flexoelectric/ flexomagnetic effect in nanoferroics. Phys. Rev. B. 79(16), 165433 (2009)
90.
go back to reference Li, J.U.: The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics. Mech. Mater. 36(10), 949–958 (2004) Li, J.U.: The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics. Mech. Mater. 36(10), 949–958 (2004)
92.
go back to reference Coey, J.M.D.: Magnetism and magnetic materials. Published in the United States of America by Cambridge University Press, New York (2010) Coey, J.M.D.: Magnetism and magnetic materials. Published in the United States of America by Cambridge University Press, New York (2010)
93.
go back to reference Hadjiloizi, D.A., Kalamkarov, A.L., Metti, C., Georgiades, A.V.: Analysis of smart piezo-magneto-thermo-elastic composite and reinforced plates: Part II-Applications. Curved Layer. Struct. 1(1), 32–58 (2014) Hadjiloizi, D.A., Kalamkarov, A.L., Metti, C., Georgiades, A.V.: Analysis of smart piezo-magneto-thermo-elastic composite and reinforced plates: Part II-Applications. Curved Layer. Struct. 1(1), 32–58 (2014)
94.
go back to reference Ebrahimi, F., Barati, M.R.: An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nano-scale beams. Adv. Nano Res. 4(2), 65–84 (2016) Ebrahimi, F., Barati, M.R.: An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nano-scale beams. Adv. Nano Res. 4(2), 65–84 (2016)
95.
go back to reference Zhang, Z., Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nano-plate. J. Appl. Phys. 116(1), 014307 (2014) Zhang, Z., Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nano-plate. J. Appl. Phys. 116(1), 014307 (2014)
96.
go back to reference Ghobadi, A., Tadi Beni, Y., Golestanian, H.: Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field. Int. J. Mech. Sci. 152, 118–137 (2018) Ghobadi, A., Tadi Beni, Y., Golestanian, H.: Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field. Int. J. Mech. Sci. 152, 118–137 (2018)
97.
go back to reference Tadi Beni, Y., Mehralian, F., Razavi, H.: Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015) Tadi Beni, Y., Mehralian, F., Razavi, H.: Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015)
98.
go back to reference Ebrahimi, F., Salari, E.: Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nano-beams. Smart Mater. Struct. 24(12), 125007 (2015) Ebrahimi, F., Salari, E.: Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nano-beams. Smart Mater. Struct. 24(12), 125007 (2015)
99.
go back to reference Bakhsheshy, A., Khorshidi, K.: Free vibration analysis of functionally graded rectangular plates in contact with bounded fluid. Modares Mech. Eng. 14(8), 165–173 (2014)MATH Bakhsheshy, A., Khorshidi, K.: Free vibration analysis of functionally graded rectangular plates in contact with bounded fluid. Modares Mech. Eng. 14(8), 165–173 (2014)MATH
100.
go back to reference Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillation. Wiley, New York (1995)MATH Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillation. Wiley, New York (1995)MATH
101.
go back to reference Shooshtari, A., Razavi, S.: Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation. Compos. B 78, 95–108 (2015) Shooshtari, A., Razavi, S.: Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation. Compos. B 78, 95–108 (2015)
102.
go back to reference Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nano-plates with flexoelectricity. Acta Mech. 226, 3097–3110 (2015)MathSciNetMATH Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nano-plates with flexoelectricity. Acta Mech. 226, 3097–3110 (2015)MathSciNetMATH
Metadata
Title
Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field
Authors
Amin Ghobadi
Yaghoub Tadi Beni
Hossein Golestanian
Publication date
03-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 9/2020
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01708-0

Other articles of this Issue 9/2020

Archive of Applied Mechanics 9/2020 Go to the issue

Premium Partners