Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2024

01-03-2024

Novel approaches to the degradation of nitrophenols using TiO2-biopolymer-ligand-metal complex as photocatalysts

Authors: B. Anusha, M. Anbuchezhiyan, C. Deepa, N. Srinivasan alias Arunsankar

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nitrophenols has become a significant threat to the ecosystem and the health of the human beings. Photocatalytic degradation is considered to be the utmost competent approach for the amputation of nitroaromatic pollutants. In this research, 2-nitrophenol (MNP), 2,4-dinitrophenols (DNP), and 2,4,6-trinitrophenol or picric acid (PA) are taken for the degradation studies using the photo-Fenton catalyst of synthesized TiO2 nanoparticle modified with biopolymer containing organic and inorganic functionalities. The morphological study reveals the uniformly distributed TiO2 nanoparticles (15 nm) surfaces are encapsulated by the active site-rich chitosan-ligand-copper complex facilitating more absorption and enhancing the photocatalytic activity toward the target molecules. The UV spectra confirm the predominant shifting of absorption peak in the range 305–310 nm which results due to the formation of TiO2-CBGCu nanocomposites. The zeta potential of the synthesized nanocomposites TiO2-CBGCu 5%, TiO2-CBGCu 10%, and TiO2-CBGCu 20% are − 12, − 20, and − 29 mV which reveals that the value increases with the increase in CBGCu content which in turn signifies the more stability in aqueous solution. Amid the prepared nanocomposites, TiO2-CBGCu 10% demonstrates the imperative catalytic performances toward MNP, DNP, and PA pollutants along with the Fenton’s reagent at pH 3.0 under visible light and solar light. It shows effective degradation for strong acid PA within 18 min in visible light compared to MNP and DNP due to the presence of more active sites in the synthesized nanocomposites. This work has created awareness about the multifunctional catalyst and the effectiveness of the same has opened a new passage to eliminate nitrophenols from the agonized environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N.K. Yetim, E.H. Özkan, H. Öğütçü, Environ. Sci. Pollut. Res. 30, 106585–106597 (2023)CrossRef N.K. Yetim, E.H. Özkan, H. Öğütçü, Environ. Sci. Pollut. Res. 30, 106585–106597 (2023)CrossRef
3.
go back to reference E.H. Özkan, N. Aslan, M.M. Koç, N.K. Yetim, N. Sari, J. Mater. Sci. Mater. Electron. 33, 1039–1053 (2022)CrossRef E.H. Özkan, N. Aslan, M.M. Koç, N.K. Yetim, N. Sari, J. Mater. Sci. Mater. Electron. 33, 1039–1053 (2022)CrossRef
5.
7.
go back to reference L. Su, L.P. Wang, X. Ma, J. Wang, S. Zhan, Angew. Chem. Int. Ed. 60, 21261–21266 (2021)CrossRef L. Su, L.P. Wang, X. Ma, J. Wang, S. Zhan, Angew. Chem. Int. Ed. 60, 21261–21266 (2021)CrossRef
8.
go back to reference S. Ghatge, Y. Yang, Y. Ko, Y. Yoon, J.H. Ahn, J.J. Kim, H.G. Hur, J. Hazard. Mater. 423, 127067 (2022)PubMedCrossRef S. Ghatge, Y. Yang, Y. Ko, Y. Yoon, J.H. Ahn, J.J. Kim, H.G. Hur, J. Hazard. Mater. 423, 127067 (2022)PubMedCrossRef
9.
go back to reference D. Chen, S. Chen, Y. Jiang, S. Xie, H. Quan, L. Huan, X. Luo, L. Guo, Rsc Adv. 7, 49024–49030 (2017)CrossRef D. Chen, S. Chen, Y. Jiang, S. Xie, H. Quan, L. Huan, X. Luo, L. Guo, Rsc Adv. 7, 49024–49030 (2017)CrossRef
10.
go back to reference X. Wang, X. Zhang, Y. Zhang, Y. Wang, S.P. Sun, W. Duo Wu, Z. Wu, J. Mater. Chem. A 8, 15513–15546 (2020)CrossRef X. Wang, X. Zhang, Y. Zhang, Y. Wang, S.P. Sun, W. Duo Wu, Z. Wu, J. Mater. Chem. A 8, 15513–15546 (2020)CrossRef
11.
go back to reference H. Wu, L. Zhang, S. Qu, A. Du, J. Tang, Y.H. Ng, ACS Energy Lett. 8, 5, 2177–2184 (2023)CrossRef H. Wu, L. Zhang, S. Qu, A. Du, J. Tang, Y.H. Ng, ACS Energy Lett. 8, 5, 2177–2184 (2023)CrossRef
13.
go back to reference B. Anusha, M. Anbuchezhiyan, R. Sribalan, Reac Kinet Mech. Cat. 134, 501–515 (2021)CrossRef B. Anusha, M. Anbuchezhiyan, R. Sribalan, Reac Kinet Mech. Cat. 134, 501–515 (2021)CrossRef
14.
go back to reference K. Tanaka, W. Luesaiwong, T. Hisanaga, J. Mol. Catal. A Chem. 122, 67–74 (1997)CrossRef K. Tanaka, W. Luesaiwong, T. Hisanaga, J. Mol. Catal. A Chem. 122, 67–74 (1997)CrossRef
15.
go back to reference M. Mirzaei, S. Sabbaghi, M.M. Zerafat, Can. J. Chem. Eng. 96, 2544–2552 (2018)CrossRef M. Mirzaei, S. Sabbaghi, M.M. Zerafat, Can. J. Chem. Eng. 96, 2544–2552 (2018)CrossRef
16.
go back to reference R. Fatima, M.N. Afridi, V. Kumar, J. Lee, I. Ali, K.H. Kim, J.O. Kim, J. Clean. Prod. 231, 899–912 (2019)CrossRef R. Fatima, M.N. Afridi, V. Kumar, J. Lee, I. Ali, K.H. Kim, J.O. Kim, J. Clean. Prod. 231, 899–912 (2019)CrossRef
18.
go back to reference D.A.P. Ruiz, G.D. Ávila, C.A. Suesca, A.D.G. Delgado, A. Herrera, ACS Omega. 5, 26463–26475 (2020)CrossRef D.A.P. Ruiz, G.D. Ávila, C.A. Suesca, A.D.G. Delgado, A. Herrera, ACS Omega. 5, 26463–26475 (2020)CrossRef
20.
go back to reference S. Rashid, C. Shen, X. Chen, S. Li, Y. Chen, Y. Wen, J. Liu, RSC Adv. 5, 90731–90741 (2015)CrossRef S. Rashid, C. Shen, X. Chen, S. Li, Y. Chen, Y. Wen, J. Liu, RSC Adv. 5, 90731–90741 (2015)CrossRef
21.
go back to reference M. Nasrollahzadeh, R. Akbari, S. Sakhaei, Z. Nezafat, S. Banazadeh, G. Hegde, J. Mol. Liq. 330, 115668 (2021)CrossRef M. Nasrollahzadeh, R. Akbari, S. Sakhaei, Z. Nezafat, S. Banazadeh, G. Hegde, J. Mol. Liq. 330, 115668 (2021)CrossRef
22.
go back to reference A.V. Raut, H.M. Yadav, A. Gnanamani, S. Pushpavanam, S.H. Pawar, Coll. Surf. B Biointerfaces 148, 566–575 (2016)CrossRef A.V. Raut, H.M. Yadav, A. Gnanamani, S. Pushpavanam, S.H. Pawar, Coll. Surf. B Biointerfaces 148, 566–575 (2016)CrossRef
23.
go back to reference D. Wang, P. Zhao, J. Yang, G. Xu, H. Yang, Z. Shi, Q. Hu, B. Dong, Z. Guo, Coll. Surf. Physicochem. Eng. Asp. 603, 125147 (2020)CrossRef D. Wang, P. Zhao, J. Yang, G. Xu, H. Yang, Z. Shi, Q. Hu, B. Dong, Z. Guo, Coll. Surf. Physicochem. Eng. Asp. 603, 125147 (2020)CrossRef
24.
go back to reference A. Naz, S. Arun, S.S. Narvi, M.S. Alam, A. Singh, P. Bhartiya, P.K. Dutta, Int. J. Biol. Macromol. 110, 215–226 (2018)PubMedCrossRef A. Naz, S. Arun, S.S. Narvi, M.S. Alam, A. Singh, P. Bhartiya, P.K. Dutta, Int. J. Biol. Macromol. 110, 215–226 (2018)PubMedCrossRef
25.
go back to reference J. Zhou, Z. Zhang, B. Cheng, J. Yu, Chem. Eng. J. 211–212, 153–160 (2012)CrossRef J. Zhou, Z. Zhang, B. Cheng, J. Yu, Chem. Eng. J. 211–212, 153–160 (2012)CrossRef
26.
go back to reference S. Afzal, N.M. Julkapli, L.K. Mun, Mater. Sci. Semicond. Process. 99, 34–43 (2019)CrossRef S. Afzal, N.M. Julkapli, L.K. Mun, Mater. Sci. Semicond. Process. 99, 34–43 (2019)CrossRef
27.
go back to reference M. Manimohan, R. Paulpandiyan, S. Pugalmani, M.A. Sithique, Int. J. Biol. Macromol. 163, 801–816 (2020)PubMedCrossRef M. Manimohan, R. Paulpandiyan, S. Pugalmani, M.A. Sithique, Int. J. Biol. Macromol. 163, 801–816 (2020)PubMedCrossRef
29.
go back to reference D. Bharathi, R. Ranjithkumar, B. Chandarshekar, V. Bhuvaneshwari, Int. J. Biol. Macromol. 141, 476–483 (2019)PubMedCrossRef D. Bharathi, R. Ranjithkumar, B. Chandarshekar, V. Bhuvaneshwari, Int. J. Biol. Macromol. 141, 476–483 (2019)PubMedCrossRef
30.
go back to reference S. Sathiyavimal, S. Vasantharaj, T. Kaliannan, A. Pugazhendhi, Carbohydr. Polym. 241, 116243 (2020)PubMedCrossRef S. Sathiyavimal, S. Vasantharaj, T. Kaliannan, A. Pugazhendhi, Carbohydr. Polym. 241, 116243 (2020)PubMedCrossRef
32.
33.
go back to reference D. Hariharan, P. Thangamuniyandi, P. Selvakumar, U. Devand, A. Pugazhendhi, R. Vasantharaja, L.C. Nehru, Process. Biochem. 87, 83–88 (2019)CrossRef D. Hariharan, P. Thangamuniyandi, P. Selvakumar, U. Devand, A. Pugazhendhi, R. Vasantharaja, L.C. Nehru, Process. Biochem. 87, 83–88 (2019)CrossRef
34.
35.
36.
go back to reference M.C. Mathpal, A.K. Tripathi, M.K. Singh, S.P. Gairola, S.N. Pandey, A. Agarwal, Chem. Phys. Lett. 55, 182–186 (2013)CrossRef M.C. Mathpal, A.K. Tripathi, M.K. Singh, S.P. Gairola, S.N. Pandey, A. Agarwal, Chem. Phys. Lett. 55, 182–186 (2013)CrossRef
37.
42.
go back to reference Y. Wang, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, J. Nanomater. 2014, 178152 (2014) Y. Wang, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, J. Nanomater. 2014, 178152 (2014)
43.
go back to reference G. Bharath, V. Veeramani, S.M. Chen, R. Madhu, M.M. Raja, A. Balamurugan, D. Mangalaraj, C. Viswanathan, N. Ponpandian, RSC Adv. 5(18), 13392–13401 (2015)CrossRef G. Bharath, V. Veeramani, S.M. Chen, R. Madhu, M.M. Raja, A. Balamurugan, D. Mangalaraj, C. Viswanathan, N. Ponpandian, RSC Adv. 5(18), 13392–13401 (2015)CrossRef
44.
go back to reference G. Jeevitha, S. Sivaselvam, S. Keerthana, D. Mangalaraj, N. Ponpandian, Chemosphere. 297, 134023 (2022)PubMedCrossRef G. Jeevitha, S. Sivaselvam, S. Keerthana, D. Mangalaraj, N. Ponpandian, Chemosphere. 297, 134023 (2022)PubMedCrossRef
45.
go back to reference S. Rajesh Kumar, C.V. Abinaya, S. Amirthapandian, N. Ponpandian, Mater. Res. Bull. 93, 270–281 (2017)CrossRef S. Rajesh Kumar, C.V. Abinaya, S. Amirthapandian, N. Ponpandian, Mater. Res. Bull. 93, 270–281 (2017)CrossRef
Metadata
Title
Novel approaches to the degradation of nitrophenols using TiO2-biopolymer-ligand-metal complex as photocatalysts
Authors
B. Anusha
M. Anbuchezhiyan
C. Deepa
N. Srinivasan alias Arunsankar
Publication date
01-03-2024
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2024
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-024-12323-y

Other articles of this Issue 8/2024

Journal of Materials Science: Materials in Electronics 8/2024 Go to the issue