Skip to main content
Top
Published in: Polymer Bulletin 1/2018

09-04-2017 | Original Paper

Novel hydrophobic macromonomers for potential amphiphilic block copolymers

Authors: Efkan Çatıker, Olgun Güven, Bekir Salih

Published in: Polymer Bulletin | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Oligomers of 2-methyl nylon3 (2mN3) and 3-methyl nylon3 (3mN3) were synthesized by base-catalyzed hydrogen transfer polymerization (HTP) of methacrylamide and crotonamide, respectively. The detailed structural analyses of 2mN3 and 3mN3 were performed using MALDI-MS, 1H-NMR, elemental analysis and several end-group analyses to ascertain polymerization mechanism and exact chemical structures of final products. The structural analyses revealed that (1) base-catalyzed HTP of methacrylamide and crotonamide follows the sequence of: hydrogen abstraction from amide group of monomer by basic catalyst (NatBuO), addition of monomeric units to the anionic center, intramolecular hydrogen migration and finally, termination by hydrogen transfer from protonated catalyst (tBuOH) to anionic end-group, (2) both oligomeric products have olefinic chain-ends resulting from the initiation mechanism. The specific behavior of basic catalyst leads to the formation of olefinic chain-ends that are apt to possible end-group functionalization. Since the functional end-groups of a well-defined macromonomer are of importance in terms of chain extension, grafting, chemical modification, click chemistry, monolayer surface modification, etc., it was aimed to create more reactive functional end-groups by epoxylation and bromination. Disappearance of the signals belonging to the olefinic protons in 1H-NMR spectra of modified oligomers and existence of bromine and epoxy adducts in MALDI MS spectra of the modified oligomers were attributed to end-group modification as intended. Hence, four novel macromonomers of polyamidic backbone with functional chain-ends were synthesized successfully.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Masamoto J, Sasguri K, Ohizumi C, Yamaguchi K, Kobayashi H (1970) A new synthetic fiber made of nylon3. J Appl Polym Sci 14:667–680CrossRef Masamoto J, Sasguri K, Ohizumi C, Yamaguchi K, Kobayashi H (1970) A new synthetic fiber made of nylon3. J Appl Polym Sci 14:667–680CrossRef
2.
go back to reference Masamoto J (2000) Nylon3. Rep Prog Polym Phys Jpn 43:867–876 Masamoto J (2000) Nylon3. Rep Prog Polym Phys Jpn 43:867–876
3.
go back to reference Yamamoto F, Misumi T (1991) Preparation of poly-β-alanine from acrylamide. US Pat. 5,015,707 assigned to Asahi Chemical Yamamoto F, Misumi T (1991) Preparation of poly-β-alanine from acrylamide. US Pat. 5,015,707 assigned to Asahi Chemical
4.
go back to reference Graf R, Lohaus G, Borner K, Schmidt E, Bestian H (1962) β-Lactams, their polymerization and use as raw materials for fibers. Angew Chem Int Ed Engl 1:481–488CrossRef Graf R, Lohaus G, Borner K, Schmidt E, Bestian H (1962) β-Lactams, their polymerization and use as raw materials for fibers. Angew Chem Int Ed Engl 1:481–488CrossRef
5.
go back to reference Breslow DS, Hulse GE, Matlack AS (1957) Synthesis of poly-β-alanine from acrylamide. A novel synthesis of β-alanine. J Am Chem Soc 79:3760–3763CrossRef Breslow DS, Hulse GE, Matlack AS (1957) Synthesis of poly-β-alanine from acrylamide. A novel synthesis of β-alanine. J Am Chem Soc 79:3760–3763CrossRef
6.
go back to reference Otsu T, Yamada B, İtahashi M, Mori T (1976) Hydrogen transfer polymerization of methyl substituted acrylamides. J Polym Sci Polym Chem Ed 14:1347–1361CrossRef Otsu T, Yamada B, İtahashi M, Mori T (1976) Hydrogen transfer polymerization of methyl substituted acrylamides. J Polym Sci Polym Chem Ed 14:1347–1361CrossRef
7.
go back to reference Yamaguchi K, Minoura Y (1972) Hydrogen-transfer polymerization of acrylamide and methacrylamide with optically active basic catalysts. J Polym Sci 10:1217–1231CrossRef Yamaguchi K, Minoura Y (1972) Hydrogen-transfer polymerization of acrylamide and methacrylamide with optically active basic catalysts. J Polym Sci 10:1217–1231CrossRef
8.
go back to reference Guaita M, Thomas LF (1968) High resolution NMR investigation of poly(β-alanine) and poly(α-methyl-β-alanine). Makromolekul Chem 119:113–121CrossRef Guaita M, Thomas LF (1968) High resolution NMR investigation of poly(β-alanine) and poly(α-methyl-β-alanine). Makromolekul Chem 119:113–121CrossRef
9.
go back to reference Kobuke Y, Hanji K, Fukurawa J (1971) Hydrogen transfer polymerization of cis- and trans-crotonamides. J Polym Sci 9:431–440CrossRef Kobuke Y, Hanji K, Fukurawa J (1971) Hydrogen transfer polymerization of cis- and trans-crotonamides. J Polym Sci 9:431–440CrossRef
10.
go back to reference Eisenbach CD, Lenz RW, Duval M, Marchessault RH (1979) Polymerization of α, α-disubstituted β-propiolactones and lactams, 12. Properties and crystalline structure of poly(β-propiolactam)s. Makromolekul Chem 180:429–440CrossRef Eisenbach CD, Lenz RW, Duval M, Marchessault RH (1979) Polymerization of α, α-disubstituted β-propiolactones and lactams, 12. Properties and crystalline structure of poly(β-propiolactam)s. Makromolekul Chem 180:429–440CrossRef
11.
go back to reference Wexler H (1968) Migrational polymerization of methacrylamide. Makromolekul Chem 115:262–267CrossRef Wexler H (1968) Migrational polymerization of methacrylamide. Makromolekul Chem 115:262–267CrossRef
12.
go back to reference Schmidt E (1970) Über optisch aktive poly-β-amide. Angew Macromol Chem 14:185–202CrossRef Schmidt E (1970) Über optisch aktive poly-β-amide. Angew Macromol Chem 14:185–202CrossRef
13.
go back to reference Tan I, Zarafshani Z, Lutz JF, Titirici MM (2009) PEGylated chromatography: efficient bioseparation on silica monoliths grafted with smart biocompatible polymers. ACS Appl Mater Interfaces 1(9):1869–1872CrossRef Tan I, Zarafshani Z, Lutz JF, Titirici MM (2009) PEGylated chromatography: efficient bioseparation on silica monoliths grafted with smart biocompatible polymers. ACS Appl Mater Interfaces 1(9):1869–1872CrossRef
14.
go back to reference Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725CrossRef Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725CrossRef
15.
go back to reference Lemechko P, Renard E, Volet G, Colin CS, Guezennec J, Langlois V (2012) Functionalized oligoesters from poly(3-hydroxyalkanoate)s containing reactive end group for click chemistry: Application to novel copolymer synthesis with poly(2-methyl-2-oxazoline). React Funct Polym 72:160–167CrossRef Lemechko P, Renard E, Volet G, Colin CS, Guezennec J, Langlois V (2012) Functionalized oligoesters from poly(3-hydroxyalkanoate)s containing reactive end group for click chemistry: Application to novel copolymer synthesis with poly(2-methyl-2-oxazoline). React Funct Polym 72:160–167CrossRef
16.
go back to reference Fray ME, Skrobot J, Bolikal D, Kohn J (2012) Synthesis and characterization of telechelic macromers containing fatty acid derivatives. React Funct Polym 72:781–790CrossRef Fray ME, Skrobot J, Bolikal D, Kohn J (2012) Synthesis and characterization of telechelic macromers containing fatty acid derivatives. React Funct Polym 72:781–790CrossRef
17.
go back to reference Thompson MS, Vadala TP, Vadala ML, Lin Y, Riffle JS (2008) Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers. Polymer 49:345–373CrossRef Thompson MS, Vadala TP, Vadala ML, Lin Y, Riffle JS (2008) Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers. Polymer 49:345–373CrossRef
18.
go back to reference Masamoto J, Sasguri K, Ohizumi C, Kobayashi H (1970) Polymorphic forms of nylon3. J Polym Sci 8:1703–1711 Masamoto J, Sasguri K, Ohizumi C, Kobayashi H (1970) Polymorphic forms of nylon3. J Polym Sci 8:1703–1711
19.
go back to reference Yasuda M (1931) Determination of iodine numbers of some lipids. J Biochem 94:401–409 Yasuda M (1931) Determination of iodine numbers of some lipids. J Biochem 94:401–409
20.
go back to reference Ogata N (1960) The transition polymerization of acrylamide. Part II. On the reaction mechanism. Makromol Chem 40:55–63CrossRef Ogata N (1960) The transition polymerization of acrylamide. Part II. On the reaction mechanism. Makromol Chem 40:55–63CrossRef
21.
go back to reference Tani H, Oguni N, Araki T (1963) Initiation reaction in the strong base catalyzed polymerization of acrylamide. Makromol Chem 76:82–88CrossRef Tani H, Oguni N, Araki T (1963) Initiation reaction in the strong base catalyzed polymerization of acrylamide. Makromol Chem 76:82–88CrossRef
22.
go back to reference Haldar U, Ramakrishnan L, Sivaprakasam K, De P (2014) Main-chain sulphur containing water soluble poly(N-isopropylacrylamide-co-N,N′-dimethylacrylamide sulphide) copolymers via interfacial polycondensation. Polymer 55:5656–5664CrossRef Haldar U, Ramakrishnan L, Sivaprakasam K, De P (2014) Main-chain sulphur containing water soluble poly(N-isopropylacrylamide-co-N,N′-dimethylacrylamide sulphide) copolymers via interfacial polycondensation. Polymer 55:5656–5664CrossRef
23.
go back to reference Ballard N, Salsamendi M, Santos JI, Ruipérez F, Leiza JR, Asua JM (2014) Experimental evidence shedding light on the origin of the reduction of branching of acrylates in ATRP. Macromolecules 47:964–972CrossRef Ballard N, Salsamendi M, Santos JI, Ruipérez F, Leiza JR, Asua JM (2014) Experimental evidence shedding light on the origin of the reduction of branching of acrylates in ATRP. Macromolecules 47:964–972CrossRef
24.
go back to reference Parent EE, Dence CS, Jenks C, Sharp TL, Welch MJ, Katzenellenbogen JA (2007) Synthesis and biological evaluation of [18F] bicalutamide, 4-[76Br] bromobicalutamide, and 4-[76Br] bromo-thiobicalutamide as non-steroidal androgens for prostate cancer imaging. J Med Chem 50:1028–1040CrossRef Parent EE, Dence CS, Jenks C, Sharp TL, Welch MJ, Katzenellenbogen JA (2007) Synthesis and biological evaluation of [18F] bicalutamide, 4-[76Br] bromobicalutamide, and 4-[76Br] bromo-thiobicalutamide as non-steroidal androgens for prostate cancer imaging. J Med Chem 50:1028–1040CrossRef
25.
go back to reference Tong KH, Wong KY, Chan TH (2003) Manganese/bicarbonate-catalyzed epoxidation of lipophilic alkenes with hydrogen peroxide in ionic liquids. Org Lett 5:3423–3425CrossRef Tong KH, Wong KY, Chan TH (2003) Manganese/bicarbonate-catalyzed epoxidation of lipophilic alkenes with hydrogen peroxide in ionic liquids. Org Lett 5:3423–3425CrossRef
26.
go back to reference de Gooijer JM, Scheltus M, Koning LE (2004) End group modification of polyamide-6 in supercritical and subcritical fluids: Part 2: Amine and carboxylic acid end group modification with 1,2-epoxybutane. J Supercrit Fluids 29:153–164CrossRef de Gooijer JM, Scheltus M, Koning LE (2004) End group modification of polyamide-6 in supercritical and subcritical fluids: Part 2: Amine and carboxylic acid end group modification with 1,2-epoxybutane. J Supercrit Fluids 29:153–164CrossRef
27.
go back to reference Sugi R, Yokohama A, Yokozawa T (2003) Synthesis of well-defined telechelic aromatic polyamides by chain-growth polycondensation: application to the synthesis of block copolymers of polyamide and poly(tetrahydrofuran). Macromol Rapid Commun 24:1085–1090CrossRef Sugi R, Yokohama A, Yokozawa T (2003) Synthesis of well-defined telechelic aromatic polyamides by chain-growth polycondensation: application to the synthesis of block copolymers of polyamide and poly(tetrahydrofuran). Macromol Rapid Commun 24:1085–1090CrossRef
28.
go back to reference Hossainy SFA (2004) Rotary coating apparatus for coating implantable medical devices. US Patent 6.709.514 B1 Hossainy SFA (2004) Rotary coating apparatus for coating implantable medical devices. US Patent 6.709.514 B1
29.
go back to reference Facetti SD (2008) Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents. US Patent 7.435.788 B2 Facetti SD (2008) Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents. US Patent 7.435.788 B2
30.
go back to reference Stuparu CM, Khan A (2016) Thiol-epoxy “click” chemistry: application in preparation and postpolymerization modification of polymers. J Poylm Sci Part A Polym Chem 54:3057–3070CrossRef Stuparu CM, Khan A (2016) Thiol-epoxy “click” chemistry: application in preparation and postpolymerization modification of polymers. J Poylm Sci Part A Polym Chem 54:3057–3070CrossRef
Metadata
Title
Novel hydrophobic macromonomers for potential amphiphilic block copolymers
Authors
Efkan Çatıker
Olgun Güven
Bekir Salih
Publication date
09-04-2017
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 1/2018
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-2014-2

Other articles of this Issue 1/2018

Polymer Bulletin 1/2018 Go to the issue

Premium Partners