Skip to main content
Top

2021 | OriginalPaper | Chapter

Novel Insight into Engine Near-Wall Flows and Wall Heat Transfer Using Direct Numerical Simulations and High-Fidelity Experiments

Authors : Karri Keskinen, George Giannakopoulos, Michele Bolla, Jann Koch, Yuri M. Wright, Christos Frouzakis, Konstantinos Boulouchos, Marius Schmidt, Benjamin Böhm, Andreas Dreizler

Published in: 21. Internationales Stuttgarter Symposium

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study combines advanced optical diagnostics and high-fidelity Direct Numerical Simulations (DNS) to deepen the understanding of wall heat transfer processes in Otto engines under motored and fired conditions. To this end, a combination of optical diagnostics was applied simultaneously: High-resolution Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) to resolve the velocity boundary layer (BL) above the piston, Thermographic Phosphor Thermometry (TPT) to measure the wall temperature spatially resolved and Laser Induced Fluorescence (LIF) of SO2 to track the evolution of the flame. For the complementing simulations, an entire workflow was developed that employs process calculations (GT-Power), multi-cycle scale-resolving simulations (SRSs), and DNS. Well-calibrated GT-Power models provided boundary conditions for the experimentally validated SRSs, which in turn yielded initial conditions for the DNS. Using initial conditions from the SRSs at intake valve closure, the first ever DNS of a real engine geometry was successfully performed for one motored and one fired compression/expansion stroke. It was seen that momentum and thermal BLs evolve differently: the former are affected by changes in the bulk velocity (large scale tumble motion and its breakdown), while the temperature gradients monotonically follow the increase in pressure/Reynolds number. Both the scaled momentum and thermal BLs do not exhibit a logarithmic region and the law of the wall does not hold. Several sources for deviations thereto, both in momentum and thermal BLs, are extracted. For the reactive case, it was found that the early flame kernel development is significantly affected by the strong convective flow due to tumble and only when the flame is strong enough to counter-balance the strong convection it can propagate against it. A criterion has further been developed, which allows for distinction between head-on and side-wall quenching. The vast amount of high-fidelity experimental and fully resolved numerical data generated in this project provides a comprehensive database for validation of existing computational fluid dynamics (CFD) tools and can be used for the development of improved wall heat flux models. A first attempt has been made towards this direction by developing an algebraic wall heat transfer model for LES using a data-driven approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dreizler, A., Böhm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35(1), 37–64 (2015)CrossRef Dreizler, A., Böhm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35(1), 37–64 (2015)CrossRef
2.
go back to reference Merker, P.G., Schwarz, C., Teichmann, R.: Grundlagen Verbrennungsmotoren: Funktionsweise, Simulation, Messtechnik. Vieweg+Teubner, Wiesbaden (2011)CrossRef Merker, P.G., Schwarz, C., Teichmann, R.: Grundlagen Verbrennungsmotoren: Funktionsweise, Simulation, Messtechnik. Vieweg+Teubner, Wiesbaden (2011)CrossRef
3.
go back to reference Alkidas, A.C.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Prog. Energy Combust. Sci. 25(3), 253–273 (1999)CrossRef Alkidas, A.C.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Prog. Energy Combust. Sci. 25(3), 253–273 (1999)CrossRef
4.
go back to reference Nijeweme, D.J.O., et al.: Unsteady in-cylinder heat transfer in a spark ignition engine: Experiments and modelling. Proc. Inst. Mech. Eng. Part D: J. Automobile Eng. 215(6), 747–760 (2001)CrossRef Nijeweme, D.J.O., et al.: Unsteady in-cylinder heat transfer in a spark ignition engine: Experiments and modelling. Proc. Inst. Mech. Eng. Part D: J. Automobile Eng. 215(6), 747–760 (2001)CrossRef
5.
go back to reference Borman, G., Nishiwaki, K.: Internal-combustion engine heat-transfer. Prog. Energy Combust. Sci. 13(1), 1–46 (1987)CrossRef Borman, G., Nishiwaki, K.: Internal-combustion engine heat-transfer. Prog. Energy Combust. Sci. 13(1), 1–46 (1987)CrossRef
6.
go back to reference Jainski, C., et al.: High-speed micro particle image velocimetry studies of boundary-layer flows in a direct-injection engine. Int. J. Engine Res. 14(3), 247–259 (2013)CrossRef Jainski, C., et al.: High-speed micro particle image velocimetry studies of boundary-layer flows in a direct-injection engine. Int. J. Engine Res. 14(3), 247–259 (2013)CrossRef
7.
go back to reference Renaud, A., et al.: Experimental characterization of the velocity boundary layer in a motored IC engine. Int. J. Heat Fluid Flow 71, 366–377 (2018)CrossRef Renaud, A., et al.: Experimental characterization of the velocity boundary layer in a motored IC engine. Int. J. Heat Fluid Flow 71, 366–377 (2018)CrossRef
8.
go back to reference Ding, C.-P., et al.: Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine. Appl. Phys. B 123(4), 110 (2017)CrossRef Ding, C.-P., et al.: Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine. Appl. Phys. B 123(4), 110 (2017)CrossRef
9.
go back to reference Honza, R., et al.: Flame imaging using planar laser induced fluorescence of sulfur dioxide. Appl. Phys. B 123(9), 1 (2017)CrossRef Honza, R., et al.: Flame imaging using planar laser induced fluorescence of sulfur dioxide. Appl. Phys. B 123(9), 1 (2017)CrossRef
10.
go back to reference Rutland, C.J.: Large-eddy simulations for internal combustion engines – a review. Int. J. Engine Res. 12(5), 421–451 (2011)CrossRef Rutland, C.J.: Large-eddy simulations for internal combustion engines – a review. Int. J. Engine Res. 12(5), 421–451 (2011)CrossRef
11.
go back to reference Woschni, G.: A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical Paper No. 670931, 1967. Woschni, G.: A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical Paper No. 670931, 1967.
12.
go back to reference Hohenberg, G.F.: Advanced approaches for heat transfer calculations. SAE TEchnical Paper No. 790825 (1979) Hohenberg, G.F.: Advanced approaches for heat transfer calculations. SAE TEchnical Paper No. 790825 (1979)
13.
go back to reference Chiodi, M., Bargende, M.: Improvement of engine heat-transfer calculation in the three-dimensional simulation using a phenomenological heat-transfer model. SAE Technical Paper No. 2001-01-3601, 2001. Chiodi, M., Bargende, M.: Improvement of engine heat-transfer calculation in the three-dimensional simulation using a phenomenological heat-transfer model. SAE Technical Paper No. 2001-01-3601, 2001.
14.
go back to reference Park, G.I.: Wall-modeled large-eddy simulation of a high reynolds number separating and reattaching flow. AIAA J. 55(11), 3709–3721 (2017)CrossRef Park, G.I.: Wall-modeled large-eddy simulation of a high reynolds number separating and reattaching flow. AIAA J. 55(11), 3709–3721 (2017)CrossRef
15.
go back to reference Keskinen, K., et al.: Hybrid LES/RANS with wall treatment in tangential and impinging flow configurations. Int. J. Heat Fluid Flow 65, 141–158 (2017)CrossRef Keskinen, K., et al.: Hybrid LES/RANS with wall treatment in tangential and impinging flow configurations. Int. J. Heat Fluid Flow 65, 141–158 (2017)CrossRef
16.
go back to reference Schmitt, M., et al.: Direct numerical simulation of the effect of compression on the flow, temperature and composition under engine-like conditions. Proc. Combust. Inst. 35(3), 3069–3077 (2015)CrossRef Schmitt, M., et al.: Direct numerical simulation of the effect of compression on the flow, temperature and composition under engine-like conditions. Proc. Combust. Inst. 35(3), 3069–3077 (2015)CrossRef
17.
go back to reference Larsson, J., et al.: Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech. Eng. Rev. 3(1), 15-00418-15-00418 (2016) Larsson, J., et al.: Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech. Eng. Rev. 3(1), 15-00418-15-00418 (2016)
18.
go back to reference Bose, S.T., Park, G.I.: Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 50(1), 535–561 (2018)MathSciNetCrossRef Bose, S.T., Park, G.I.: Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 50(1), 535–561 (2018)MathSciNetCrossRef
19.
go back to reference Baum, E., et al.: On the validation of les applied to internal combustion engine flows: part 1: comprehensive experimental database. Flow Turbul Combust 92(1–2), 269–297 (2014)CrossRef Baum, E., et al.: On the validation of les applied to internal combustion engine flows: part 1: comprehensive experimental database. Flow Turbul Combust 92(1–2), 269–297 (2014)CrossRef
21.
go back to reference Dreizler, A., Boulouchos, K.: Wandwärmeübertragungsprozesse im Ottomotor| Wall Heat Transfer in Otto Engines| No 1286 Abschlussbericht| Final report (AB) Dreizler, A., Boulouchos, K.: Wandwärmeübertragungsprozesse im Ottomotor| Wall Heat Transfer in Otto Engines| No 1286 Abschlussbericht| Final report (AB)
22.
go back to reference Ding, C.-P., et al.: Flame/flow dynamics at the piston surface of an IC engine measured by high-speed PLIF and PTV. Proc. Combust. Inst. 37(4), 4973–4981 (2019)CrossRef Ding, C.-P., et al.: Flame/flow dynamics at the piston surface of an IC engine measured by high-speed PLIF and PTV. Proc. Combust. Inst. 37(4), 4973–4981 (2019)CrossRef
23.
go back to reference Ding, C.-P.: Wandnahe Interaktion von Strömung und Flamme in einem Ottomotor, p. 203. Books on Demand, Norderstedt (2018) Ding, C.-P.: Wandnahe Interaktion von Strömung und Flamme in einem Ottomotor, p. 203. Books on Demand, Norderstedt (2018)
24.
go back to reference Giannakopoulos, G.K., et al.: LES of the gas-exchange process inside an internal combustion engine using a high-order method. Flow, Turbul. Combust. 104(2), 673–692 (2020)CrossRef Giannakopoulos, G.K., et al.: LES of the gas-exchange process inside an internal combustion engine using a high-order method. Flow, Turbul. Combust. 104(2), 673–692 (2020)CrossRef
25.
go back to reference Franzelli, B., et al.: A two-step chemical scheme for kerosene-air premixed flames. Combust. Flame 157(7), 1364–1373 (2010)CrossRef Franzelli, B., et al.: A two-step chemical scheme for kerosene-air premixed flames. Combust. Flame 157(7), 1364–1373 (2010)CrossRef
26.
go back to reference Buhl, S., et al.: A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine. Flow, Turbul. Combust. 98(2), 579–600 (2016)CrossRef Buhl, S., et al.: A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine. Flow, Turbul. Combust. 98(2), 579–600 (2016)CrossRef
27.
go back to reference Liu, K., Haworth, D.C.: Development and assessment of POD for analysis of turbulent flow in piston engines. SAE Technical Paper No. 2011-01-0830 (2011) Liu, K., Haworth, D.C.: Development and assessment of POD for analysis of turbulent flow in piston engines. SAE Technical Paper No. 2011-01-0830 (2011)
28.
go back to reference Schlichting, H., Gersten, K.: Boundary-Layer Theory, 9 edition. Springer, Berlin/Heidelberg (2016) Schlichting, H., Gersten, K.: Boundary-Layer Theory, 9 edition. Springer, Berlin/Heidelberg (2016)
29.
go back to reference Von Kármán, T.: Mechanical similitude and turbulence. NACA Tech. Mem. no. 611. Washington D.C.: National Advisory Committee for Aeronautics (1931) Von Kármán, T.: Mechanical similitude and turbulence. NACA Tech. Mem. no. 611. Washington D.C.: National Advisory Committee for Aeronautics (1931)
30.
go back to reference Hattori, H., Nagano, Y.: Direct numerical simulation of turbulent heat transfer in plane impinging jet. Int. J. Heat Fluid Flow 25(5), 749–758 (2004)CrossRef Hattori, H., Nagano, Y.: Direct numerical simulation of turbulent heat transfer in plane impinging jet. Int. J. Heat Fluid Flow 25(5), 749–758 (2004)CrossRef
31.
go back to reference Schmitt, M., et al.: Direct numerical simulation of the compression stroke under engine-relevant conditions: evolution of the velocity and thermal boundary layers. Int. J. Heat Mass Transf. 91, 948–960 (2015)CrossRef Schmitt, M., et al.: Direct numerical simulation of the compression stroke under engine-relevant conditions: evolution of the velocity and thermal boundary layers. Int. J. Heat Mass Transf. 91, 948–960 (2015)CrossRef
32.
go back to reference Schiffmann, P., et al.: TCC-III engine benchmark for large-eddy simulation of IC engine flows. Oil Gas Sci. Technol. 71(1), 3 (2016)CrossRef Schiffmann, P., et al.: TCC-III engine benchmark for large-eddy simulation of IC engine flows. Oil Gas Sci. Technol. 71(1), 3 (2016)CrossRef
33.
go back to reference Bolla, M., et al.: Development of an algebraic wall heat transfer model for LES in IC engines using DNS data. Proceedings of the Combustion Institute (2020) Bolla, M., et al.: Development of an algebraic wall heat transfer model for LES in IC engines using DNS data. Proceedings of the Combustion Institute (2020)
Metadata
Title
Novel Insight into Engine Near-Wall Flows and Wall Heat Transfer Using Direct Numerical Simulations and High-Fidelity Experiments
Authors
Karri Keskinen
George Giannakopoulos
Michele Bolla
Jann Koch
Yuri M. Wright
Christos Frouzakis
Konstantinos Boulouchos
Marius Schmidt
Benjamin Böhm
Andreas Dreizler
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-658-33521-2_26

Premium Partner