Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2020

14-08-2020

Novel Porous Barium Titanate/Nano-bioactive Glass Composite with High Piezoelectric Coefficient for Bone Regeneration Applications

Authors: Babak Saeidi, Mohammad Reza Derakhshandeh, Mehdi Delshad Chermahini, Ali Doostmohammadi

Published in: Journal of Materials Engineering and Performance | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, porous bioceramics are widely used in bone tissue engineering in order to the regeneration of damaged tissues. Piezoelectric effect in bone plays a very important role in bone regeneration. Therefore, the purpose of this study was the fabrication of porous barium titanate (BT)/nanobioglass (nBG) scaffold (vol.% BT = 75% and 90%) with high piezoelectric coefficient by freeze casting technique. For this purpose, BT and nBG powders were synthesized using solid-state and sol–gel methods, respectively. Partial recrystallization of nBG phase during sintering process occurred. The highly oriented lamellar microstructure of the fabricated BT90/nBG10 scaffold with open/interconnected porosities observed. The BT75/nBG25 composite scaffold exhibited higher value of density (1.18 ± 0.1 g/cm3) and lower amount of porosities (77 ± 1%) compared to the BT90/nBG10 scaffold (0.99 ± 0.1 g/cm3 and 82 ± 1%). The piezoelectric coefficients of the BT90/nBG10 and BT75/nBG25 composite scaffolds obtained 36 pC/N and 24 pC/N which were much higher than that of the natural human bone. The BT75/nBG25 scaffold showed more compressive strength (16.9 ± 1.1 MPa) than that of BT90/nBG10 composite scaffold (8.1 ± 0.3 MPa). The MTT results after 24, 72 and 168 h of culture showed that both composites had acceptable cell viability and cells were able to adhere, proliferate and migrate into pores of the scaffolds. Furthermore, cell density and adhesion were little bit higher in the BT75/nBG25 composite. These results indicated that highly porous barium titanate scaffolds have great potential in tissue engineering applications for bone tissue repair and regeneration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Gaihre and A.C. Jayasuriya, Comparative Investigation of Porous Nano-hydroxyapaptite/Chitosan, Nano-Zirconia/Chitosan and Novel Nano-calcium Zirconate/Chitosan Composite Scaffolds for Their Potential Applications in Bone Regeneration, Mater. Sci. Eng., C, 2018, 91, p 330–339CrossRef B. Gaihre and A.C. Jayasuriya, Comparative Investigation of Porous Nano-hydroxyapaptite/Chitosan, Nano-Zirconia/Chitosan and Novel Nano-calcium Zirconate/Chitosan Composite Scaffolds for Their Potential Applications in Bone Regeneration, Mater. Sci. Eng., C, 2018, 91, p 330–339CrossRef
2.
go back to reference M.R. Derakhshandeh, M.J. Eshraghi, M.M. Hadavi, M. Javaheri, S. Khamseh, M.G. Sari et al., Diamond-Like Carbon thin FILMS Prepared by pulsed-DC PE-CVD for Biomedical Applications, Surf. Innov., 2018, 6, p 167–175CrossRef M.R. Derakhshandeh, M.J. Eshraghi, M.M. Hadavi, M. Javaheri, S. Khamseh, M.G. Sari et al., Diamond-Like Carbon thin FILMS Prepared by pulsed-DC PE-CVD for Biomedical Applications, Surf. Innov., 2018, 6, p 167–175CrossRef
3.
go back to reference S.M.R. Derakhshandeh, M.J. Eshraghi, M. Javaheri, S. Khamseh, M.G. Sari, P. Zarrintaj et al., Diamond-Like Carbon-Deposited Films: a New Class of Bio-Corrosion Protective Coatings, Surf. Innov., 2018, 6, p 266–276CrossRef S.M.R. Derakhshandeh, M.J. Eshraghi, M. Javaheri, S. Khamseh, M.G. Sari, P. Zarrintaj et al., Diamond-Like Carbon-Deposited Films: a New Class of Bio-Corrosion Protective Coatings, Surf. Innov., 2018, 6, p 266–276CrossRef
4.
go back to reference J.N. Harvestine, N.L. Vollmer, S.S. Ho, C.A. Zikry, M.A. Lee, and J.K. Leach, Extracellular Matrix-Coated COMPOSITE scaffolds Promote mesenchymal Stem Cell Persistence and Osteogenesis, Biomacromol, 2016, 17, p 3524–3531CrossRef J.N. Harvestine, N.L. Vollmer, S.S. Ho, C.A. Zikry, M.A. Lee, and J.K. Leach, Extracellular Matrix-Coated COMPOSITE scaffolds Promote mesenchymal Stem Cell Persistence and Osteogenesis, Biomacromol, 2016, 17, p 3524–3531CrossRef
5.
go back to reference L. Stipniece, I. Narkevica, M. Sokolova, J. Locs, and J. Ozolins, Novel Scaffolds Based on Hydroxyapatite/Poly (VINYL alcohol) Nanocomposite Coated Porous TiO2 Ceramics for Bone Tissue Engineering, Ceram. Int., 2016, 42, p 1530–1537CrossRef L. Stipniece, I. Narkevica, M. Sokolova, J. Locs, and J. Ozolins, Novel Scaffolds Based on Hydroxyapatite/Poly (VINYL alcohol) Nanocomposite Coated Porous TiO2 Ceramics for Bone Tissue Engineering, Ceram. Int., 2016, 42, p 1530–1537CrossRef
6.
go back to reference B. Chang, W. Song, T. Han, J. Yan, F. Li, L. Zhao et al., Influence of Pore Size of Porous Titanium Fabricated by Vacuum Diffusion Bonding of Titanium Meshes on Cell Penetration and Bone Ingrowth, Acta Biomater., 2016, 33, p 311–321CrossRef B. Chang, W. Song, T. Han, J. Yan, F. Li, L. Zhao et al., Influence of Pore Size of Porous Titanium Fabricated by Vacuum Diffusion Bonding of Titanium Meshes on Cell Penetration and Bone Ingrowth, Acta Biomater., 2016, 33, p 311–321CrossRef
7.
go back to reference D.-M. Liu, Influence of Porosity and Pore Size on the Compressive Strength of Porous Hydroxyapatite Ceramic, Ceram. Int., 1997, 23, p 135–139CrossRef D.-M. Liu, Influence of Porosity and Pore Size on the Compressive Strength of Porous Hydroxyapatite Ceramic, Ceram. Int., 1997, 23, p 135–139CrossRef
8.
go back to reference Y. Tang, K. Zhao, L. Hu, and Z. Wu, Two-Step Freeze Casting Fabrication of Hydroxyapatite Porous Scaffolds with Bionic Bone Graded Structure, Ceram. Int., 2013, 39, p 9703–9707CrossRef Y. Tang, K. Zhao, L. Hu, and Z. Wu, Two-Step Freeze Casting Fabrication of Hydroxyapatite Porous Scaffolds with Bionic Bone Graded Structure, Ceram. Int., 2013, 39, p 9703–9707CrossRef
9.
go back to reference D. Nadeem, M. Kiamehr, X. Yang, and B. Su, Fabrication and In vitro Evaluation of a Sponge-Like Bioactive-Glass/Gelatin Composite Scaffold for Bone Tissue Engineering, Mater. Sci. Eng., C, 2013, 33, p 2669–2678CrossRef D. Nadeem, M. Kiamehr, X. Yang, and B. Su, Fabrication and In vitro Evaluation of a Sponge-Like Bioactive-Glass/Gelatin Composite Scaffold for Bone Tissue Engineering, Mater. Sci. Eng., C, 2013, 33, p 2669–2678CrossRef
10.
go back to reference Z. Khurshid, S. Husain, H. Alotaibi, R. Rehman, M.S. Zafar, I. Farooq et al., Novel Techniques of Scaffold Fabrication for Bioactive Glasses, Elsevier, Amsterdam, 2019, p 497–519 Z. Khurshid, S. Husain, H. Alotaibi, R. Rehman, M.S. Zafar, I. Farooq et al., Novel Techniques of Scaffold Fabrication for Bioactive Glasses, Elsevier, Amsterdam, 2019, p 497–519
11.
go back to reference G. Kaur, V. Kumar, F. Baino, J.C. Mauro, G. Pickrell, I. Evans et al., Mechanical Properties of Bioactive Glasses, Ceramics, Glass-Ceramics and Composites: State-of-the-Art Review and Future Challenges, Mater. Sci. Eng. C, 2019, 104, p 109895CrossRef G. Kaur, V. Kumar, F. Baino, J.C. Mauro, G. Pickrell, I. Evans et al., Mechanical Properties of Bioactive Glasses, Ceramics, Glass-Ceramics and Composites: State-of-the-Art Review and Future Challenges, Mater. Sci. Eng. C, 2019, 104, p 109895CrossRef
12.
go back to reference A. Motealleh, S. Eqtesadi, F.H. Perera, A.L. Ortiz, P. Miranda, A. Pajares et al., Reinforcing 13–93 Bioglass Scaffolds Fabricated by Robocasting and Pressureless Spark Plasma Sintering with Graphene Oxide, J. Mech. Behav. Biomed. Mater., 2019, 97, p 108–116CrossRef A. Motealleh, S. Eqtesadi, F.H. Perera, A.L. Ortiz, P. Miranda, A. Pajares et al., Reinforcing 13–93 Bioglass Scaffolds Fabricated by Robocasting and Pressureless Spark Plasma Sintering with Graphene Oxide, J. Mech. Behav. Biomed. Mater., 2019, 97, p 108–116CrossRef
13.
go back to reference X. Liu, M.N. Rahaman, and Q. Fu, Bone Regeneration in Strong Porous Bioactive Glass (13-93) Scaffolds with an Oriented Microstructure Implanted in Rat Calvarial Defects, Acta Biomater., 2013, 9, p 4889–4898CrossRef X. Liu, M.N. Rahaman, and Q. Fu, Bone Regeneration in Strong Porous Bioactive Glass (13-93) Scaffolds with an Oriented Microstructure Implanted in Rat Calvarial Defects, Acta Biomater., 2013, 9, p 4889–4898CrossRef
14.
go back to reference T.M. Freyman, I.V. Yannas, and L.J. Gibson, Cellular Materials as Porous Scaffolds for Tissue Engineering, Prog. Mater Sci., 2001, 46, p 273–282CrossRef T.M. Freyman, I.V. Yannas, and L.J. Gibson, Cellular Materials as Porous Scaffolds for Tissue Engineering, Prog. Mater Sci., 2001, 46, p 273–282CrossRef
15.
go back to reference F. Baino, E. Fiume, M. Miola, F. Leone, B. Onida, and E. Verné, Fe-Doped Bioactive Glass-Derived Scaffolds produced by Sol-Gel foaming, Mater. Lett., 2019, 235, p 207–211CrossRef F. Baino, E. Fiume, M. Miola, F. Leone, B. Onida, and E. Verné, Fe-Doped Bioactive Glass-Derived Scaffolds produced by Sol-Gel foaming, Mater. Lett., 2019, 235, p 207–211CrossRef
16.
go back to reference S. Cabanas-Polo, A. Philippart, E. Boccardi, J. Hazur, and A.R. Boccaccini, Facile Production of Porous Bioactive Glass Scaffolds by the Foam Replica Technique Combined with Sol–Gel/Electrophoretic Deposition, Ceram. Int., 2016, 42, p 5772–5777CrossRef S. Cabanas-Polo, A. Philippart, E. Boccardi, J. Hazur, and A.R. Boccaccini, Facile Production of Porous Bioactive Glass Scaffolds by the Foam Replica Technique Combined with Sol–Gel/Electrophoretic Deposition, Ceram. Int., 2016, 42, p 5772–5777CrossRef
17.
go back to reference Q. Fu, E. Saiz, M.N. Rahaman, and A.P. Tomsia, Bioactive Glass Scaffolds for Bone Tissue Engineering: State of the Art and Future Perspectives, Mater. Sci. Eng., C, 2011, 31, p 1245–1256CrossRef Q. Fu, E. Saiz, M.N. Rahaman, and A.P. Tomsia, Bioactive Glass Scaffolds for Bone Tissue Engineering: State of the Art and Future Perspectives, Mater. Sci. Eng., C, 2011, 31, p 1245–1256CrossRef
18.
go back to reference D.M.M. dos Santos, S.M. de Carvalho, M.M. Pereira, M. Houmard, and E.H.M. Nunes, Freeze-Cast Composite Scaffolds Prepared from Sol-Gel Derived 58S Bioactive Glass and Polycaprolactone, Ceram. Int., 2019, 45, p 9891–9900CrossRef D.M.M. dos Santos, S.M. de Carvalho, M.M. Pereira, M. Houmard, and E.H.M. Nunes, Freeze-Cast Composite Scaffolds Prepared from Sol-Gel Derived 58S Bioactive Glass and Polycaprolactone, Ceram. Int., 2019, 45, p 9891–9900CrossRef
19.
go back to reference K.L. Scotti and D.C. Dunand, Freeze Casting–A Review of Processing, Microstructure and Properties Via the Open Data Repository, FreezeCasting. net, Prog. Mater. Sci., 2018, 94, p 243–305CrossRef K.L. Scotti and D.C. Dunand, Freeze Casting–A Review of Processing, Microstructure and Properties Via the Open Data Repository, FreezeCasting. net, Prog. Mater. Sci., 2018, 94, p 243–305CrossRef
20.
go back to reference E. Fukada and I. Yasuda, On the Piezoelectric Effect of Bone, J. Phys. Soc. Jpn., 1957, 12, p 1158–1162CrossRef E. Fukada and I. Yasuda, On the Piezoelectric Effect of Bone, J. Phys. Soc. Jpn., 1957, 12, p 1158–1162CrossRef
21.
go back to reference J. Park and R.S. Lakes, Biomaterials: An Introduction, Springer, Berlin, 2007 J. Park and R.S. Lakes, Biomaterials: An Introduction, Springer, Berlin, 2007
22.
go back to reference F. Jianqing, Y. Huipin, and Z. Xingdong, Promotion of Osteogenesis by a Piezoelectric Biological Ceramic, Biomaterials, 1997, 18, p 1531–1534CrossRef F. Jianqing, Y. Huipin, and Z. Xingdong, Promotion of Osteogenesis by a Piezoelectric Biological Ceramic, Biomaterials, 1997, 18, p 1531–1534CrossRef
23.
go back to reference Y. Zhang, L. Chen, J. Zeng, K. Zhou, and D. Zhang, Aligned Porous Barium Titanate/Hydroxyapatite Composites with High Piezoelectric Coefficients for Bone Tissue Engineering, Mater. Sci. Eng., C, 2014, 39, p 143–149CrossRef Y. Zhang, L. Chen, J. Zeng, K. Zhou, and D. Zhang, Aligned Porous Barium Titanate/Hydroxyapatite Composites with High Piezoelectric Coefficients for Bone Tissue Engineering, Mater. Sci. Eng., C, 2014, 39, p 143–149CrossRef
24.
go back to reference A. Ehterami, M. Kazemi, B. Nazari, P. Saraeian, and M. Azami, Fabrication and Characterization of Highly Porous Barium Titanate Based Scaffold Coated by Gel/HA Nanocomposite with High Piezoelectric Coefficient for Bone Tissue Engineering Applications, J. Mech. Behav. Biomed. Mater., 2018, 79, p 195–202CrossRef A. Ehterami, M. Kazemi, B. Nazari, P. Saraeian, and M. Azami, Fabrication and Characterization of Highly Porous Barium Titanate Based Scaffold Coated by Gel/HA Nanocomposite with High Piezoelectric Coefficient for Bone Tissue Engineering Applications, J. Mech. Behav. Biomed. Mater., 2018, 79, p 195–202CrossRef
25.
go back to reference F.R. Baxter, I.G. Turner, C.R. Bowen, J.P. Gittings, and J.B. Chaudhuri, An In Vitro Study of Electrically Active Hydroxyapatite-Barium Titanate Ceramics Using Saos-2 Cells, J. Mater. Sci. Mater. Med., 2009, 20, p 1697–1708CrossRef F.R. Baxter, I.G. Turner, C.R. Bowen, J.P. Gittings, and J.B. Chaudhuri, An In Vitro Study of Electrically Active Hydroxyapatite-Barium Titanate Ceramics Using Saos-2 Cells, J. Mater. Sci. Mater. Med., 2009, 20, p 1697–1708CrossRef
26.
go back to reference H. Shokrollahi, F. Salimi, and A. Doostmohammadi, The Fabrication and Characterization of Barium Titanate/Akermanite Nano-bio-ceramic with a Suitable Piezoelectric Coefficient for Bone Defect Recovery, J. Mech. Behav. Biomed. Mater., 2017, 74, p 365–370CrossRef H. Shokrollahi, F. Salimi, and A. Doostmohammadi, The Fabrication and Characterization of Barium Titanate/Akermanite Nano-bio-ceramic with a Suitable Piezoelectric Coefficient for Bone Defect Recovery, J. Mech. Behav. Biomed. Mater., 2017, 74, p 365–370CrossRef
27.
go back to reference M.H. Fathi and A. Doostmohammadi, Preparation and Characterization of Sol–Gel Bioactive Glass Coating for Improvement of Biocompatibility of Human Body Implant, Mater. Sci. Eng., A, 2008, 474, p 128–133CrossRef M.H. Fathi and A. Doostmohammadi, Preparation and Characterization of Sol–Gel Bioactive Glass Coating for Improvement of Biocompatibility of Human Body Implant, Mater. Sci. Eng., A, 2008, 474, p 128–133CrossRef
28.
go back to reference S.M.R. Derakhshandeh, S.M.M. Hadavi, M.J. Eshraghi, M. Javaheri, and M. Mozafari, Improved Electrochemical Performance of Nitrocarburised Stainless Steel by Hydrogenated Amorphous Carbon Thin Films for Bone Tissue Engineering, IET Nanobiotechnol., 2017, 11, p 656–660CrossRef S.M.R. Derakhshandeh, S.M.M. Hadavi, M.J. Eshraghi, M. Javaheri, and M. Mozafari, Improved Electrochemical Performance of Nitrocarburised Stainless Steel by Hydrogenated Amorphous Carbon Thin Films for Bone Tissue Engineering, IET Nanobiotechnol., 2017, 11, p 656–660CrossRef
29.
go back to reference K. Zheng and A.R. Boccaccini, Sol-gel Processing of Bioactive Glass Nanoparticles: A Review, Adv. Colloid Interface Sci., 2017, 249, p 363–373CrossRef K. Zheng and A.R. Boccaccini, Sol-gel Processing of Bioactive Glass Nanoparticles: A Review, Adv. Colloid Interface Sci., 2017, 249, p 363–373CrossRef
30.
go back to reference Y. Liu, N. Fang, B. Liu, L. Song, B. Wen, and D. Yang, Aligned Porous Chitosan/Graphene Oxide Scaffold for Bone Tissue Engineering, Mater. Lett., 2018, 233, p 78–81CrossRef Y. Liu, N. Fang, B. Liu, L. Song, B. Wen, and D. Yang, Aligned Porous Chitosan/Graphene Oxide Scaffold for Bone Tissue Engineering, Mater. Lett., 2018, 233, p 78–81CrossRef
31.
go back to reference S. Algharaibeh, A.J. Ireland, and B. Su, Bi-directional Freeze Casting of Porous Alumina Ceramics: A Study of the Effects of Different Processing Parameters on Microstructure, J. Eur. Ceram. Soc., 2019, 39, p 514–521CrossRef S. Algharaibeh, A.J. Ireland, and B. Su, Bi-directional Freeze Casting of Porous Alumina Ceramics: A Study of the Effects of Different Processing Parameters on Microstructure, J. Eur. Ceram. Soc., 2019, 39, p 514–521CrossRef
32.
go back to reference Y. Tang, S. Qiu, Q. Miao, and C. Wu, Fabrication of Lamellar Porous Alumina with Axisymmetric Structure by Directional Solidification with Applied Electric and Magnetic Fields, J. Eur. Ceram. Soc., 2016, 36, p 1233–1240CrossRef Y. Tang, S. Qiu, Q. Miao, and C. Wu, Fabrication of Lamellar Porous Alumina with Axisymmetric Structure by Directional Solidification with Applied Electric and Magnetic Fields, J. Eur. Ceram. Soc., 2016, 36, p 1233–1240CrossRef
33.
go back to reference S. Deville, E. Saiz, and A.P. Tomsia, Freeze castiNg of Hydroxyapatite Scaffolds for Bone Tissue Engineering, Biomaterials, 2006, 27, p 5480–5489CrossRef S. Deville, E. Saiz, and A.P. Tomsia, Freeze castiNg of Hydroxyapatite Scaffolds for Bone Tissue Engineering, Biomaterials, 2006, 27, p 5480–5489CrossRef
34.
go back to reference P.L. Blanton and N.L. Biggs, Density of Fresh and Embalmed Human Compact and Cancellous Bone, Am. J. Phys. Anthropol., 1968, 29, p 39–44CrossRef P.L. Blanton and N.L. Biggs, Density of Fresh and Embalmed Human Compact and Cancellous Bone, Am. J. Phys. Anthropol., 1968, 29, p 39–44CrossRef
35.
go back to reference R. Hodgskinson, C.F. Njeh, M.A. Whitehead, and C.M. Langton, The Non-linear Relationship Between BUA and Porosity in Cancellous Bone, Phys. Med. Biol., 1996, 41, p 2411CrossRef R. Hodgskinson, C.F. Njeh, M.A. Whitehead, and C.M. Langton, The Non-linear Relationship Between BUA and Porosity in Cancellous Bone, Phys. Med. Biol., 1996, 41, p 2411CrossRef
36.
go back to reference R. Guo, C.-A. Wang, and A. Yang, Effects of Pore Size and Orientation on Dielectric and Piezoelectric Properties of 1-3 Type Porous PZT Ceramics, J. Eur. Ceram. Soc., 2011, 31, p 605–609CrossRef R. Guo, C.-A. Wang, and A. Yang, Effects of Pore Size and Orientation on Dielectric and Piezoelectric Properties of 1-3 Type Porous PZT Ceramics, J. Eur. Ceram. Soc., 2011, 31, p 605–609CrossRef
37.
go back to reference M. Martens, R. Van Audekercke, P. Delport, P. De Meester, and J.C. Mulier, The Mechanical Characteristics of Cancellous Bone at the Upper Femoral Region, J. Biomech., 1983, 16, p 971–983CrossRef M. Martens, R. Van Audekercke, P. Delport, P. De Meester, and J.C. Mulier, The Mechanical Characteristics of Cancellous Bone at the Upper Femoral Region, J. Biomech., 1983, 16, p 971–983CrossRef
Metadata
Title
Novel Porous Barium Titanate/Nano-bioactive Glass Composite with High Piezoelectric Coefficient for Bone Regeneration Applications
Authors
Babak Saeidi
Mohammad Reza Derakhshandeh
Mehdi Delshad Chermahini
Ali Doostmohammadi
Publication date
14-08-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05016-0

Other articles of this Issue 8/2020

Journal of Materials Engineering and Performance 8/2020 Go to the issue

Premium Partners