Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Novel Regenerated Cellulosic Materials

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The regeneration and shaping process for man-made cellulosic materials was introduced. The morphology, structure, properties, and potential applications of the resulting regenerated cellulosic materials were summarized, including cellulose regenerated fibers, cellulose regenerated films, cellulose regenerated beads, cellulose hydrogels, cellulose aerogels, nonwoven membrane, cellulose sponges, ultrathin cellulose fibers or mats, and cellulose-based bioplastics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang S, Lu A, Zhang L (2015) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206CrossRef Wang S, Lu A, Zhang L (2015) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206CrossRef
2.
go back to reference Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose 16:179–188CrossRef Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose 16:179–188CrossRef
3.
go back to reference Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508CrossRef Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508CrossRef
4.
go back to reference Barton BF, Reeve JL, McHugh AJ (1997) Observations on the dynamics of nonsolvent-induced phase inversion. J Polym Sci, Part B: Polym Phys 35:569–585CrossRef Barton BF, Reeve JL, McHugh AJ (1997) Observations on the dynamics of nonsolvent-induced phase inversion. J Polym Sci, Part B: Polym Phys 35:569–585CrossRef
5.
go back to reference Zhang S, Fu CF, Li FX et al (2009) Direct preparation of a novel membrane from unsubstituted cellulose in NaOH complex solution. Iran Polym J 18:767–776 Zhang S, Fu CF, Li FX et al (2009) Direct preparation of a novel membrane from unsubstituted cellulose in NaOH complex solution. Iran Polym J 18:767–776
6.
go back to reference Fink H-P, Weigel P, Purz H et al (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef Fink H-P, Weigel P, Purz H et al (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef
7.
go back to reference Romanov VV, Sokira AN, Lunina OB et al (1988) Morphological features of the structure of fibres prepared from solutions of cellulose in methylmorpholine oxide. Fibre Chem 20:38–39CrossRef Romanov VV, Sokira AN, Lunina OB et al (1988) Morphological features of the structure of fibres prepared from solutions of cellulose in methylmorpholine oxide. Fibre Chem 20:38–39CrossRef
8.
go back to reference Liu HB, Sale KL, Simmons BA et al (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115:10251–10258CrossRef Liu HB, Sale KL, Simmons BA et al (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115:10251–10258CrossRef
9.
go back to reference Li R, Zhang L, Xu M (2012) Novel regenerated cellulose films prepared by coagulating with water: structure and properties. Carbohydr Polym 87:95–100CrossRef Li R, Zhang L, Xu M (2012) Novel regenerated cellulose films prepared by coagulating with water: structure and properties. Carbohydr Polym 87:95–100CrossRef
10.
go back to reference Mao Y, Zhou J, Cai J et al (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279:246–255CrossRef Mao Y, Zhou J, Cai J et al (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279:246–255CrossRef
11.
go back to reference Zhang S, Li F, Yu J (2011) Kinetics of cellulose regeneration from cellulose-NaOH/thiourea/urea/H2O system. Cellul Chem Technol 45:593–604 Zhang S, Li F, Yu J (2011) Kinetics of cellulose regeneration from cellulose-NaOH/thiourea/urea/H2O system. Cellul Chem Technol 45:593–604
12.
go back to reference Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432CrossRef Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432CrossRef
13.
go back to reference Cai J, Wang L, Zhang L (2007) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose 14:205–215CrossRef Cai J, Wang L, Zhang L (2007) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose 14:205–215CrossRef
14.
go back to reference Yang Q, Fujisawa S, Saito T et al (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703CrossRef Yang Q, Fujisawa S, Saito T et al (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703CrossRef
15.
go back to reference Qi H, Cai J, Zhang L et al (2008) Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose 15:81–89CrossRef Qi H, Cai J, Zhang L et al (2008) Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose 15:81–89CrossRef
16.
go back to reference Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
17.
go back to reference Fink H-P, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51CrossRef Fink H-P, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51CrossRef
18.
go back to reference Woodings C (2001) Regenerated cellulose fibres. Woodhead Publishing Ltd, EnglandCrossRef Woodings C (2001) Regenerated cellulose fibres. Woodhead Publishing Ltd, EnglandCrossRef
19.
go back to reference Müller B, Gebert-Germ M, Russler A (2012) Viscont HT—the future of high performance viscose filaments and their textile applications. Lenzinger Ber 90:64–71 Müller B, Gebert-Germ M, Russler A (2012) Viscont HT—the future of high performance viscose filaments and their textile applications. Lenzinger Ber 90:64–71
20.
go back to reference Jiang G, Huang W, Li L et al (2012) Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydr Polym 87:2012–2018CrossRef Jiang G, Huang W, Li L et al (2012) Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydr Polym 87:2012–2018CrossRef
21.
go back to reference Cai J, Zhang L, Zhou J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRef Cai J, Zhang L, Zhou J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRef
22.
go back to reference Li R, Chang C, Zhou J, Zhang L et al (2010) Primarily industrialized trial of novel fibers spun from cellulose dope in NaOH/urea aqueous solution. Ind Eng Chem Res 49:11380–11384CrossRef Li R, Chang C, Zhou J, Zhang L et al (2010) Primarily industrialized trial of novel fibers spun from cellulose dope in NaOH/urea aqueous solution. Ind Eng Chem Res 49:11380–11384CrossRef
23.
go back to reference Chen X, Burger C, Fang D et al (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848CrossRef Chen X, Burger C, Fang D et al (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848CrossRef
24.
go back to reference Hauru LKJ, Hummel M, Michud A et al (2014) Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21:4471–4481CrossRef Hauru LKJ, Hummel M, Michud A et al (2014) Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21:4471–4481CrossRef
25.
go back to reference Zhang H, Wang Z, Zhang Z et al (2007) Regenerated cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704CrossRef Zhang H, Wang Z, Zhang Z et al (2007) Regenerated cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704CrossRef
26.
go back to reference Jiang G, Yuan Y, Wang B et al (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19:1075–1083CrossRef Jiang G, Yuan Y, Wang B et al (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19:1075–1083CrossRef
27.
go back to reference Guo Y, Zhou J, Song Y et al (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30:1504–1508CrossRef Guo Y, Zhou J, Song Y et al (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30:1504–1508CrossRef
28.
go back to reference Fu F, Yang Q, Zhou J et al (2014) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate-NaOH/ZnO aqueous Solution. ACS Sustainable Chem Eng 2:2604–2612CrossRef Fu F, Yang Q, Zhou J et al (2014) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate-NaOH/ZnO aqueous Solution. ACS Sustainable Chem Eng 2:2604–2612CrossRef
29.
go back to reference Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRef Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRef
30.
go back to reference Gindl W, Keckes J (2006) Strain hardening in regenerated cellulose fibres. Compos Sci Technol 66:2049–2053CrossRef Gindl W, Keckes J (2006) Strain hardening in regenerated cellulose fibres. Compos Sci Technol 66:2049–2053CrossRef
31.
go back to reference Hyden WL (1929) Manufacture and properties of regenerated cellulose films. Ind Eng Chem 21:405–410CrossRef Hyden WL (1929) Manufacture and properties of regenerated cellulose films. Ind Eng Chem 21:405–410CrossRef
32.
go back to reference Fang Z, Zhu H, Preston C et al (2014) Development, application and commercialization of transparent paper. Transl Mater Res 1:015004CrossRef Fang Z, Zhu H, Preston C et al (2014) Development, application and commercialization of transparent paper. Transl Mater Res 1:015004CrossRef
33.
go back to reference Fink H-P, Weigel P, Bohn A (2006) Supermolecular structure and orientation of blown cellulosic films. J Macromol Sci B 38:603–613CrossRef Fink H-P, Weigel P, Bohn A (2006) Supermolecular structure and orientation of blown cellulosic films. J Macromol Sci B 38:603–613CrossRef
34.
go back to reference Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184CrossRef Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184CrossRef
35.
go back to reference Pang J, Wu M, Zhang Q et al (2015) Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr Polym 121:71–78CrossRef Pang J, Wu M, Zhang Q et al (2015) Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr Polym 121:71–78CrossRef
36.
go back to reference Pang J, Liu X, Zhang X et al (2013) Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials 6:1270–1284 Pang J, Liu X, Zhang X et al (2013) Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials 6:1270–1284
37.
go back to reference Yang Q, Fukuzumi H, Saito T et al (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12:2766–2771CrossRef Yang Q, Fukuzumi H, Saito T et al (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12:2766–2771CrossRef
38.
go back to reference Liu S, Zhang L, Sun Y et al (2009) Supramolecular structure and properties of high strength regenerated cellulose films. Macromol Biosci 9:29–35CrossRef Liu S, Zhang L, Sun Y et al (2009) Supramolecular structure and properties of high strength regenerated cellulose films. Macromol Biosci 9:29–35CrossRef
39.
go back to reference Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836CrossRef Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836CrossRef
40.
go back to reference O’Neill JJ, Reichardt EP (1951) Method of producing cellulose pellets. US 2543928 O’Neill JJ, Reichardt EP (1951) Method of producing cellulose pellets. US 2543928
41.
go back to reference Trygg J, Fardim P, Gericke M et al (2011) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr Polym 93:291–299CrossRef Trygg J, Fardim P, Gericke M et al (2011) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr Polym 93:291–299CrossRef
42.
go back to reference Sescousse R, Gavillon R, Budtova T (2011) Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765CrossRef Sescousse R, Gavillon R, Budtova T (2011) Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765CrossRef
43.
go back to reference Oliveira WD, Glasser WG (1996) Hydrogels from polysaccharides. I. Cellulose beads for chromatographic support. J Appl Polym Sci 60:63–73CrossRef Oliveira WD, Glasser WG (1996) Hydrogels from polysaccharides. I. Cellulose beads for chromatographic support. J Appl Polym Sci 60:63–73CrossRef
44.
go back to reference Ishimura D, Morimoto Y, Saito H (1998) Influences of chemical modifications on the mechanical strength of cellulose beads. Cellulose 5:135–151CrossRef Ishimura D, Morimoto Y, Saito H (1998) Influences of chemical modifications on the mechanical strength of cellulose beads. Cellulose 5:135–151CrossRef
45.
go back to reference Rosenberg P, Suominen I, Rom M et al (2007) Tailored cellulose beads for novel applications. Cellul Chem Technol 41:243–254 Rosenberg P, Suominen I, Rom M et al (2007) Tailored cellulose beads for novel applications. Cellul Chem Technol 41:243–254
46.
go back to reference Rosenberg P, Rom M, Janicki J et al (2008) New cellulose beads from biocelsol solution. Cellul Chem Technol 42:293–305 Rosenberg P, Rom M, Janicki J et al (2008) New cellulose beads from biocelsol solution. Cellul Chem Technol 42:293–305
47.
go back to reference Qi H, Sui X, Yuan J et al (2010) Electrospinning of cellulose-based fibers from NaOH/urea aqueous system. Macromol Mater Eng 295:695–700CrossRef Qi H, Sui X, Yuan J et al (2010) Electrospinning of cellulose-based fibers from NaOH/urea aqueous system. Macromol Mater Eng 295:695–700CrossRef
48.
go back to reference Luo X, Zhang L (2010) Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J Chromatogr A 1217:5922–5929CrossRef Luo X, Zhang L (2010) Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J Chromatogr A 1217:5922–5929CrossRef
49.
go back to reference Pinnow M, Fink H-P, Fanter C et al (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139CrossRef Pinnow M, Fink H-P, Fanter C et al (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139CrossRef
50.
go back to reference Twu Y-K, Huang H-I, Chang S-Y et al (2003) Preparation and sorption activity of chitosan/cellulose blend beads. Carbohydr Polym 54:425–430CrossRef Twu Y-K, Huang H-I, Chang S-Y et al (2003) Preparation and sorption activity of chitosan/cellulose blend beads. Carbohydr Polym 54:425–430CrossRef
51.
go back to reference Liu M, Huang J, Deng Y (2007) Adsorption behaviors of l-arginine from aqueous solutions on a spherical cellulose adsorbent containing the sulfonic group. Bioresour Technol 98:1144–1148CrossRef Liu M, Huang J, Deng Y (2007) Adsorption behaviors of l-arginine from aqueous solutions on a spherical cellulose adsorbent containing the sulfonic group. Bioresour Technol 98:1144–1148CrossRef
52.
go back to reference Du K-F, Yan M, Wang Q-Y et al (2010) Preparation and characterization of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography. J Chromatogr A 1217:1298–1304CrossRef Du K-F, Yan M, Wang Q-Y et al (2010) Preparation and characterization of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography. J Chromatogr A 1217:1298–1304CrossRef
53.
go back to reference Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189CrossRef Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189CrossRef
54.
go back to reference Kadokawa JI, Murakami MA, Kaneko Y (2008) A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydr Res 343:769–772CrossRef Kadokawa JI, Murakami MA, Kaneko Y (2008) A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydr Res 343:769–772CrossRef
55.
go back to reference Chang C, Zhang L, Zhou J et al (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127CrossRef Chang C, Zhang L, Zhou J et al (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127CrossRef
56.
go back to reference Qin X, Lu A, Zhang L (2013) Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose 20:1669–1677CrossRef Qin X, Lu A, Zhang L (2013) Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose 20:1669–1677CrossRef
57.
go back to reference Vashist A, Vashist A, Gupta YK et al (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2:147–166CrossRef Vashist A, Vashist A, Gupta YK et al (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2:147–166CrossRef
58.
go back to reference Cai J, Kimura S, Wada M et al (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chem Sus Chem 1:149–154CrossRef Cai J, Kimura S, Wada M et al (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chem Sus Chem 1:149–154CrossRef
59.
go back to reference Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277CrossRef Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277CrossRef
60.
go back to reference Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRef Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRef
61.
go back to reference Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774CrossRef Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774CrossRef
62.
go back to reference Wang Z, Liu S, Matsumoto Y et al (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399CrossRef Wang Z, Liu S, Matsumoto Y et al (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399CrossRef
63.
go back to reference Poustis J, Baquey C, Chauveaux D (1994) Mechanical properties of cellulose in orthopaedic devices and related environments. Clin Mater 16:119–124CrossRef Poustis J, Baquey C, Chauveaux D (1994) Mechanical properties of cellulose in orthopaedic devices and related environments. Clin Mater 16:119–124CrossRef
64.
go back to reference Müller F, Müller L, Hofmann I et al (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963CrossRef Müller F, Müller L, Hofmann I et al (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963CrossRef
65.
go back to reference Laurence S, Bareille R, Baquey C et al (2005) Development of a resorbable macroporous cellulosic material used as hemostatic in an osseous environment. J Biomed Mater Res A 15:422–429CrossRef Laurence S, Bareille R, Baquey C et al (2005) Development of a resorbable macroporous cellulosic material used as hemostatic in an osseous environment. J Biomed Mater Res A 15:422–429CrossRef
66.
go back to reference Martson M, Viljanto J, Laippala P et al (1998) Connective tissue formation in subcutaneous cellulose sponge implants in the rat. The effect of the size and cellulose content of the implant. Eur Surg Res 30:419–425CrossRef Martson M, Viljanto J, Laippala P et al (1998) Connective tissue formation in subcutaneous cellulose sponge implants in the rat. The effect of the size and cellulose content of the implant. Eur Surg Res 30:419–425CrossRef
67.
go back to reference Entcheva E, Bien H, Yin L et al (2004) Functional cadiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762CrossRef Entcheva E, Bien H, Yin L et al (2004) Functional cadiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762CrossRef
68.
go back to reference Kim CW, Kim DS, Kang SY et al (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107CrossRef Kim CW, Kim DS, Kang SY et al (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107CrossRef
69.
go back to reference Quan S, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17:223–230CrossRef Quan S, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17:223–230CrossRef
70.
go back to reference Xu S, Zhang J, He A et al (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49:2911–2917CrossRef Xu S, Zhang J, He A et al (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49:2911–2917CrossRef
71.
go back to reference Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922–11940CrossRef Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922–11940CrossRef
72.
go back to reference Freire MG, Teles ARR, Ferreira RAS et al (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13:3173–3180CrossRef Freire MG, Teles ARR, Ferreira RAS et al (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13:3173–3180CrossRef
73.
go back to reference Wang Q, Cai J, Zhang L et al (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A1:6678–6686CrossRef Wang Q, Cai J, Zhang L et al (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A1:6678–6686CrossRef
Metadata
Title
Novel Regenerated Cellulosic Materials
Author
Haisong Qi
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-49592-7_3

Premium Partners