Skip to main content
Top

2019 | OriginalPaper | Chapter

6. Novel Superabsorbent Cellulose-Based Hydrogels: Present Status, Synthesis, Characterization, and Application Prospects

Authors : You Wei Chen, Siti Hajjar Binti Hassan, Mazlita Yahya, Hwei Voon Lee

Published in: Cellulose-Based Superabsorbent Hydrogels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the past century, hydrogels have emerged as an effective material for an immense variety of applications. This contribution provides a brief overview of recent progress in cellulose-based superabsorbent hydrogels, fabrication approaches, materials, and promising applications. Firstly, hydrogels fabricated directly from various polymerization processes are presented. Secondly, we review on the stimuli-responsive hydrogels such as the role of temperature, electric potential, pH, and ionic strength to control the role of hydrogel in different applications. Also, the synthesis route and its formation mechanism for the production of smart superabsorbent, macro- and nano-hydrogels are addressed. In addition, several applications and future research in cellulose-based superabsorbent hydrogels are also discussed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121CrossRefPubMed Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121CrossRefPubMed
3.
go back to reference Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRef Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRef
4.
go back to reference Kopeček J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed 51(30):7396–7417CrossRef Kopeček J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed 51(30):7396–7417CrossRef
5.
go back to reference Khan S, Ullah A, Ullah K, Rehman NU (2016) Insight into hydrogels. Des Monomers Polym 19(5):456–478CrossRef Khan S, Ullah A, Ullah K, Rehman NU (2016) Insight into hydrogels. Des Monomers Polym 19(5):456–478CrossRef
6.
go back to reference Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech, Rijeka Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech, Rijeka
7.
go back to reference Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117 Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117
8.
go back to reference Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6CrossRefPubMedCentral Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6CrossRefPubMedCentral
9.
go back to reference Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRef
10.
go back to reference Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5(73):59745–59757CrossRef Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5(73):59745–59757CrossRef
11.
go back to reference Hennink WE, Van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236CrossRef Hennink WE, Van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236CrossRef
12.
go back to reference Gibas I, Janik H (2010) Synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 4(4):297–304 Gibas I, Janik H (2010) Synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 4(4):297–304
13.
go back to reference Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50(14):1475–1486CrossRef Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50(14):1475–1486CrossRef
14.
go back to reference Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88(3):327–339CrossRef Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88(3):327–339CrossRef
15.
go back to reference Bel’nikevich N, Bobrova N, Elokhovskii VY, Zoolshoev Z, Smirnov M, Elyashevich G (2011) Effect of initiator on the structure of hydrogels of cross-linked polyacrylic acid. Russ J Appl Chem 84(12):2106–2113CrossRef Bel’nikevich N, Bobrova N, Elokhovskii VY, Zoolshoev Z, Smirnov M, Elyashevich G (2011) Effect of initiator on the structure of hydrogels of cross-linked polyacrylic acid. Russ J Appl Chem 84(12):2106–2113CrossRef
16.
go back to reference Xiao X (2007) Effect of the initiator on thermosensitive rate of poly (N-isopropylacrylamide) hydrogels. Express Polym Lett 1:232–235CrossRef Xiao X (2007) Effect of the initiator on thermosensitive rate of poly (N-isopropylacrylamide) hydrogels. Express Polym Lett 1:232–235CrossRef
17.
go back to reference Kaihara S, Matsumura S, Fisher JP (2008) Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur J Pharm Biopharm 68(1):67–73CrossRefPubMed Kaihara S, Matsumura S, Fisher JP (2008) Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur J Pharm Biopharm 68(1):67–73CrossRefPubMed
18.
go back to reference Betancourt T, Pardo J, Soo K, Peppas NA (2010) Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 93(1):175–188PubMedPubMedCentral Betancourt T, Pardo J, Soo K, Peppas NA (2010) Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 93(1):175–188PubMedPubMedCentral
19.
go back to reference Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943CrossRefPubMed Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943CrossRefPubMed
20.
go back to reference Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRef Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRef
21.
22.
go back to reference Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433CrossRef Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433CrossRef
23.
go back to reference Haraguchi K, Xu Y, Li G (2011) Poly (N-isopropylacrylamide) prepared by free-radical polymerization in aqueous solutions and in nanocomposite hydrogels. Macromol Symp 306-307:33. Wiley Online LibraryCrossRef Haraguchi K, Xu Y, Li G (2011) Poly (N-isopropylacrylamide) prepared by free-radical polymerization in aqueous solutions and in nanocomposite hydrogels. Macromol Symp 306-307:33. Wiley Online LibraryCrossRef
24.
go back to reference Jeong GT, Lee KM, Yang HS, Park SH, Park JH, Sunwoo C, Ryu HW, Kim D, Lee WT, Kim HS (2007) Synthesis of poly(sorbitan methacrylate) hydrogel by free-radical polymerization. Appl Biochem Biotechnol 137–140(1–12):935–946PubMed Jeong GT, Lee KM, Yang HS, Park SH, Park JH, Sunwoo C, Ryu HW, Kim D, Lee WT, Kim HS (2007) Synthesis of poly(sorbitan methacrylate) hydrogel by free-radical polymerization. Appl Biochem Biotechnol 137–140(1–12):935–946PubMed
25.
go back to reference Thürmer MB, Diehl CE, Brum FJB, Santos LA (2014) Preparation and characterization of hydrogels with potential for use as biomaterials. Mater Res 17:109–113CrossRef Thürmer MB, Diehl CE, Brum FJB, Santos LA (2014) Preparation and characterization of hydrogels with potential for use as biomaterials. Mater Res 17:109–113CrossRef
26.
go back to reference Reis EF, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Synthesis and characterization of poly(vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9(2):185–191CrossRef Reis EF, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Synthesis and characterization of poly(vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9(2):185–191CrossRef
27.
go back to reference Liu ZQ, Wei Z, Zhu XL, Huang GY, Xu F, Yang JH, Osada Y, Zrínyi M, Li JH, Chen YM (2015) Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf B Biointerfaces 128:140–148CrossRefPubMed Liu ZQ, Wei Z, Zhu XL, Huang GY, Xu F, Yang JH, Osada Y, Zrínyi M, Li JH, Chen YM (2015) Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf B Biointerfaces 128:140–148CrossRefPubMed
28.
go back to reference Bakota EL, Aulisa L, Galler KM, Hartgerink JD (2011) Enzymatic cross-linking of a nanofibrous peptide hydrogel. Biomacromolecules 12(1):82–87CrossRefPubMed Bakota EL, Aulisa L, Galler KM, Hartgerink JD (2011) Enzymatic cross-linking of a nanofibrous peptide hydrogel. Biomacromolecules 12(1):82–87CrossRefPubMed
29.
go back to reference Bajpai S, Bajpai M, Sharma L (2007) Inverse suspension polymerization of poly(methacrylic acid-co-partially neutralized acrylic acid) superabsorbent hydrogels: synthesis and water uptake behavior. Des Monomers Polym 10(2):181–192CrossRef Bajpai S, Bajpai M, Sharma L (2007) Inverse suspension polymerization of poly(methacrylic acid-co-partially neutralized acrylic acid) superabsorbent hydrogels: synthesis and water uptake behavior. Des Monomers Polym 10(2):181–192CrossRef
30.
go back to reference Abd Alla SG, Said HM, El-Naggar AWM (2004) Structural properties of γ-irradiated poly(vinyl alcohol)/poly(ethylene glycol) polymer blends. J Appl Polym Sci 94(1):167–176CrossRef Abd Alla SG, Said HM, El-Naggar AWM (2004) Structural properties of γ-irradiated poly(vinyl alcohol)/poly(ethylene glycol) polymer blends. J Appl Polym Sci 94(1):167–176CrossRef
31.
go back to reference Doria-Serrano MC, Ruiz-Treviño FA, Rios-Arciga C, Hernández-Esparza M, Santiago P (2001) Physical characteristics of poly(vinyl alcohol) and calcium alginate hydrogels for the immobilization of activated sludge. Biomacromolecules 2(2):568–574CrossRefPubMed Doria-Serrano MC, Ruiz-Treviño FA, Rios-Arciga C, Hernández-Esparza M, Santiago P (2001) Physical characteristics of poly(vinyl alcohol) and calcium alginate hydrogels for the immobilization of activated sludge. Biomacromolecules 2(2):568–574CrossRefPubMed
32.
go back to reference de Jong SJ, De Smedt SC, Demeester J, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE (2001) Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J Control Release 72(1):47–56CrossRefPubMed de Jong SJ, De Smedt SC, Demeester J, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE (2001) Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J Control Release 72(1):47–56CrossRefPubMed
33.
go back to reference Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5(4):810–823CrossRefPubMedPubMedCentral Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5(4):810–823CrossRefPubMedPubMedCentral
34.
go back to reference Penco M, Marcioni S, Ferruti P, D’Antone S, Deghenghi R (1996) Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments. Biomaterials 17(16):1583–1590CrossRefPubMed Penco M, Marcioni S, Ferruti P, D’Antone S, Deghenghi R (1996) Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments. Biomaterials 17(16):1583–1590CrossRefPubMed
35.
go back to reference Wang Y, Liu C, Fan L, Sheng Y, Mao J, Chao G, Li J, Tu M, Qian Z (2005) Synthesis of biodegradable poly(butylene terephthalate)/poly(ethylene glycol)(PBT/PEG) multiblock copolymers and preparation of indirubin loaded microspheres. Polym Bull 53(3):147–154CrossRef Wang Y, Liu C, Fan L, Sheng Y, Mao J, Chao G, Li J, Tu M, Qian Z (2005) Synthesis of biodegradable poly(butylene terephthalate)/poly(ethylene glycol)(PBT/PEG) multiblock copolymers and preparation of indirubin loaded microspheres. Polym Bull 53(3):147–154CrossRef
36.
go back to reference Patil S (2008) Crosslinking of polysaccharides: methods and applications. Latest Rev 6(2):1 Patil S (2008) Crosslinking of polysaccharides: methods and applications. Latest Rev 6(2):1
37.
go back to reference Kulkarni N, Wakte P, Naik J (2015) Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int J Pharma Investig 5(2):73CrossRef Kulkarni N, Wakte P, Naik J (2015) Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int J Pharma Investig 5(2):73CrossRef
38.
go back to reference Francis R, Kumar DS (2016) Biomedical applications of polymeric materials and composites. Wiley, Weinheim, Germany Francis R, Kumar DS (2016) Biomedical applications of polymeric materials and composites. Wiley, Weinheim, Germany
39.
go back to reference Zustiak SP, Wei Y, Leach JB (2012) Protein–hydrogel interactions in tissue engineering: mechanisms and applications. Tissue Eng Pt B-Rev 19(2):160–171CrossRef Zustiak SP, Wei Y, Leach JB (2012) Protein–hydrogel interactions in tissue engineering: mechanisms and applications. Tissue Eng Pt B-Rev 19(2):160–171CrossRef
40.
go back to reference Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels…a review. Saudi Pharm J 24(5):554–559CrossRefPubMed Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels…a review. Saudi Pharm J 24(5):554–559CrossRefPubMed
41.
go back to reference He M, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L (2014) Fast contact of solid–liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interface 6(3):1872–1878CrossRef He M, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L (2014) Fast contact of solid–liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interface 6(3):1872–1878CrossRef
42.
go back to reference Bassil M, AL Moussawel J, Ibrahim M, Azzi G, El Tahchi M (2014) Electrospinning of highly aligned and covalently cross-linked hydrogel microfibers. J Appl Polym Sci 131(22):41092CrossRef Bassil M, AL Moussawel J, Ibrahim M, Azzi G, El Tahchi M (2014) Electrospinning of highly aligned and covalently cross-linked hydrogel microfibers. J Appl Polym Sci 131(22):41092CrossRef
43.
go back to reference Cook JP, Goodall GW, Khutoryanskaya OV, Khutoryanskiy VV (2012) Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol Rapid Commun 33(4):332–336CrossRefPubMed Cook JP, Goodall GW, Khutoryanskaya OV, Khutoryanskiy VV (2012) Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol Rapid Commun 33(4):332–336CrossRefPubMed
44.
go back to reference Tomšič B, Simončič B, Orel B, Vilčnik A, Spreizer H (2007) Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydr Polym 69(3):478–488CrossRef Tomšič B, Simončič B, Orel B, Vilčnik A, Spreizer H (2007) Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydr Polym 69(3):478–488CrossRef
45.
46.
go back to reference Fajardo A, Pereira A, Rubira A, Valente A, Muniz E (2015) Stimuli-responsive polysaccharide-based hydrogels. In: Polysaccharide hydrogels. Pan Stanford, Singapore, pp 325–366CrossRef Fajardo A, Pereira A, Rubira A, Valente A, Muniz E (2015) Stimuli-responsive polysaccharide-based hydrogels. In: Polysaccharide hydrogels. Pan Stanford, Singapore, pp 325–366CrossRef
47.
go back to reference Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17(26):8062–8068CrossRef Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17(26):8062–8068CrossRef
48.
go back to reference Sammon C, Bajwa G, Timmins P, Melia CD (2006) The application of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the concentration and state of water in solutions of a thermally responsive cellulose ether during gelation. Polymer 47(2):577–584CrossRef Sammon C, Bajwa G, Timmins P, Melia CD (2006) The application of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the concentration and state of water in solutions of a thermally responsive cellulose ether during gelation. Polymer 47(2):577–584CrossRef
49.
go back to reference Sekiguchi Y, Sawatari C, Kondo T (2003) A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym 53(2): 145–153CrossRef Sekiguchi Y, Sawatari C, Kondo T (2003) A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym 53(2): 145–153CrossRef
50.
go back to reference Joshi SC, Liang CM, Lam YC (2008) Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels. J Biomater Sci Polym Ed 19(12):1611–1623CrossRefPubMed Joshi SC, Liang CM, Lam YC (2008) Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels. J Biomater Sci Polym Ed 19(12):1611–1623CrossRefPubMed
51.
go back to reference Weiss P, Gauthier O, Bouler JM, Grimandi G, Daculsi G (1999) Injectable bone substitute using a hydrophilic polymer. Bone 25(2):67S–70SCrossRefPubMed Weiss P, Gauthier O, Bouler JM, Grimandi G, Daculsi G (1999) Injectable bone substitute using a hydrophilic polymer. Bone 25(2):67S–70SCrossRefPubMed
52.
go back to reference Silva SM, Pinto FV, Antunes FE, Miguel MG, Sousa JJ, Pais AA (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci 327(2): 333–340CrossRefPubMed Silva SM, Pinto FV, Antunes FE, Miguel MG, Sousa JJ, Pais AA (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci 327(2): 333–340CrossRefPubMed
53.
go back to reference Vinatier C, Gauthier O, Fatimi A, Merceron C, Masson M, Moreau A, Moreau F, Fellah B, Weiss P, Guicheux J (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102(4):1259–1267CrossRefPubMed Vinatier C, Gauthier O, Fatimi A, Merceron C, Masson M, Moreau A, Moreau F, Fellah B, Weiss P, Guicheux J (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102(4):1259–1267CrossRefPubMed
54.
go back to reference Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53CrossRef Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53CrossRef
55.
go back to reference Trojani C, Weiss P, Michiels JF, Vinatier C, Guicheux J, Daculsi G, Gaudray P, Carle GF, Rochet N (2005) Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26(27):5509–5517CrossRefPubMed Trojani C, Weiss P, Michiels JF, Vinatier C, Guicheux J, Daculsi G, Gaudray P, Carle GF, Rochet N (2005) Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26(27):5509–5517CrossRefPubMed
56.
go back to reference Hirsch SG, Spontak RJ (2002) Temperature-dependent property development in hydrogels derived from hydroxypropyl cellulose. Polymer 43(1):123–129CrossRef Hirsch SG, Spontak RJ (2002) Temperature-dependent property development in hydrogels derived from hydroxypropyl cellulose. Polymer 43(1):123–129CrossRef
58.
go back to reference Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18(1):53–75CrossRef Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18(1):53–75CrossRef
59.
go back to reference Kimura A, Nagasawa N, Taguchi M (2014) Cellulose gels produced in room temperature ionic liquids by ionizing radiation. Radiat Phys Chem 103:216–221CrossRef Kimura A, Nagasawa N, Taguchi M (2014) Cellulose gels produced in room temperature ionic liquids by ionizing radiation. Radiat Phys Chem 103:216–221CrossRef
60.
go back to reference Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47(19): 6481–6484CrossRef Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47(19): 6481–6484CrossRef
61.
go back to reference Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, Idota N, Hoffman JM (2014) Smart hydrogels. In: Smart biomaterials. Springer, Tokyo, pp 9–65 Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, Idota N, Hoffman JM (2014) Smart hydrogels. In: Smart biomaterials. Springer, Tokyo, pp 9–65
62.
go back to reference Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222CrossRef Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222CrossRef
63.
go back to reference Sharma K, Singh V, Arora A (2011) Natural biodegradable polymers as matrices in transdermal drug delivery. Int J Drug Dev Res 32:85–103 Sharma K, Singh V, Arora A (2011) Natural biodegradable polymers as matrices in transdermal drug delivery. Int J Drug Dev Res 32:85–103
64.
go back to reference Thakur A, Wanchoo R, Singh P (2011) Structural parameters and swelling behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Chem Biochem Eng Q 25(2):181–194 Thakur A, Wanchoo R, Singh P (2011) Structural parameters and swelling behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Chem Biochem Eng Q 25(2):181–194
65.
go back to reference Onofrei M, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Polymer science: research advances, practical applications and educational aspects. Formatex, Badajoz, pp 108–120 Onofrei M, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Polymer science: research advances, practical applications and educational aspects. Formatex, Badajoz, pp 108–120
66.
go back to reference Sakaguchi T, Nagano S, Hara M, Hyon S-H, Patel M, Matsumura K (2017) Facile preparation of transparent poly (vinyl alcohol) hydrogels with uniform microcrystalline structure by hot-pressing without using organic solvents. Polym J 49(7):535–542CrossRef Sakaguchi T, Nagano S, Hara M, Hyon S-H, Patel M, Matsumura K (2017) Facile preparation of transparent poly (vinyl alcohol) hydrogels with uniform microcrystalline structure by hot-pressing without using organic solvents. Polym J 49(7):535–542CrossRef
67.
go back to reference Karoyo AH, Wilson LD (2017) Physicochemical properties and the gelation process of supramolecular hydrogels: a review. Gels 3(1):1CrossRefPubMedCentral Karoyo AH, Wilson LD (2017) Physicochemical properties and the gelation process of supramolecular hydrogels: a review. Gels 3(1):1CrossRefPubMedCentral
68.
go back to reference Borzacchiello A, Ambrosio L (2009) Structure-property relationships. In: Hydrogels in hydrogels. Springer, Berlin, pp 9–20CrossRef Borzacchiello A, Ambrosio L (2009) Structure-property relationships. In: Hydrogels in hydrogels. Springer, Berlin, pp 9–20CrossRef
69.
go back to reference Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRef Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRef
70.
go back to reference Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100CrossRef Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100CrossRef
71.
go back to reference Pourjavadi A, Ayyari M, Amini-Fazl M (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44(4):1209–1216CrossRef Pourjavadi A, Ayyari M, Amini-Fazl M (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44(4):1209–1216CrossRef
72.
go back to reference Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460CrossRef Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460CrossRef
73.
go back to reference Luo X, Zhang L (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int 52(1):387–400CrossRef Luo X, Zhang L (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int 52(1):387–400CrossRef
74.
go back to reference Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119CrossRef Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119CrossRef
75.
go back to reference Duan J, Zhang X, Jiang J, Han C, Yang J, Liu L, Lan H, Huang D (2014) The synthesis of a novel cellulose physical gel. J Nanomater 2014:1CrossRef Duan J, Zhang X, Jiang J, Han C, Yang J, Liu L, Lan H, Huang D (2014) The synthesis of a novel cellulose physical gel. J Nanomater 2014:1CrossRef
76.
go back to reference D’Arrigo G (2013) Macro and nano shaped polysaccharide hydrogels as drug delivery systems. Northeastern University, Boston D’Arrigo G (2013) Macro and nano shaped polysaccharide hydrogels as drug delivery systems. Northeastern University, Boston
77.
go back to reference Li L, Jiang R, Chen J, Wang M, Ge X (2017) In situ synthesis and self-reinforcement of polymeric composite hydrogel based on particulate macro-RAFT agents. RSC Adv 7(3): 1513–1519CrossRef Li L, Jiang R, Chen J, Wang M, Ge X (2017) In situ synthesis and self-reinforcement of polymeric composite hydrogel based on particulate macro-RAFT agents. RSC Adv 7(3): 1513–1519CrossRef
78.
go back to reference Feeney M, Giannuzzo M, Paolicelli P, Casadei MA (2007) Hydrogels of dextran containing nonsteroidal anti-inflammatory drugs as pendant agents. Drug Deliv 14(2):87–93CrossRefPubMed Feeney M, Giannuzzo M, Paolicelli P, Casadei MA (2007) Hydrogels of dextran containing nonsteroidal anti-inflammatory drugs as pendant agents. Drug Deliv 14(2):87–93CrossRefPubMed
79.
go back to reference Zhang Y, Liu Y, Liu J, Guo P, Heng L (2017) Super water absorbency OMMT/PAA hydrogel materials with excellent mechanical properties. RSC Adv 7(24):14504–14510CrossRef Zhang Y, Liu Y, Liu J, Guo P, Heng L (2017) Super water absorbency OMMT/PAA hydrogel materials with excellent mechanical properties. RSC Adv 7(24):14504–14510CrossRef
80.
go back to reference Sannino A, Esposito A, Nicolais L, Del Nobile M, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci-Mater M 11(4):247–253CrossRef Sannino A, Esposito A, Nicolais L, Del Nobile M, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci-Mater M 11(4):247–253CrossRef
81.
go back to reference Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose-based hydrogels under a compressive stress field. J Appl Polym Sci 91(6): 3791–3796CrossRef Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose-based hydrogels under a compressive stress field. J Appl Polym Sci 91(6): 3791–3796CrossRef
82.
go back to reference Sannino A, Esposito A, Rosa AD, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67((3):1016–1024CrossRef Sannino A, Esposito A, Rosa AD, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67((3):1016–1024CrossRef
83.
go back to reference Li X, He JZ, Hughes JM, Liu YR, Zheng YM (2014) Effects of super-absorbent polymers on a soil–wheat (Triticum aestivum L.) system in the field. Appl Soil Ecol 73:58–63CrossRef Li X, He JZ, Hughes JM, Liu YR, Zheng YM (2014) Effects of super-absorbent polymers on a soil–wheat (Triticum aestivum L.) system in the field. Appl Soil Ecol 73:58–63CrossRef
84.
go back to reference Salmawi KME, El-Naggar AA, Ibrahim SM (2018) Gamma irradiation synthesis of carboxymethyl cellulose/acrylic acid/clay superabsorbent hydrogel. Adv Polym Technol 37(2), 515–521 Salmawi KME, El-Naggar AA, Ibrahim SM (2018) Gamma irradiation synthesis of carboxymethyl cellulose/acrylic acid/clay superabsorbent hydrogel. Adv Polym Technol 37(2), 515–521
85.
go back to reference Li J, Jiang M, Wu H, Li Y (2009) Addition of modified bentonites in polymer gel formulation of 2, 4-D for its controlled release in water and soil. J Agric Food Chem 57(7):2868–2874CrossRefPubMed Li J, Jiang M, Wu H, Li Y (2009) Addition of modified bentonites in polymer gel formulation of 2, 4-D for its controlled release in water and soil. J Agric Food Chem 57(7):2868–2874CrossRefPubMed
86.
go back to reference Kołodyńska D, Skiba A, Be G, Hubicki Z (2016) Hydrogels from fundaments to application. In: Emerging concepts in analysis and applications of hydrogels. InTech, Vienna Kołodyńska D, Skiba A, Be G, Hubicki Z (2016) Hydrogels from fundaments to application. In: Emerging concepts in analysis and applications of hydrogels. InTech, Vienna
87.
go back to reference Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119(1):5–24CrossRefPubMed Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119(1):5–24CrossRefPubMed
88.
go back to reference Xiaoyu N, Yuejin W, Zhengyan W, Lin W, Guannan Q, Lixiang Y (2013) A novel slow-release urea fertiliser: physical and chemical analysis of its structure and study of its release mechanism. Biosyst Eng 115(3):274–282CrossRef Xiaoyu N, Yuejin W, Zhengyan W, Lin W, Guannan Q, Lixiang Y (2013) A novel slow-release urea fertiliser: physical and chemical analysis of its structure and study of its release mechanism. Biosyst Eng 115(3):274–282CrossRef
89.
go back to reference Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51CrossRefPubMed Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51CrossRefPubMed
90.
go back to reference Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439CrossRefPubMed Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439CrossRefPubMed
91.
go back to reference Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springerplus 2(1):318CrossRefPubMedPubMedCentral Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springerplus 2(1):318CrossRefPubMedPubMedCentral
92.
go back to reference Davidson DGu FX (2012) Materials for sustained and controlled release of nutrients and molecules to support plant growth. J Agric Food Chem 60(4):870–876CrossRef Davidson DGu FX (2012) Materials for sustained and controlled release of nutrients and molecules to support plant growth. J Agric Food Chem 60(4):870–876CrossRef
93.
go back to reference Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451 Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451
94.
go back to reference Spagnol C, Rodrigues FH, Pereira AG, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87(3):2038–2045CrossRef Spagnol C, Rodrigues FH, Pereira AG, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87(3):2038–2045CrossRef
95.
go back to reference Liu H, Zhang Y, Yao J (2014) Preparation and properties of an eco-friendly superabsorbent based on flax yarn waste for sanitary napkin applications. Fibers Polym 15(1):145CrossRef Liu H, Zhang Y, Yao J (2014) Preparation and properties of an eco-friendly superabsorbent based on flax yarn waste for sanitary napkin applications. Fibers Polym 15(1):145CrossRef
96.
go back to reference Zhang Y, Wu F, Liu L, Yao J (2013) Synthesis and urea sustained-release behavior of an eco-friendly superabsorbent based on flax yarn wastes. Carbohydr Polym 91(1):277–283CrossRefPubMed Zhang Y, Wu F, Liu L, Yao J (2013) Synthesis and urea sustained-release behavior of an eco-friendly superabsorbent based on flax yarn wastes. Carbohydr Polym 91(1):277–283CrossRefPubMed
97.
go back to reference Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly (acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68(2):367–374CrossRef Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly (acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68(2):367–374CrossRef
98.
go back to reference Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8(5):439–444CrossRef Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8(5):439–444CrossRef
99.
go back to reference Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II). Carbohydr Polym 101:75–82CrossRefPubMed Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II). Carbohydr Polym 101:75–82CrossRefPubMed
100.
go back to reference Tripathy J, Mishra DK, Behari K (2009) Graft copolymerization of N-vinylformamide onto sodium carboxymethylcellulose and study of its swelling, metal ion sorption and flocculation behaviour. Carbohydr Polym 75(4):604–611CrossRef Tripathy J, Mishra DK, Behari K (2009) Graft copolymerization of N-vinylformamide onto sodium carboxymethylcellulose and study of its swelling, metal ion sorption and flocculation behaviour. Carbohydr Polym 75(4):604–611CrossRef
101.
go back to reference Kamel S, Hassan E, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J Appl Polym Sci 100(1):329–334CrossRef Kamel S, Hassan E, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J Appl Polym Sci 100(1):329–334CrossRef
102.
go back to reference Abdel-Aal S, Gad Y, Dessouki A (2006) The use of wood pulp and radiation-modified starch in wastewater treatment. J Appl Polym Sci 99(5):2460–2469CrossRef Abdel-Aal S, Gad Y, Dessouki A (2006) The use of wood pulp and radiation-modified starch in wastewater treatment. J Appl Polym Sci 99(5):2460–2469CrossRef
103.
go back to reference Hashem A, Ahmad F, Fahad R (2008) Application of some starch hydrogels for the removal of mercury (II) ions from aqueous solutions. Adsorpt Sci Technol 26(8):563–579CrossRef Hashem A, Ahmad F, Fahad R (2008) Application of some starch hydrogels for the removal of mercury (II) ions from aqueous solutions. Adsorpt Sci Technol 26(8):563–579CrossRef
104.
go back to reference Rohrbach K, Li Y, Zhu H, Liu Z, Dai J, Andreasen J, Hu L (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50(87): 13296–13299 Rohrbach K, Li Y, Zhu H, Liu Z, Dai J, Andreasen J, Hu L (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50(87): 13296–13299
105.
go back to reference Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8(4):2732–2740CrossRefPubMed Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8(4):2732–2740CrossRefPubMed
106.
go back to reference Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRef Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRef
107.
go back to reference Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22(8):769–785CrossRefPubMed Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22(8):769–785CrossRefPubMed
108.
go back to reference Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5(4):2054–2130CrossRefPubMedPubMedCentral Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5(4):2054–2130CrossRefPubMedPubMedCentral
109.
go back to reference Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRef Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRef
110.
go back to reference Lin C-CMetters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12):1379–1408 Lin C-CMetters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12):1379–1408
111.
go back to reference Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351CrossRefPubMed Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351CrossRefPubMed
112.
go back to reference Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14(12):4447–4455CrossRefPubMed Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14(12):4447–4455CrossRefPubMed
113.
go back to reference Leone G, Fini M, Torricelli P, Giardino R, Barbucci R (2008) An amidated carboxymethylcellulose hydrogel for cartilage regeneration. J Mater Sci-Mater M 19(8):2873–2880CrossRef Leone G, Fini M, Torricelli P, Giardino R, Barbucci R (2008) An amidated carboxymethylcellulose hydrogel for cartilage regeneration. J Mater Sci-Mater M 19(8):2873–2880CrossRef
114.
go back to reference Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80((1):66–74CrossRef Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80((1):66–74CrossRef
115.
go back to reference Zohuriaan-Mehr M, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735CrossRef Zohuriaan-Mehr M, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735CrossRef
116.
go back to reference Jones V, Grey JE, Harding KG (2006) ABC of wound healing: wound dressings. BMJ- Brit Med J 332(7544):777CrossRefPubMed Jones V, Grey JE, Harding KG (2006) ABC of wound healing: wound dressings. BMJ- Brit Med J 332(7544):777CrossRefPubMed
117.
go back to reference Dabiri G, Damstetter E, Phillips T (2016) Choosing a wound dressing based on common wound characteristics. Adv Wound Care 5(1):32–41CrossRef Dabiri G, Damstetter E, Phillips T (2016) Choosing a wound dressing based on common wound characteristics. Adv Wound Care 5(1):32–41CrossRef
118.
go back to reference Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressings: indications and best use. Clin Tech Equine Pract 3(2):148–163CrossRef Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressings: indications and best use. Clin Tech Equine Pract 3(2):148–163CrossRef
119.
go back to reference Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193:293–294CrossRefPubMed Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193:293–294CrossRefPubMed
120.
go back to reference Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436PubMedPubMedCentral Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436PubMedPubMedCentral
121.
go back to reference Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12CrossRefPubMed Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12CrossRefPubMed
123.
go back to reference Bukhari SMH, Khan S, Rehanullah M, Ranjha NM (2015) Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release. Int J Polym Sci 2015:Article ID 187961. https://doi.org/10.1155/2015/187961. 15 pagesCrossRef Bukhari SMH, Khan S, Rehanullah M, Ranjha NM (2015) Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release. Int J Polym Sci 2015:Article ID 187961. https://​doi.​org/​10.​1155/​2015/​187961. 15 pagesCrossRef
124.
go back to reference Saini K (2017) Preparation method, properties and crosslinking of hydrogel: a review. PharmaTutor 5(1):27–36 Saini K (2017) Preparation method, properties and crosslinking of hydrogel: a review. PharmaTutor 5(1):27–36
125.
go back to reference Hatefi A, Amsden B (2002) Biodegradable injectable in situ forming drug delivery systems. J Control Release 80(1):9–28CrossRefPubMed Hatefi A, Amsden B (2002) Biodegradable injectable in situ forming drug delivery systems. J Control Release 80(1):9–28CrossRefPubMed
126.
go back to reference Park SA, Lee SH, Kim W (2011) Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering. Macromol Res 19(7):694–698CrossRef Park SA, Lee SH, Kim W (2011) Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering. Macromol Res 19(7):694–698CrossRef
127.
go back to reference Bakarich SE, Pidcock GC, Balding P, Stevens L, Calvert P (2012) Recovery from applied strain in interpenetrating polymer network hydrogels with ionic and covalent cross-links. Soft Matter 8(39):9985–9988CrossRef Bakarich SE, Pidcock GC, Balding P, Stevens L, Calvert P (2012) Recovery from applied strain in interpenetrating polymer network hydrogels with ionic and covalent cross-links. Soft Matter 8(39):9985–9988CrossRef
128.
go back to reference Jin KM, Kim YH (2008) Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery. J Control Release 127(3):249–256CrossRefPubMed Jin KM, Kim YH (2008) Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery. J Control Release 127(3):249–256CrossRefPubMed
Metadata
Title
Novel Superabsorbent Cellulose-Based Hydrogels: Present Status, Synthesis, Characterization, and Application Prospects
Authors
You Wei Chen
Siti Hajjar Binti Hassan
Mazlita Yahya
Hwei Voon Lee
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_9

Premium Partners