Skip to main content
Top

2024 | OriginalPaper | Chapter

6. NPs for Polymer-Based EMI Shielding and Fire Retarding Nanocomposites

Authors : Suprakas Sinha Ray, Lesego Tabea Temane, Jonathan Tersur Orasugh

Published in: Graphene-Bearing Polymer Composites

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into integrating nanoparticles (NPs) in polymer-based nanocomposites for advancing electromagnetic interference (EMI) shielding and fire-retarding properties. The chapter elucidates their role in enhancing material performance by exploring the synergistic effects between NPs and polymers. Specifically, the incorporation of NPs facilitates the absorption and reflection of electromagnetic waves, thereby bolstering EMI shielding effectiveness. Additionally, NPs create thermally stable networks within the polymer matrix, leading to improved flame-retardant capabilities. Through a detailed examination of fabrication techniques, nanocomposite structures, and characterization methods, this chapter provides valuable insights for researchers and engineers aiming to develop advanced materials with superior EMI shielding and fire-retarding properties, crucial for a myriad of applications in electronics, aerospace, and beyond.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao, M. Yuan, H. Bai, C. Gao, High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020)CrossRef W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao, M. Yuan, H. Bai, C. Gao, High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020)CrossRef
2.
go back to reference Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li, H. Yang, F. Fu, J.Y. Lee, Y.X. Guo, J.S. Ho, Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Func. Mater. 30(5), 1907451 (2020)CrossRef Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li, H. Yang, F. Fu, J.Y. Lee, Y.X. Guo, J.S. Ho, Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Func. Mater. 30(5), 1907451 (2020)CrossRef
3.
go back to reference X.-Z. Jin, Z.-Y. Yang, C.-H. Huang, J.-H. Yang, Y. Wang, PEDOT:PSS/MXene/PEG composites with remarkable thermal management performance and excellent HF-band & X-band electromagnetic interference shielding efficiency for electronic packaging. Chem. Eng. J. 448, 137599 (2022)CrossRef X.-Z. Jin, Z.-Y. Yang, C.-H. Huang, J.-H. Yang, Y. Wang, PEDOT:PSS/MXene/PEG composites with remarkable thermal management performance and excellent HF-band & X-band electromagnetic interference shielding efficiency for electronic packaging. Chem. Eng. J. 448, 137599 (2022)CrossRef
4.
go back to reference M. Li, F. Han, S. Jiang, M. Zhang, Q. Xu, J. Zhu, A. Ge, L. Liu, Lightweight cellulose nanofibril/reduced graphene oxide aerogels with unidirectional pores for efficient electromagnetic interference shielding. Adv. Mater. Interfaces 8(24), 2101437 (2021)CrossRef M. Li, F. Han, S. Jiang, M. Zhang, Q. Xu, J. Zhu, A. Ge, L. Liu, Lightweight cellulose nanofibril/reduced graphene oxide aerogels with unidirectional pores for efficient electromagnetic interference shielding. Adv. Mater. Interfaces 8(24), 2101437 (2021)CrossRef
5.
go back to reference Z. Chen, Q. Zhang, W. Meng, Z. Wang, X. Han, J. Pu, Nickel-reduced graphene oxide-cellulose nanofiber composite papers for electromagnetic interference shielding. BioResources 15(1), 814–824 (2020)CrossRef Z. Chen, Q. Zhang, W. Meng, Z. Wang, X. Han, J. Pu, Nickel-reduced graphene oxide-cellulose nanofiber composite papers for electromagnetic interference shielding. BioResources 15(1), 814–824 (2020)CrossRef
6.
go back to reference P. Sambyal, S.K. Dhawan, P. Gairola, S.S. Chauhan, S.P. Gairola, Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-Band. Curr. Appl. Phys. 18(5), 611–618 (2018)CrossRef P. Sambyal, S.K. Dhawan, P. Gairola, S.S. Chauhan, S.P. Gairola, Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-Band. Curr. Appl. Phys. 18(5), 611–618 (2018)CrossRef
7.
go back to reference C. Xing, S. Zhu, Z. Ullah, X. Pan, F. Wu, X. Zuo, J. Liu, M. Chen, W. Li, Q. Li, L. Liu, Ultralight and flexible graphene foam coated with Bacillus subtilis as a highly efficient electromagnetic interference shielding film. Appl. Surf. Sci. 491, 616–623 (2019)CrossRef C. Xing, S. Zhu, Z. Ullah, X. Pan, F. Wu, X. Zuo, J. Liu, M. Chen, W. Li, Q. Li, L. Liu, Ultralight and flexible graphene foam coated with Bacillus subtilis as a highly efficient electromagnetic interference shielding film. Appl. Surf. Sci. 491, 616–623 (2019)CrossRef
8.
go back to reference D.M. Ledwith, A.M. Whelan, J.M. Kelly, A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J. Mater. Chem. 17(23), 2459–2464 (2007)CrossRef D.M. Ledwith, A.M. Whelan, J.M. Kelly, A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J. Mater. Chem. 17(23), 2459–2464 (2007)CrossRef
9.
go back to reference S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003)CrossRef S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003)CrossRef
10.
go back to reference S.S. Ray, K. Yamada, M. Okamoto, K. Ueda, New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44(3), 857–866 (2003) S.S. Ray, K. Yamada, M. Okamoto, K. Ueda, New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44(3), 857–866 (2003)
11.
go back to reference S. Sinha Ray, K. Yamada, M. Okamoto, K. Ueda, Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett. 2(10), 1093–1096 (2002)CrossRef S. Sinha Ray, K. Yamada, M. Okamoto, K. Ueda, Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett. 2(10), 1093–1096 (2002)CrossRef
12.
go back to reference L.T. Temane, J.T. Orasugh, S.S. Ray, Adsorptive removal of pollutants using graphene-based materials for water purification, in Two-Dimensional Materials for Environmental Applications. ed. by N. Kumar, R. Gusain, S. Sinha Ray (Springer International Publishing, Cham, 2023), pp.179–244CrossRef L.T. Temane, J.T. Orasugh, S.S. Ray, Adsorptive removal of pollutants using graphene-based materials for water purification, in Two-Dimensional Materials for Environmental Applications. ed. by N. Kumar, R. Gusain, S. Sinha Ray (Springer International Publishing, Cham, 2023), pp.179–244CrossRef
13.
go back to reference T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6), 327–331 (2008)PubMedCrossRef T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6), 327–331 (2008)PubMedCrossRef
14.
go back to reference N. Saifuddin, A.Z. Raziah, A.R. Junizah, Carbon nanotubes: a review on structure and their interaction with proteins. J. Chem. 2013, 676815 (2013)CrossRef N. Saifuddin, A.Z. Raziah, A.R. Junizah, Carbon nanotubes: a review on structure and their interaction with proteins. J. Chem. 2013, 676815 (2013)CrossRef
15.
go back to reference J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9), 1624–1652 (2006) J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9), 1624–1652 (2006)
16.
go back to reference G. Armstrong, M. Ruether, F. Blighe, W. Blau, Functionalised multi-walled carbon nanotubes for epoxy nanocomposites with improved performance. Polym. Int. 58(9), 1002–1009 (2009)CrossRef G. Armstrong, M. Ruether, F. Blighe, W. Blau, Functionalised multi-walled carbon nanotubes for epoxy nanocomposites with improved performance. Polym. Int. 58(9), 1002–1009 (2009)CrossRef
17.
go back to reference J.T. Orasugh, C. Pal, A.P. Samanta, D. Chattopadhyay, Carbon nanotube and nanofiber reinforced polymer composites, in Encyclopedia of Materials: Plastics and Polymers. ed. by M.S.J. Hashmi (Elsevier, Oxford, 2022), pp.837–859CrossRef J.T. Orasugh, C. Pal, A.P. Samanta, D. Chattopadhyay, Carbon nanotube and nanofiber reinforced polymer composites, in Encyclopedia of Materials: Plastics and Polymers. ed. by M.S.J. Hashmi (Elsevier, Oxford, 2022), pp.837–859CrossRef
18.
go back to reference S.S. Ray, A. Geberekrstos, T.S. Muzata, J.T. Orasugh, Process-Induced Phase Separation in Polymer Blends: Materials, Characterization, Properties, and Applications (Carl Hanser Verlag GmbH Co KG, 2023) S.S. Ray, A. Geberekrstos, T.S. Muzata, J.T. Orasugh, Process-Induced Phase Separation in Polymer Blends: Materials, Characterization, Properties, and Applications (Carl Hanser Verlag GmbH Co KG, 2023)
19.
go back to reference A. Gebrekrstos, J.T. Orasugh, T.S. Muzata, S.S. Ray, Cellulose-based sustainable composites: a review of systems for applications in EMI shielding and sensors. Macromol. Mater. Eng. 307(9), 2200185 (2022)CrossRef A. Gebrekrstos, J.T. Orasugh, T.S. Muzata, S.S. Ray, Cellulose-based sustainable composites: a review of systems for applications in EMI shielding and sensors. Macromol. Mater. Eng. 307(9), 2200185 (2022)CrossRef
20.
go back to reference S. Ran, F. Fang, Z. Guo, P. Song, Y. Cai, Z. Fang, H. Wang, Synthesis of decorated graphene with P, N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid. Compos. B Eng. 170, 41–50 (2019)CrossRef S. Ran, F. Fang, Z. Guo, P. Song, Y. Cai, Z. Fang, H. Wang, Synthesis of decorated graphene with P, N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid. Compos. B Eng. 170, 41–50 (2019)CrossRef
21.
go back to reference K. Malkappa, J. Bandyopadhyay, V. Ojijo, S.S. Ray, Superior flame retardancy, antidripping, and thermomechanical properties of polyamide nanocomposites with graphene-based hybrid flame retardant. J. Appl. Polym. Sci. 139(37), e52867 (2022)CrossRef K. Malkappa, J. Bandyopadhyay, V. Ojijo, S.S. Ray, Superior flame retardancy, antidripping, and thermomechanical properties of polyamide nanocomposites with graphene-based hybrid flame retardant. J. Appl. Polym. Sci. 139(37), e52867 (2022)CrossRef
22.
go back to reference J.T. Orasugh, S.S. Ray, Functional and structural facts of effective electromagnetic interference shielding materials: a review. ACS Omega 8(9), 8134–8158 (2023)PubMedPubMedCentralCrossRef J.T. Orasugh, S.S. Ray, Functional and structural facts of effective electromagnetic interference shielding materials: a review. ACS Omega 8(9), 8134–8158 (2023)PubMedPubMedCentralCrossRef
23.
go back to reference H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)CrossRef H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)CrossRef
24.
go back to reference H. Kim, Y. Miura, C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22(11), 3441–3450 (2010)CrossRef H. Kim, Y. Miura, C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22(11), 3441–3450 (2010)CrossRef
25.
go back to reference B. Shen, W. Zhai, C. Chen, D. Lu, J. Wang, W. Zheng, Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl. Mater. Interfaces 3(8), 3103–3109 (2011)PubMedCrossRef B. Shen, W. Zhai, C. Chen, D. Lu, J. Wang, W. Zheng, Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl. Mater. Interfaces 3(8), 3103–3109 (2011)PubMedCrossRef
26.
go back to reference B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, Y. Hu, Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 237, 411–420 (2014)CrossRef B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, Y. Hu, Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 237, 411–420 (2014)CrossRef
27.
go back to reference S. Chandrasekaran, C. Seidel, K. Schulte, Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: Mechanical, electrical and thermal properties. Eur. Polymer J. 49(12), 3878–3888 (2013)CrossRef S. Chandrasekaran, C. Seidel, K. Schulte, Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: Mechanical, electrical and thermal properties. Eur. Polymer J. 49(12), 3878–3888 (2013)CrossRef
28.
go back to reference O.M. Istrate, K.R. Paton, U. Khan, A. O’Neill, A.P. Bell, J.N. Coleman, Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78, 243–249 (2014)CrossRef O.M. Istrate, K.R. Paton, U. Khan, A. O’Neill, A.P. Bell, J.N. Coleman, Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78, 243–249 (2014)CrossRef
29.
go back to reference B. Shen, W. Zhai, M. Tao, D. Lu, W. Zheng, Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending. Compos. Sci. Technol. 86, 109–116 (2013)CrossRef B. Shen, W. Zhai, M. Tao, D. Lu, W. Zheng, Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending. Compos. Sci. Technol. 86, 109–116 (2013)CrossRef
30.
go back to reference A. Sadeghi, R. Moeini, J.K. Yeganeh, Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nanosheets prepared through melt compounding. Polym. Compos. 40(S2), E1461–E1469 (2019)CrossRef A. Sadeghi, R. Moeini, J.K. Yeganeh, Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nanosheets prepared through melt compounding. Polym. Compos. 40(S2), E1461–E1469 (2019)CrossRef
31.
go back to reference B. Lee, U. Hwang, J. Kim, S.-H. Kim, K. Choi, I.-K. Park, C. Choi, J. Suhr, J.-D. Nam, Highly dispersed graphene nanoplatelets in polypropylene composites by employing high-shear stress for enhanced dielectric properties and frequency-selective electromagnetic interference shielding capability. Compos. Commun. 37, 101409 (2023)CrossRef B. Lee, U. Hwang, J. Kim, S.-H. Kim, K. Choi, I.-K. Park, C. Choi, J. Suhr, J.-D. Nam, Highly dispersed graphene nanoplatelets in polypropylene composites by employing high-shear stress for enhanced dielectric properties and frequency-selective electromagnetic interference shielding capability. Compos. Commun. 37, 101409 (2023)CrossRef
32.
go back to reference P. Bhawal, S. Ganguly, T.K. Das, S. Mondal, S. Choudhury, N.C. Das, Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites. Compos. B Eng. 134, 46–60 (2018)CrossRef P. Bhawal, S. Ganguly, T.K. Das, S. Mondal, S. Choudhury, N.C. Das, Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites. Compos. B Eng. 134, 46–60 (2018)CrossRef
33.
go back to reference S.P. Pawar, S. Stephen, S. Bose, V. Mittal, Tailored electrical conductivity, electromagnetic shielding and thermal transport in polymeric blends with graphene sheets decorated with nickel nanoparticles. Phys. Chem. Chem. Phys. 17(22), 14922–14930 (2015)PubMedCrossRef S.P. Pawar, S. Stephen, S. Bose, V. Mittal, Tailored electrical conductivity, electromagnetic shielding and thermal transport in polymeric blends with graphene sheets decorated with nickel nanoparticles. Phys. Chem. Chem. Phys. 17(22), 14922–14930 (2015)PubMedCrossRef
34.
go back to reference A. Nasr Esfahani, A. Katbab, A. Taeb, L. Simon, M.A. Pope, Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. Eur. Polymer J. 95, 520–538 (2017)CrossRef A. Nasr Esfahani, A. Katbab, A. Taeb, L. Simon, M.A. Pope, Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. Eur. Polymer J. 95, 520–538 (2017)CrossRef
35.
go back to reference G.P. Abhilash, D. Sharma, S. Bose, C. Shivakumara, PANI-wrapped BaFe12O19 and SrFe12O19 with rGO composite materials for electromagnetic interference shielding applications. Heliyon 9(3), e13648 (2023)PubMedPubMedCentralCrossRef G.P. Abhilash, D. Sharma, S. Bose, C. Shivakumara, PANI-wrapped BaFe12O19 and SrFe12O19 with rGO composite materials for electromagnetic interference shielding applications. Heliyon 9(3), e13648 (2023)PubMedPubMedCentralCrossRef
36.
go back to reference J. Zhou, C. Liu, L. Xia, L. Wang, C. Qi, G. Zhang, Z. Tan, B. Ren, B. Yuan, Bridge-graphene connecting polymer composite with a distinctive segregated structure for simultaneously improving electromagnetic interference shielding and flame-retardant properties. Colloids Surf. A 661, 130853 (2023)CrossRef J. Zhou, C. Liu, L. Xia, L. Wang, C. Qi, G. Zhang, Z. Tan, B. Ren, B. Yuan, Bridge-graphene connecting polymer composite with a distinctive segregated structure for simultaneously improving electromagnetic interference shielding and flame-retardant properties. Colloids Surf. A 661, 130853 (2023)CrossRef
37.
go back to reference X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo, Y. Wang, Ordered multilayer film of (graphene oxide/polymer and boron nitride/polymer) nanocomposites: an ideal EMI shielding material with excellent electrical insulation and high thermal conductivity. Compos. Sci. Technol. 136, 104–110 (2016)CrossRef X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo, Y. Wang, Ordered multilayer film of (graphene oxide/polymer and boron nitride/polymer) nanocomposites: an ideal EMI shielding material with excellent electrical insulation and high thermal conductivity. Compos. Sci. Technol. 136, 104–110 (2016)CrossRef
38.
go back to reference V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50(6), 2202–2208 (2012)CrossRef V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50(6), 2202–2208 (2012)CrossRef
39.
go back to reference J.T. Orasugh, C. Pal, M.S. Ali, D. Chattopadhyay, Electromagnetic interference shielding property of polymer-graphene composites, in Polymer Nanocomposites Containing Graphene, ed. by M. Rahaman, L. Nayak, I.A. Hussein, N.C. Das (Woodhead Publishing, 2022), pp 211–243 J.T. Orasugh, C. Pal, M.S. Ali, D. Chattopadhyay, Electromagnetic interference shielding property of polymer-graphene composites, in Polymer Nanocomposites Containing Graphene, ed. by M. Rahaman, L. Nayak, I.A. Hussein, N.C. Das (Woodhead Publishing, 2022), pp 211–243
40.
go back to reference D.G. Galpayage Dona, M. Wang, M. Liu, N. Motta, E. Waclawik, C. Yan, Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1(2), 30–49 (2012)CrossRef D.G. Galpayage Dona, M. Wang, M. Liu, N. Motta, E. Waclawik, C. Yan, Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1(2), 30–49 (2012)CrossRef
41.
go back to reference Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.-K. Kim, Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(10), 9059–9069 (2017)PubMedCrossRef Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.-K. Kim, Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(10), 9059–9069 (2017)PubMedCrossRef
42.
go back to reference A. Nasir, A. Raza, M. Tahir, T. Yasin, M. Nadeem, B. Ahmad, Synthesis and study of polyaniline grafted graphene oxide nanohybrids. Mater. Res. Bull. 157, 112006 (2023)CrossRef A. Nasir, A. Raza, M. Tahir, T. Yasin, M. Nadeem, B. Ahmad, Synthesis and study of polyaniline grafted graphene oxide nanohybrids. Mater. Res. Bull. 157, 112006 (2023)CrossRef
43.
go back to reference J. Zhang, Y. Qi, Y. Zhang, J. Duan, B. Liu, B. Liu, Z. Sun, Y. Xu, W. Hu, N. Zhang, Lignin based flexible electromagnetic shielding PU synergized with graphite. Fibers Polym. 22(1), 1–8 (2021)CrossRef J. Zhang, Y. Qi, Y. Zhang, J. Duan, B. Liu, B. Liu, Z. Sun, Y. Xu, W. Hu, N. Zhang, Lignin based flexible electromagnetic shielding PU synergized with graphite. Fibers Polym. 22(1), 1–8 (2021)CrossRef
44.
go back to reference H. Wadhwa, S. Mahendia, S. Kumar, Microwave synthesized graphene-PAni nanocomposites for EMI shielding, in AIP Conference Proceedings (AIP Publishing LLC, 2019), p. 030123 H. Wadhwa, S. Mahendia, S. Kumar, Microwave synthesized graphene-PAni nanocomposites for EMI shielding, in AIP Conference Proceedings (AIP Publishing LLC, 2019), p. 030123
45.
go back to reference K. Cheng, H. Li, M. Zhu, H. Qiu, J. Yang, In situ polymerization of graphene-polyaniline@ polyimide composite films with high EMI shielding and electrical properties. RSC Adv. 10(4), 2368–2377 (2020)PubMedPubMedCentralCrossRef K. Cheng, H. Li, M. Zhu, H. Qiu, J. Yang, In situ polymerization of graphene-polyaniline@ polyimide composite films with high EMI shielding and electrical properties. RSC Adv. 10(4), 2368–2377 (2020)PubMedPubMedCentralCrossRef
46.
go back to reference S. Khasim, Polyaniline-Graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Results Phys. 12, 1073–1081 (2019)CrossRef S. Khasim, Polyaniline-Graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Results Phys. 12, 1073–1081 (2019)CrossRef
47.
go back to reference M. Taj, S.R. Manohara, B. Siddlingeshwar, N. Raghavendra, M. Faisal, U.V. Khadke, Anticorrosion and electromagnetic interference shielding performance of bifunctional PEDOT-graphene nanocomposites. Diamond Relat. Mater. 132, 109690 (2023)CrossRef M. Taj, S.R. Manohara, B. Siddlingeshwar, N. Raghavendra, M. Faisal, U.V. Khadke, Anticorrosion and electromagnetic interference shielding performance of bifunctional PEDOT-graphene nanocomposites. Diamond Relat. Mater. 132, 109690 (2023)CrossRef
48.
go back to reference P. Das, A.B. Deoghare, S. Ranjan Maity, Synergistically improved thermal stability and electromagnetic interference shielding effectiveness (EMI SE) of in-situ synthesized polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites. Ceram. Int. 48(8), 11031–11042 (2022)CrossRef P. Das, A.B. Deoghare, S. Ranjan Maity, Synergistically improved thermal stability and electromagnetic interference shielding effectiveness (EMI SE) of in-situ synthesized polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites. Ceram. Int. 48(8), 11031–11042 (2022)CrossRef
49.
go back to reference X. Bai, Y. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115(23), 11673–11677 (2011)CrossRef X. Bai, Y. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115(23), 11673–11677 (2011)CrossRef
50.
go back to reference Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai, X. Wei, W. Zheng, The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017)CrossRef Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai, X. Wei, W. Zheng, The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017)CrossRef
51.
go back to reference B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016)PubMedCrossRef B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016)PubMedCrossRef
52.
go back to reference H. Fang, H. Guo, Y. Hu, Y. Ren, P.-C. Hsu, S.-L. Bai, In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 188, 107975 (2020)CrossRef H. Fang, H. Guo, Y. Hu, Y. Ren, P.-C. Hsu, S.-L. Bai, In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 188, 107975 (2020)CrossRef
53.
go back to reference V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene–PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296(10), 894–898 (2011)CrossRef V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene–PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296(10), 894–898 (2011)CrossRef
54.
go back to reference J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, W.G. Zheng, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013) J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, W.G. Zheng, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013)
55.
go back to reference Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5(31), 24342–24351 (2015)CrossRef Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5(31), 24342–24351 (2015)CrossRef
56.
go back to reference B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383–11391 (2013)PubMedCrossRef B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383–11391 (2013)PubMedCrossRef
57.
go back to reference Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013)PubMedCrossRef Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013)PubMedCrossRef
58.
go back to reference M. Hamidinejad, B. Zhao, A. Zandieh, N. Moghimian, T. Filleter, C.B. Park, Enhanced electrical and electromagnetic interference shielding properties of polymer-graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming. ACS Appl. Mater. Interfaces 10(36), 30752–30761 (2018)PubMedCrossRef M. Hamidinejad, B. Zhao, A. Zandieh, N. Moghimian, T. Filleter, C.B. Park, Enhanced electrical and electromagnetic interference shielding properties of polymer-graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming. ACS Appl. Mater. Interfaces 10(36), 30752–30761 (2018)PubMedCrossRef
59.
go back to reference J. Xu, R. Chen, Z. Yun, Z. Bai, K. Li, S. Shi, J. Hou, X. Guo, X. Zhang, J. Chen, Lightweight epoxy/cotton fiber-based nanocomposites with carbon and Fe3O4 for electromagnetic interference shielding. ACS Omega 7(17), 15215–15222 (2022)PubMedPubMedCentralCrossRef J. Xu, R. Chen, Z. Yun, Z. Bai, K. Li, S. Shi, J. Hou, X. Guo, X. Zhang, J. Chen, Lightweight epoxy/cotton fiber-based nanocomposites with carbon and Fe3O4 for electromagnetic interference shielding. ACS Omega 7(17), 15215–15222 (2022)PubMedPubMedCentralCrossRef
60.
go back to reference L.J. Romasanta, M. Hernández, M.A. López-Manchado, R. Verdejo, Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Res. Lett. 6(1), 508 (2011)PubMedPubMedCentralCrossRef L.J. Romasanta, M. Hernández, M.A. López-Manchado, R. Verdejo, Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Res. Lett. 6(1), 508 (2011)PubMedPubMedCentralCrossRef
61.
go back to reference L. Wei, W. Zhang, J. Ma, S.-L. Bai, Y. Ren, C. Liu, D. Simion, J. Qin, π-π stacking interface design for improving the strength and electromagnetic interference shielding of ultrathin and flexible water-borne polymer/sulfonated graphene composites. Carbon 149, 679–692 (2019)CrossRef L. Wei, W. Zhang, J. Ma, S.-L. Bai, Y. Ren, C. Liu, D. Simion, J. Qin, π-π stacking interface design for improving the strength and electromagnetic interference shielding of ultrathin and flexible water-borne polymer/sulfonated graphene composites. Carbon 149, 679–692 (2019)CrossRef
62.
go back to reference S.-T. Hsiao, C.-C.M. Ma, H.-W. Tien, W.-H. Liao, Y.-S. Wang, S.-M. Li, C.-Y. Yang, S.-C. Lin, R.-B. Yang, Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl. Mater. Interfaces 7(4), 2817–2826 (2015)PubMedCrossRef S.-T. Hsiao, C.-C.M. Ma, H.-W. Tien, W.-H. Liao, Y.-S. Wang, S.-M. Li, C.-Y. Yang, S.-C. Lin, R.-B. Yang, Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl. Mater. Interfaces 7(4), 2817–2826 (2015)PubMedCrossRef
63.
go back to reference W. Yang, H. Bai, B. Jiang, C. Wang, W. Ye, Z. Li, C. Xu, X. Wang, Y. Li, Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res. 15(11), 9926–9935 (2022)CrossRef W. Yang, H. Bai, B. Jiang, C. Wang, W. Ye, Z. Li, C. Xu, X. Wang, Y. Li, Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res. 15(11), 9926–9935 (2022)CrossRef
64.
go back to reference S.-C. Lin, C.-C.M. Ma, S.-T. Hsiao, Y.-S. Wang, C.-Y. Yang, W.-H. Liao, S.-M. Li, J.-A. Wang, T.-Y. Cheng, C.-W. Lin, R.-B. Yang, Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl. Surf. Sci. 385, 436–444 (2016)CrossRef S.-C. Lin, C.-C.M. Ma, S.-T. Hsiao, Y.-S. Wang, C.-Y. Yang, W.-H. Liao, S.-M. Li, J.-A. Wang, T.-Y. Cheng, C.-W. Lin, R.-B. Yang, Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl. Surf. Sci. 385, 436–444 (2016)CrossRef
65.
go back to reference S.-T. Hsiao, C.-C.M. Ma, H.-W. Tien, W.-H. Liao, Y.-S. Wang, S.-M. Li, Y.-C. Huang, Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60, 57–66 (2013)CrossRef S.-T. Hsiao, C.-C.M. Ma, H.-W. Tien, W.-H. Liao, Y.-S. Wang, S.-M. Li, Y.-C. Huang, Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60, 57–66 (2013)CrossRef
66.
go back to reference M. Salzano de Luna, Y. Wang, T. Zhai, L. Verdolotti, G.G. Buonocore, M. Lavorgna, H. Xia, Nanocomposite polymeric materials with 3D graphene-based architectures: from design strategies to tailored properties and potential applications. Progr. Polym. Sci.89, 213–249 (2019) M. Salzano de Luna, Y. Wang, T. Zhai, L. Verdolotti, G.G. Buonocore, M. Lavorgna, H. Xia, Nanocomposite polymeric materials with 3D graphene-based architectures: from design strategies to tailored properties and potential applications. Progr. Polym. Sci.89, 213–249 (2019)
67.
go back to reference J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49(4), 1094–1100 (2011)CrossRef J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49(4), 1094–1100 (2011)CrossRef
68.
go back to reference M. Li, C. Gao, H. Hu, Z. Zhao, Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure. Carbon 65, 371–373 (2013)CrossRef M. Li, C. Gao, H. Hu, Z. Zhao, Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure. Carbon 65, 371–373 (2013)CrossRef
69.
go back to reference K. Tian, Z. Su, H. Wang, X. Tian, W. Huang, C. Xiao, N-doped reduced graphene oxide/waterborne polyurethane composites prepared by in situ chemical reduction of graphene oxide. Compos. A Appl. Sci. Manuf.A Appl. Sci. Manuf. 94, 41–49 (2017)CrossRef K. Tian, Z. Su, H. Wang, X. Tian, W. Huang, C. Xiao, N-doped reduced graphene oxide/waterborne polyurethane composites prepared by in situ chemical reduction of graphene oxide. Compos. A Appl. Sci. Manuf.A Appl. Sci. Manuf. 94, 41–49 (2017)CrossRef
70.
go back to reference A. Ghosh, J.T. Orasugh, D. Chattopadhyay, S.S. Ray, Polymers for foams and their emerging applications, in Specialty Polymers (CRC Press), pp. 295–309) A. Ghosh, J.T. Orasugh, D. Chattopadhyay, S.S. Ray, Polymers for foams and their emerging applications, in Specialty Polymers (CRC Press), pp. 295–309)
71.
go back to reference R. Banerjee, A. Gebrekrstos, J.T. Orasugh, S.S. Ray, Nanocarbon-containing polymer composite foams: a review of systems for applications in electromagnetic interference shielding, energy storage, and piezoresistive sensors. Ind. Eng. Chem. Res. 62(18), 6807–6842 (2023)CrossRef R. Banerjee, A. Gebrekrstos, J.T. Orasugh, S.S. Ray, Nanocarbon-containing polymer composite foams: a review of systems for applications in electromagnetic interference shielding, energy storage, and piezoresistive sensors. Ind. Eng. Chem. Res. 62(18), 6807–6842 (2023)CrossRef
72.
go back to reference J.T. Orasugh, S.S. Ray, Nanocellulose-graphene oxide-based nanocomposite for adsorptive water treatment, in Functional Polymer Nanocomposites for Wastewater Treatment. ed. by M.J. Hato, S. Sinha Ray (Springer International Publishing, Cham, 2022), pp.1–53 J.T. Orasugh, S.S. Ray, Nanocellulose-graphene oxide-based nanocomposite for adsorptive water treatment, in Functional Polymer Nanocomposites for Wastewater Treatment. ed. by M.J. Hato, S. Sinha Ray (Springer International Publishing, Cham, 2022), pp.1–53
73.
go back to reference J.T. Orasugh, S.S. Ray, Graphene-based electrospun fibrous materials with enhanced EMI shielding: recent developments and future perspectives. ACS Omega 7(38), 33699–33718 (2022)PubMedPubMedCentralCrossRef J.T. Orasugh, S.S. Ray, Graphene-based electrospun fibrous materials with enhanced EMI shielding: recent developments and future perspectives. ACS Omega 7(38), 33699–33718 (2022)PubMedPubMedCentralCrossRef
74.
go back to reference Y. Shi, A. Yao, J. Han, H. Wang, Y. Feng, L. Fu, F. Yang, P. Song, Architecting fire safe hierarchical polymer nanocomposite films with excellent electromagnetic interference shielding via interface engineering. J. Colloid Interface Sci. 640, 179–191 (2023)PubMedCrossRef Y. Shi, A. Yao, J. Han, H. Wang, Y. Feng, L. Fu, F. Yang, P. Song, Architecting fire safe hierarchical polymer nanocomposite films with excellent electromagnetic interference shielding via interface engineering. J. Colloid Interface Sci. 640, 179–191 (2023)PubMedCrossRef
75.
go back to reference H. Luo, J. Xie, L. Xiong, Y. Zhu, Z. Yang, Y. Wan, Fabrication of flexible, ultra-strong, and highly conductive bacterial cellulose-based paper by engineering dispersion of graphene nanosheets. Compos. B Eng. 162, 484–490 (2019)CrossRef H. Luo, J. Xie, L. Xiong, Y. Zhu, Z. Yang, Y. Wan, Fabrication of flexible, ultra-strong, and highly conductive bacterial cellulose-based paper by engineering dispersion of graphene nanosheets. Compos. B Eng. 162, 484–490 (2019)CrossRef
76.
go back to reference M. Zhang, Y. Li, Z. Su, G. Wei, Recent advances in the synthesis and applications of graphene–polymer nanocomposites. Polym. Chem. 6(34), 6107–6124 (2015)CrossRef M. Zhang, Y. Li, Z. Su, G. Wei, Recent advances in the synthesis and applications of graphene–polymer nanocomposites. Polym. Chem. 6(34), 6107–6124 (2015)CrossRef
77.
go back to reference B. Dittrich, K.A. Wartig, D. Hofmann, R. Mülhaupt, B. Schartel, The influence of layered, spherical, and tubular carbon nanomaterials’ concentration on the flame retardancy of polypropylene. Polym. Compos. 36(7), 1230–1241 (2015)CrossRef B. Dittrich, K.A. Wartig, D. Hofmann, R. Mülhaupt, B. Schartel, The influence of layered, spherical, and tubular carbon nanomaterials’ concentration on the flame retardancy of polypropylene. Polym. Compos. 36(7), 1230–1241 (2015)CrossRef
78.
go back to reference B. Yuan, A. Fan, M. Yang, X. Chen, Y. Hu, C. Bao, S. Jiang, Y. Niu, Y. Zhang, S. He, H. Dai, The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym. Degrad. Stab. 143, 42–56 (2017)CrossRef B. Yuan, A. Fan, M. Yang, X. Chen, Y. Hu, C. Bao, S. Jiang, Y. Niu, Y. Zhang, S. He, H. Dai, The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym. Degrad. Stab. 143, 42–56 (2017)CrossRef
79.
go back to reference S. Pack, T. Kashiwagi, C. Cao, C.S. Korach, M. Lewin, M.H. Rafailovich, Role of surface interactions in the synergizing polymer/clay flame retardant properties. Macromolecules 43(12), 5338–5351 (2010)CrossRef S. Pack, T. Kashiwagi, C. Cao, C.S. Korach, M. Lewin, M.H. Rafailovich, Role of surface interactions in the synergizing polymer/clay flame retardant properties. Macromolecules 43(12), 5338–5351 (2010)CrossRef
80.
go back to reference D. Chattopadhyay, D.C. Webster, Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34(10), 1068–1133 (2009)CrossRef D. Chattopadhyay, D.C. Webster, Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34(10), 1068–1133 (2009)CrossRef
81.
go back to reference Y. Han, T. Wang, X. Gao, T. Li, Q. Zhang, Preparation of thermally reduced graphene oxide and the influence of its reduction temperature on the thermal, mechanical, flame retardant performances of PS nanocomposites. Compos. A Appl. Sci. Manuf. 84, 336–343 (2016)CrossRef Y. Han, T. Wang, X. Gao, T. Li, Q. Zhang, Preparation of thermally reduced graphene oxide and the influence of its reduction temperature on the thermal, mechanical, flame retardant performances of PS nanocomposites. Compos. A Appl. Sci. Manuf. 84, 336–343 (2016)CrossRef
82.
go back to reference G. Huang, J. Gao, X. Wang, H. Liang, C. Ge, How can graphene reduce the flammability of polymer nanocomposites? Mater. Lett. 66(1), 187–189 (2012)CrossRef G. Huang, J. Gao, X. Wang, H. Liang, C. Ge, How can graphene reduce the flammability of polymer nanocomposites? Mater. Lett. 66(1), 187–189 (2012)CrossRef
83.
go back to reference G. Huang, S. Chen, S. Tang, J. Gao, A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater. Chem. Phys. 135(2), 938–947 (2012)CrossRef G. Huang, S. Chen, S. Tang, J. Gao, A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater. Chem. Phys. 135(2), 938–947 (2012)CrossRef
84.
go back to reference C. Bao, Y. Guo, B. Yuan, Y. Hu, L. Song, Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J. Mater. Chem. 22(43), 23057–23063 (2012)CrossRef C. Bao, Y. Guo, B. Yuan, Y. Hu, L. Song, Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J. Mater. Chem. 22(43), 23057–23063 (2012)CrossRef
85.
go back to reference W. Hu, B. Yu, S.-D. Jiang, L. Song, Y. Hu, B. Wang, Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J. Hazard. Mater. 300, 58–66 (2015)PubMedCrossRef W. Hu, B. Yu, S.-D. Jiang, L. Song, Y. Hu, B. Wang, Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J. Hazard. Mater. 300, 58–66 (2015)PubMedCrossRef
86.
go back to reference W. Chen, P. Liu, L. Min, Y. Zhou, Y. Liu, Q. Wang, W. Duan, Non-covalently functionalized graphene oxide-based coating to enhance thermal stability and flame retardancy of PVA film. Nano-micro Lett. 10, 1–13 (2018)CrossRef W. Chen, P. Liu, L. Min, Y. Zhou, Y. Liu, Q. Wang, W. Duan, Non-covalently functionalized graphene oxide-based coating to enhance thermal stability and flame retardancy of PVA film. Nano-micro Lett. 10, 1–13 (2018)CrossRef
87.
go back to reference L. Maddalena, J. Gomez, A. Fina, F. Carosio, Effects of graphite oxide nanoparticle size on the functional properties of layer-by-layer coated flexible foams. Nanomaterials 11(2), 266 (2021)PubMedPubMedCentralCrossRef L. Maddalena, J. Gomez, A. Fina, F. Carosio, Effects of graphite oxide nanoparticle size on the functional properties of layer-by-layer coated flexible foams. Nanomaterials 11(2), 266 (2021)PubMedPubMedCentralCrossRef
88.
go back to reference M.N. Uddin, L. Le, R. Nair, R. Asmatulu, Effects of graphene oxide thin films and nanocomposite coatings on flame retardancy and thermal stability of aircraft composites: a comparative study. J. Eng. Mater. Technol. 141(3), 031004 (2019)CrossRef M.N. Uddin, L. Le, R. Nair, R. Asmatulu, Effects of graphene oxide thin films and nanocomposite coatings on flame retardancy and thermal stability of aircraft composites: a comparative study. J. Eng. Mater. Technol. 141(3), 031004 (2019)CrossRef
89.
go back to reference W. Yang, Y. Liu, J. Wei, X. Li, N. Li, J. Liu, An intelligent fire-protection coating based on ammonium polyphosphate/epoxy composites and laser-induced graphene. Polymers 13(6), 984 (2021)PubMedPubMedCentralCrossRef W. Yang, Y. Liu, J. Wei, X. Li, N. Li, J. Liu, An intelligent fire-protection coating based on ammonium polyphosphate/epoxy composites and laser-induced graphene. Polymers 13(6), 984 (2021)PubMedPubMedCentralCrossRef
Metadata
Title
NPs for Polymer-Based EMI Shielding and Fire Retarding Nanocomposites
Authors
Suprakas Sinha Ray
Lesego Tabea Temane
Jonathan Tersur Orasugh
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-51924-6_6

Premium Partners