Skip to main content
Top
Published in: Engineering with Computers 3/2020

27-03-2019 | Original Article

Numerical approach for solving variable-order space–time fractional telegraph equation using transcendental Bernstein series

Authors: H. Hassani, Z. Avazzadeh, J. A. Tenreiro Machado

Published in: Engineering with Computers | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents the transcendental Bernstein series (TBS) as a generalization of the classical Bernstein polynomials for solving the variable-order space–time fractional telegraph equation (V-STFTE). An approximation method using optimization techniques and the TBS is introduced. The solution of the problem under consideration is expanded in terms of TBS with unknown free coefficients and control parameters. The new corresponding operational matrices of variable-order fractional derivatives, in the Caputo type, are derived. The proposed approach reduces the V-STFTE to a system of algebraic equations and, subsequently, to find the free coefficients and control parameters using the Lagrange multipliers technique. The convergence analysis of the method is guranteed by means of a new theorem concerning the TBS. The experimental results confirm the high accuracy and computational efficiency of the TBS method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agrawal OP (2004) A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn 38:323–337MathSciNetMATH Agrawal OP (2004) A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn 38:323–337MathSciNetMATH
2.
go back to reference Engheta N (1996) On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans Antennas Propag 44:554–566MathSciNetMATH Engheta N (1996) On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans Antennas Propag 44:554–566MathSciNetMATH
3.
go back to reference Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59:1586–1593MathSciNetMATH Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59:1586–1593MathSciNetMATH
4.
go back to reference Kulish VV, Lage JL (2002) Application of fractional calculus to fluid mechanics. J Fluids Eng 124:803–806 Kulish VV, Lage JL (2002) Application of fractional calculus to fluid mechanics. J Fluids Eng 124:803–806
5.
go back to reference Oldham KB (2010) Fractional differential equations in electrochemistry. Adv Eng Softw 41:9–12MATH Oldham KB (2010) Fractional differential equations in electrochemistry. Adv Eng Softw 41:9–12MATH
6.
go back to reference Gafiychuk V, Datsko B, Meleshko V (2008) Mathematical modeling of time fractional reaction diffusion systems. J Comput Appl Math 220:215–225MathSciNetMATH Gafiychuk V, Datsko B, Meleshko V (2008) Mathematical modeling of time fractional reaction diffusion systems. J Comput Appl Math 220:215–225MathSciNetMATH
7.
go back to reference Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56:80–90MathSciNetMATH Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56:80–90MathSciNetMATH
8.
go back to reference Moghaddam BP, Machado JAT (2017) Extended algorithms for approximating variable order fractional derivatives with applications. J Sci Comput 71(3):1351–1374MathSciNetMATH Moghaddam BP, Machado JAT (2017) Extended algorithms for approximating variable order fractional derivatives with applications. J Sci Comput 71(3):1351–1374MathSciNetMATH
9.
go back to reference Odibat Z, Momani S, Xu H (2010) A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl Math Model 34:593–600MathSciNetMATH Odibat Z, Momani S, Xu H (2010) A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl Math Model 34:593–600MathSciNetMATH
10.
go back to reference Li X, Xu M, Jiang X (2009) Homotopy perturbation method to time-fractional diffusion equation with a moving boundary. Appl Math Comput 208:434–439MathSciNetMATH Li X, Xu M, Jiang X (2009) Homotopy perturbation method to time-fractional diffusion equation with a moving boundary. Appl Math Comput 208:434–439MathSciNetMATH
11.
go back to reference Heydari MH, Hooshmandasl MR, Ghaini FMM, Cattani C (2016) Wavelets method for solving fractional optimal control problems. Appl Math Comput 286:139–154MathSciNetMATH Heydari MH, Hooshmandasl MR, Ghaini FMM, Cattani C (2016) Wavelets method for solving fractional optimal control problems. Appl Math Comput 286:139–154MathSciNetMATH
12.
go back to reference Heydari MH, Hooshmandasl MR, Mohammadi F (2014) Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Appl Math Comput 234:267–276MathSciNetMATH Heydari MH, Hooshmandasl MR, Mohammadi F (2014) Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Appl Math Comput 234:267–276MathSciNetMATH
13.
go back to reference El-sayed A, Gaber M (2006) The Adomian decomposition method for solving partial differential equations of fractional order in finite domains. Phys Lett A 359:175–182MathSciNetMATH El-sayed A, Gaber M (2006) The Adomian decomposition method for solving partial differential equations of fractional order in finite domains. Phys Lett A 359:175–182MathSciNetMATH
14.
go back to reference Galeone L, Garrappa R (2006) On multistep methods for differential equations of fractional order. Mediterr J Math 3:565–580MathSciNetMATH Galeone L, Garrappa R (2006) On multistep methods for differential equations of fractional order. Mediterr J Math 3:565–580MathSciNetMATH
15.
go back to reference Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 16:3–22MathSciNetMATH Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 16:3–22MathSciNetMATH
16.
go back to reference Moghaddam BP, Yaghoobi S, Machado JAT (2016) An extended predictor–corrector algorithm for variable-order fractional delay differential equations. J Comput Nonlinear Dyn 11(6):061001 (7 pages) Moghaddam BP, Yaghoobi S, Machado JAT (2016) An extended predictor–corrector algorithm for variable-order fractional delay differential equations. J Comput Nonlinear Dyn 11(6):061001 (7 pages)
17.
go back to reference Bhrawy AH, Doha EH, Baleanu D, Ezz-Eldien SS (2014) A spectral tau algorithm based on jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J Comput Phys 293:142–156MathSciNetMATH Bhrawy AH, Doha EH, Baleanu D, Ezz-Eldien SS (2014) A spectral tau algorithm based on jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J Comput Phys 293:142–156MathSciNetMATH
18.
go back to reference Dahaghin MS, Hassani H (2017) A new optimization method for a class of time fractional convection–diffusion-wave equations with variable coefficients. Eur Phys J Plus 132:130 Dahaghin MS, Hassani H (2017) A new optimization method for a class of time fractional convection–diffusion-wave equations with variable coefficients. Eur Phys J Plus 132:130
19.
go back to reference Dahaghin MS, Hassani H (2017) An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation. Nonlinear Dyn 88(3):1587–1598MathSciNetMATH Dahaghin MS, Hassani H (2017) An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation. Nonlinear Dyn 88(3):1587–1598MathSciNetMATH
20.
go back to reference Jiwari R, Pandit S, Mittal RC (2012) Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput Phys Commun 183:600–616MathSciNetMATH Jiwari R, Pandit S, Mittal RC (2012) Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput Phys Commun 183:600–616MathSciNetMATH
21.
go back to reference Pandit S, Jiwari R, Bedi K, Koksal ME (2017) Haar wavelets operational matrix based algorithm for computational modelling of hyperbolic type wave equations. Eng Comput 34(8):793–2814 Pandit S, Jiwari R, Bedi K, Koksal ME (2017) Haar wavelets operational matrix based algorithm for computational modelling of hyperbolic type wave equations. Eng Comput 34(8):793–2814
22.
go back to reference Jiwari R (2015) Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichelet and Neumann boundary conditions. Comput Phys Commun 193:55–65MathSciNetMATH Jiwari R (2015) Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichelet and Neumann boundary conditions. Comput Phys Commun 193:55–65MathSciNetMATH
23.
go back to reference Jiwari R, Pandit S, Mittal RC (2012) A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions. Appl Math Comput 218:7279–7294MathSciNetMATH Jiwari R, Pandit S, Mittal RC (2012) A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions. Appl Math Comput 218:7279–7294MathSciNetMATH
24.
go back to reference Pandey RK, Mishra HK (2017) Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM. New Astron 57:82–93 Pandey RK, Mishra HK (2017) Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM. New Astron 57:82–93
25.
go back to reference Mittal RC, Dahiya S (2017) Numerical simulation of three-dimensional telegraphic equation using cubic B-spline differential quadrature method. Appl Math Comput 313:442–452MathSciNetMATH Mittal RC, Dahiya S (2017) Numerical simulation of three-dimensional telegraphic equation using cubic B-spline differential quadrature method. Appl Math Comput 313:442–452MathSciNetMATH
26.
go back to reference Oruç Ö (2018) A numerical procedure based on Hermite wavelets for two-dimensional hyperbolic telegraph equation. Eng Comput 34(4):741–755MathSciNet Oruç Ö (2018) A numerical procedure based on Hermite wavelets for two-dimensional hyperbolic telegraph equation. Eng Comput 34(4):741–755MathSciNet
27.
go back to reference Mollahasani N, Moghadam MM, Afrooz K (2016) A new treatment based on hybrid functions to the solution of telegraph equations of fractional order. Appl Math Model 40(4):2804–2814MathSciNetMATH Mollahasani N, Moghadam MM, Afrooz K (2016) A new treatment based on hybrid functions to the solution of telegraph equations of fractional order. Appl Math Model 40(4):2804–2814MathSciNetMATH
28.
go back to reference Hashemi MS, Baleanu D (2016) Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line. J Comput Phys 316:10–20MathSciNetMATH Hashemi MS, Baleanu D (2016) Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line. J Comput Phys 316:10–20MathSciNetMATH
29.
go back to reference Jiwari R, Pandit S, Mittal RC (2012) A differential quadrature algorithm for the numerical solution of the second-order one dimensional hyperbolic telegraph equation. Int J Nonlinear Sci 13(3):259–266MathSciNetMATH Jiwari R, Pandit S, Mittal RC (2012) A differential quadrature algorithm for the numerical solution of the second-order one dimensional hyperbolic telegraph equation. Int J Nonlinear Sci 13(3):259–266MathSciNetMATH
30.
go back to reference Heydari MH, Hooshmandasl MR, Mohammadi F (2014) Two-dimensional Legendre wavelets for solving time-fractional telegraph equation. Adv Appl Math Mech 6(2):247–260MathSciNetMATH Heydari MH, Hooshmandasl MR, Mohammadi F (2014) Two-dimensional Legendre wavelets for solving time-fractional telegraph equation. Adv Appl Math Mech 6(2):247–260MathSciNetMATH
31.
go back to reference Ford NJ, Rodrigues MM, Xiao J, Yan Y (2013) Numerical analysis of a two-parameter fractional telegraph equation. J Comput Appl Math 249:95–106MathSciNetMATH Ford NJ, Rodrigues MM, Xiao J, Yan Y (2013) Numerical analysis of a two-parameter fractional telegraph equation. J Comput Appl Math 249:95–106MathSciNetMATH
32.
go back to reference Saadatmandi A, Mohabbati M (2015) Numerical solution of fractional telegraph equation via the tau method. Math Rep 17(67):155–166MathSciNetMATH Saadatmandi A, Mohabbati M (2015) Numerical solution of fractional telegraph equation via the tau method. Math Rep 17(67):155–166MathSciNetMATH
33.
go back to reference Kumar S (2014) A new analytical modelling for fractional telegraph equation via Laplace transform. Appl Math Model 38:3154–3163MathSciNetMATH Kumar S (2014) A new analytical modelling for fractional telegraph equation via Laplace transform. Appl Math Model 38:3154–3163MathSciNetMATH
34.
go back to reference Momani S (2005) Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl Math Comput 170:1126–34MathSciNetMATH Momani S (2005) Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl Math Comput 170:1126–34MathSciNetMATH
35.
go back to reference Zhao Z, Li C (2012) Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl Math Comput 219:2975–2988MathSciNetMATH Zhao Z, Li C (2012) Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl Math Comput 219:2975–2988MathSciNetMATH
36.
go back to reference Wei L, Dai H, Zhang D, Si Z (2014) Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation. Calcolo 51:175–192MathSciNetMATH Wei L, Dai H, Zhang D, Si Z (2014) Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation. Calcolo 51:175–192MathSciNetMATH
37.
go back to reference Saadatmandi A, Dehghan M (2010) numerical solution of hyperbolic telegraph equation using the Chebyshev tau method. Numer Methods Partial Differ Equations 26:239–252MathSciNetMATH Saadatmandi A, Dehghan M (2010) numerical solution of hyperbolic telegraph equation using the Chebyshev tau method. Numer Methods Partial Differ Equations 26:239–252MathSciNetMATH
38.
go back to reference Pandit S, Kumar M, Tiwari S (2015) Numerical simulation of second-order hyperbolic telegraph type equations with variable coefficients. Comput Phys Commun 187:83–90MathSciNetMATH Pandit S, Kumar M, Tiwari S (2015) Numerical simulation of second-order hyperbolic telegraph type equations with variable coefficients. Comput Phys Commun 187:83–90MathSciNetMATH
39.
go back to reference Chen J, Liu F, Anh V (2008) Analytical solution for the time-fractional telegraph equation by the method of separating variables. J Math Anal Appl 338:1364–1377MathSciNetMATH Chen J, Liu F, Anh V (2008) Analytical solution for the time-fractional telegraph equation by the method of separating variables. J Math Anal Appl 338:1364–1377MathSciNetMATH
40.
go back to reference Bhrawy AH, Zaky MA (2017) Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput Math Appl 73(6):1100–1117MathSciNetMATH Bhrawy AH, Zaky MA (2017) Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput Math Appl 73(6):1100–1117MathSciNetMATH
41.
go back to reference Kreyszig E (1978) Introductory functional analysis with applications. Wiley, New YorkMATH Kreyszig E (1978) Introductory functional analysis with applications. Wiley, New YorkMATH
Metadata
Title
Numerical approach for solving variable-order space–time fractional telegraph equation using transcendental Bernstein series
Authors
H. Hassani
Z. Avazzadeh
J. A. Tenreiro Machado
Publication date
27-03-2019
Publisher
Springer London
Published in
Engineering with Computers / Issue 3/2020
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00736-x

Other articles of this Issue 3/2020

Engineering with Computers 3/2020 Go to the issue