Skip to main content
Top
Published in: Journal of Scientific Computing 3/2021

01-06-2021

Numerical Approximations and Error Analysis of the Cahn–Hilliard Equation with Reaction Rate Dependent Dynamic Boundary Conditions

Authors: Xuelian Bao, Hui Zhang

Published in: Journal of Scientific Computing | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider numerical approximations and error analysis for the Cahn–Hilliard equation with reaction rate dependent dynamic boundary conditions (Knopf et al. ESAIM Math Model Numer Anal 55(1):229–282, 2021). Based on the stabilized linearly implicit approach, a first-order in time, linear and energy stable scheme for solving this model is proposed. The corresponding semi-discretized-in-time error estimates for the scheme are also derived. Numerical experiments, including the simulations with different energy potentials, the comparison with the former work, the convergence results for the relaxation parameter \(K\rightarrow 0\) and \(K\rightarrow \infty \) and the accuracy tests with respect to the time step size, are performed to validate the accuracy of the proposed scheme and the error analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bao, X., Zhang, H.: Numerical approximations and error analysis of the Cahn–Hilliard equation with dynamic boundary conditions. Preprint: arXiv:2006.05391 [math.NA] (2020) Bao, X., Zhang, H.: Numerical approximations and error analysis of the Cahn–Hilliard equation with dynamic boundary conditions. Preprint: arXiv:​2006.​05391 [math.NA] (2020)
2.
go back to reference Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2, 205–245 (1958)MATH Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2, 205–245 (1958)MATH
3.
go back to reference Cherfils, L., Petcu, M., Pierre, M.: A numerical analysis of the Cahn–Hilliard equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 27, 1511–1533 (2010)MathSciNetCrossRef Cherfils, L., Petcu, M., Pierre, M.: A numerical analysis of the Cahn–Hilliard equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 27, 1511–1533 (2010)MathSciNetCrossRef
4.
go back to reference Cherfils, L., Petcu, M.: A numerical analysis of the Cahn–Hilliard equation with non-permeable walls. Numer. Math. 128, 517–549 (2014)MathSciNetCrossRef Cherfils, L., Petcu, M.: A numerical analysis of the Cahn–Hilliard equation with non-permeable walls. Numer. Math. 128, 517–549 (2014)MathSciNetCrossRef
5.
go back to reference Colli, P., Fukao, T.: Cahn–Hilliard equation with dynamic boundary conditions and mass constraint on the boundary. J. Math. Anal. Appl. 429, 1190–1213 (2015)MathSciNetCrossRef Colli, P., Fukao, T.: Cahn–Hilliard equation with dynamic boundary conditions and mass constraint on the boundary. J. Math. Anal. Appl. 429, 1190–1213 (2015)MathSciNetCrossRef
6.
go back to reference Colli, P., Gilardi, G., Nakayashiki, R., Shirakawa, K.: A class of quasi-linear Allen–Cahn type equations with dynamic boundary conditions. Nonlinear Anal. 158, 32–59 (2017)MathSciNetCrossRef Colli, P., Gilardi, G., Nakayashiki, R., Shirakawa, K.: A class of quasi-linear Allen–Cahn type equations with dynamic boundary conditions. Nonlinear Anal. 158, 32–59 (2017)MathSciNetCrossRef
7.
go back to reference Fischer, H.P., Maass, P., Dieterich, W.: Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79, 893–896 (1997)CrossRef Fischer, H.P., Maass, P., Dieterich, W.: Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79, 893–896 (1997)CrossRef
8.
go back to reference Fischer, H.P., Reinhard, J., Dieterich, W., Gouyet, J.F., Maass, P., Majhofer, A., Reinel, D.: Timedependent density functional theory and the kinetics of lattice gas systems in contact with a wall. J. Chem. Phys. 108, 3028–3037 (1998)CrossRef Fischer, H.P., Reinhard, J., Dieterich, W., Gouyet, J.F., Maass, P., Majhofer, A., Reinel, D.: Timedependent density functional theory and the kinetics of lattice gas systems in contact with a wall. J. Chem. Phys. 108, 3028–3037 (1998)CrossRef
9.
go back to reference Fukao, T., Yoshikawa, S., Wada, S.: Structure-preserving finite difference schemes for the Cahn–Hilliard equation with dynamic boundary conditions in the one-dimensional case. Commun. Pure Appl. Anal. 16, 1915–1938 (2017)MathSciNetCrossRef Fukao, T., Yoshikawa, S., Wada, S.: Structure-preserving finite difference schemes for the Cahn–Hilliard equation with dynamic boundary conditions in the one-dimensional case. Commun. Pure Appl. Anal. 16, 1915–1938 (2017)MathSciNetCrossRef
10.
go back to reference Gal, C.G.: A Cahn–Hilliard model in bounded domains with permeable walls. Math. Methods Appl. Sci. 29, 2009–2036 (2006)MathSciNetCrossRef Gal, C.G.: A Cahn–Hilliard model in bounded domains with permeable walls. Math. Methods Appl. Sci. 29, 2009–2036 (2006)MathSciNetCrossRef
11.
go back to reference Garcke, H., Knopf, P.: Weak solutions of the Cahn–Hilliard system with dynamic boundary conditions: a gradient flow approach. SIAM J. Math. Anal. 52, 340–369 (2020)MathSciNetCrossRef Garcke, H., Knopf, P.: Weak solutions of the Cahn–Hilliard system with dynamic boundary conditions: a gradient flow approach. SIAM J. Math. Anal. 52, 340–369 (2020)MathSciNetCrossRef
12.
go back to reference Goldstein, G.R., Miranville, A., Schimperna, G.: A Cahn–Hilliard model in a domain with nonpermeable walls. Physica D 240, 754–766 (2011)MathSciNetCrossRef Goldstein, G.R., Miranville, A., Schimperna, G.: A Cahn–Hilliard model in a domain with nonpermeable walls. Physica D 240, 754–766 (2011)MathSciNetCrossRef
13.
go back to reference Gong, Y.Z., Zhao, J., Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys. 419, 109610 (2020)MathSciNetCrossRef Gong, Y.Z., Zhao, J., Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys. 419, 109610 (2020)MathSciNetCrossRef
14.
go back to reference Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51, 3036–3061 (2013)MathSciNetCrossRef Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51, 3036–3061 (2013)MathSciNetCrossRef
15.
go back to reference He, Y.N., Liu, Y.X., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)MathSciNetCrossRef He, Y.N., Liu, Y.X., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)MathSciNetCrossRef
16.
go back to reference Israel, H., Miranville, A., Petcu, M.: Numerical analysis of a Cahn–Hilliard type equation with dynamic boundary conditions. Ricerche Mat. 64, 25–50 (2015)MathSciNetCrossRef Israel, H., Miranville, A., Petcu, M.: Numerical analysis of a Cahn–Hilliard type equation with dynamic boundary conditions. Ricerche Mat. 64, 25–50 (2015)MathSciNetCrossRef
17.
go back to reference Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dietrich, W.: Phase separation in confined geometries: solving the Cahn–Hilliard equation with generic boundary conditions. Comput. Phys. Comm. 133, 139–157 (2001)MathSciNetCrossRef Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dietrich, W.: Phase separation in confined geometries: solving the Cahn–Hilliard equation with generic boundary conditions. Comput. Phys. Comm. 133, 139–157 (2001)MathSciNetCrossRef
18.
go back to reference Knopf, P., Lam, K.F.: Convergence of a Robin boundary approximation for a Cahn–Hilliard system with dynamic boundary conditions. Nonlinearity 33(8), 4191–4235 (2020) Knopf, P., Lam, K.F.: Convergence of a Robin boundary approximation for a Cahn–Hilliard system with dynamic boundary conditions. Nonlinearity 33(8), 4191–4235 (2020)
19.
go back to reference Knopf, P., Lam, K.F., Liu, C., Metzger, S.: Phase-field dynamics with transfer of materials: the Cahn–Hillard equation with reaction rate dependent dynamic boundary conditions. ESAIM Math. Model. Numer. Anal. 55(1), 229–282 (2021) Knopf, P., Lam, K.F., Liu, C., Metzger, S.: Phase-field dynamics with transfer of materials: the Cahn–Hillard equation with reaction rate dependent dynamic boundary conditions. ESAIM Math. Model. Numer. Anal. 55(1), 229–282 (2021)
20.
go back to reference Liu, C., Wu, H.: An energetic variational approach for the Cahn–Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis. Arch. Ration. Mech. Anal. 233, 167–247 (2019)MathSciNetCrossRef Liu, C., Wu, H.: An energetic variational approach for the Cahn–Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis. Arch. Ration. Mech. Anal. 233, 167–247 (2019)MathSciNetCrossRef
21.
go back to reference Metzger S.: An efficient and convergent finite element scheme for Cahn–Hilliard equations with dynamic boundary conditions. Preprint arXiv: 1908.04910 [math.NA] (2019) Metzger S.: An efficient and convergent finite element scheme for Cahn–Hilliard equations with dynamic boundary conditions. Preprint arXiv:​ 1908.​04910 [math.NA] (2019)
22.
go back to reference Mininni, R.M., Miranville, A., Romanelli, S.: Higher-order Cahn–Hilliard equations with dynamic boundary conditions. J. Math. Anal. Appl. 449, 1321–1339 (2017)MathSciNetCrossRef Mininni, R.M., Miranville, A., Romanelli, S.: Higher-order Cahn–Hilliard equations with dynamic boundary conditions. J. Math. Anal. Appl. 449, 1321–1339 (2017)MathSciNetCrossRef
23.
go back to reference Racke, R., Zheng, S.: The Cahn–Hilliard equation with dynamic boundary conditions. Adv. Differ. Equ. 8, 83–110 (2003)MathSciNetMATH Racke, R., Zheng, S.: The Cahn–Hilliard equation with dynamic boundary conditions. Adv. Differ. Equ. 8, 83–110 (2003)MathSciNetMATH
24.
go back to reference Shen, J., Wang, C., Wang, X.M., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)MathSciNetCrossRef Shen, J., Wang, C., Wang, X.M., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)MathSciNetCrossRef
25.
go back to reference Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)MathSciNetCrossRef Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)MathSciNetCrossRef
26.
go back to reference Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)MathSciNetCrossRef Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)MathSciNetCrossRef
27.
go back to reference Thompson, P.A., Robbins, M.O.: Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989)CrossRef Thompson, P.A., Robbins, M.O.: Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989)CrossRef
28.
go back to reference Trautwein, D.: Finite-Elemente Approximation der Cahn-Hilliard-Gleichung mit Neumann-und dynamischen Randbedingungen. Bachelor thesis, University of Regensburg (2018) Trautwein, D.: Finite-Elemente Approximation der Cahn-Hilliard-Gleichung mit Neumann-und dynamischen Randbedingungen. Bachelor thesis, University of Regensburg (2018)
29.
go back to reference Wu, H., Zheng, S.: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions. J. Differ. Equ. 204, 511–531 (2004)MathSciNetCrossRef Wu, H., Zheng, S.: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions. J. Differ. Equ. 204, 511–531 (2004)MathSciNetCrossRef
30.
go back to reference Yang, X.F.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)MathSciNetCrossRef Yang, X.F.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)MathSciNetCrossRef
31.
go back to reference Yang, X.F., Zhao, J., He, X.M.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn–Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)MathSciNetCrossRef Yang, X.F., Zhao, J., He, X.M.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn–Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)MathSciNetCrossRef
32.
go back to reference Yang, X.F., Zhao, J.: Efficient linear schemes for the nonlocal Cahn–Hilliard equation of phase field models. Comput. Phys. Commun. 235, 234–245 (2019)MathSciNetCrossRef Yang, X.F., Zhao, J.: Efficient linear schemes for the nonlocal Cahn–Hilliard equation of phase field models. Comput. Phys. Commun. 235, 234–245 (2019)MathSciNetCrossRef
33.
go back to reference Yang, X.F., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25, 703–728 (2019)MathSciNet Yang, X.F., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25, 703–728 (2019)MathSciNet
34.
go back to reference Zhao, J., Yang, X.F., Gong, Y.Z., Zhao, X.P., Yang, X.G., Li, J., Wang, Q.: A general strategy for numerical approximations of non-equilibrium models-part I: thermodynamical systems. Int. J. Numer. Anal. Model. 15(6), 884–918 (2018)MathSciNetMATH Zhao, J., Yang, X.F., Gong, Y.Z., Zhao, X.P., Yang, X.G., Li, J., Wang, Q.: A general strategy for numerical approximations of non-equilibrium models-part I: thermodynamical systems. Int. J. Numer. Anal. Model. 15(6), 884–918 (2018)MathSciNetMATH
Metadata
Title
Numerical Approximations and Error Analysis of the Cahn–Hilliard Equation with Reaction Rate Dependent Dynamic Boundary Conditions
Authors
Xuelian Bao
Hui Zhang
Publication date
01-06-2021
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2021
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01475-2

Other articles of this Issue 3/2021

Journal of Scientific Computing 3/2021 Go to the issue

Premium Partner