Skip to main content
Top
Published in: Journal of Scientific Computing 2/2022

01-05-2022

Numerical Approximations for the Fractional Fokker–Planck Equation with Two-Scale Diffusion

Authors: Jing Sun, Weihua Deng, Daxin Nie

Published in: Journal of Scientific Computing | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fractional Fokker–Planck equation plays an important role in describing anomalous dynamics. To the best of our knowledge, the existing numerical discussions mainly focus on this kind of equation involving one diffusion operator. In this paper, we first derive the fractional Fokker–Planck equation with two-scale diffusion from the Lévy process framework, and then the fully discrete scheme is built by using the \(L_{1}\) scheme for time discretization and finite element method for space. With the help of the sharp regularity estimate of the solution, we optimally get the spatial and temporal error estimates. Finally, we validate the effectiveness of the provided algorithm by extensive numerical experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Acosta, G., Bersetche, F.M., Borthagaray, J.P.: Finite element approximations for fractional evolution problems. Fract. Calc. Appl. Anal. 22, 767–794 (2019)MathSciNetCrossRef Acosta, G., Bersetche, F.M., Borthagaray, J.P.: Finite element approximations for fractional evolution problems. Fract. Calc. Appl. Anal. 22, 767–794 (2019)MathSciNetCrossRef
2.
go back to reference Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)MathSciNetCrossRef Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)MathSciNetCrossRef
3.
go back to reference Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)MATH Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)MATH
4.
go back to reference Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRef Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRef
5.
go back to reference Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer. Math. 131, 1–31 (2015)MathSciNetCrossRef Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer. Math. 131, 1–31 (2015)MathSciNetCrossRef
6.
go back to reference Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of the integral fractional Laplacian. Numer. Math. 142, 235–278 (2019)MathSciNetCrossRef Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of the integral fractional Laplacian. Numer. Math. 142, 235–278 (2019)MathSciNetCrossRef
7.
go back to reference Bonito, A., Lei, W., Salgado, A.J.: Finite element approximation of an obstacle problem for a class of integro-differential operators. ESAIM M2AN 54, 229–253 (2020) Bonito, A., Lei, W., Salgado, A.J.: Finite element approximation of an obstacle problem for a class of integro-differential operators. ESAIM M2AN 54, 229–253 (2020)
8.
go back to reference Bonito, A., Pasciak, J.E.: Numerical approximation of fractional powers of regularly accretive operators. IMA J. Numer. Anal. 37, 1245–1273 (2016)MathSciNetMATH Bonito, A., Pasciak, J.E.: Numerical approximation of fractional powers of regularly accretive operators. IMA J. Numer. Anal. 37, 1245–1273 (2016)MathSciNetMATH
9.
go back to reference Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetCrossRef Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetCrossRef
10.
go back to reference Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comp. 58, 603 (1992)MathSciNetCrossRef Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comp. 58, 603 (1992)MathSciNetCrossRef
11.
go back to reference Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–211 (2016)MathSciNetMATH Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–211 (2016)MathSciNetMATH
12.
go back to reference Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Eng. 346, 332–358 (2019)MathSciNetCrossRef Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Eng. 346, 332–358 (2019)MathSciNetCrossRef
13.
go back to reference Jin, B., Yan, Y., Zhou, Z.: Numerical approximation of stochastic time-fractional diffusion. ESAIM M2AN 53, 1245–1268 (2019) Jin, B., Yan, Y., Zhou, Z.: Numerical approximation of stochastic time-fractional diffusion. ESAIM M2AN 53, 1245–1268 (2019)
14.
go back to reference Lewin, L.: Polylogarithms and Associated Functions. North-Holland, New York (1981)MATH Lewin, L.: Polylogarithms and Associated Functions. North-Holland, New York (1981)MATH
15.
go back to reference Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef
16.
go back to reference Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–18 (1996)MathSciNetCrossRef Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–18 (1996)MathSciNetCrossRef
18.
go back to reference Nie, D., Sun, J., Deng, W.: Numerical algorithm for the space-time fractional Fokker–Planck system with two internal states. Numer. Math. 146, 481–511 (2020)MathSciNetCrossRef Nie, D., Sun, J., Deng, W.: Numerical algorithm for the space-time fractional Fokker–Planck system with two internal states. Numer. Math. 146, 481–511 (2020)MathSciNetCrossRef
19.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999)MATH
20.
go back to reference Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006)MATH Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006)MATH
21.
go back to reference Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRef Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRef
Metadata
Title
Numerical Approximations for the Fractional Fokker–Planck Equation with Two-Scale Diffusion
Authors
Jing Sun
Weihua Deng
Daxin Nie
Publication date
01-05-2022
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2022
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-022-01812-z

Other articles of this Issue 2/2022

Journal of Scientific Computing 2/2022 Go to the issue

Premium Partner