Skip to main content
Top
Published in: Journal of Materials Science 8/2020

09-12-2019 | Electronic materials

Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber

Authors: Rajendrasinh Jadeja, Shreyas Charola, Shobhit K. Patel, Juveriya Parmar, Mayurkumar Ladumor, Truong Khang Nguyen, Vigneswaran Dhasarathan

Published in: Journal of Materials Science | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene-based efficient metasurface solar absorber is presented. Graphene monolayer sheet is integrated over silicon dioxide dielectric layer to improve the bandwidth and achieve maximum absorption in the visible region from 430 to 770 THz. Simulation results indicate that the average absorption of our graphene-based metasurface absorber is more than 84% in the visible range. The absorber C-shape metasurface top layer placed above the graphene sheet is made up of tungsten material, and bottom layer made up of tungsten material helps in absorbing incoming electromagnetic light. The resonance frequency can be tuned in a wide frequency range by changing different physical parameters of proposed absorbers design. The absorption efficiency results of the proposed design are also compared with previously published similar absorber design to show the improvement of absorption in the proposed design. The proposed design is useful for designing next-generation graphene-based sensors and photovoltaic devices. Purposed graphene-based metasurface absorber can be used as a basic building block of solar energy-harvesting photovoltaic devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang K, Hao L, Du M, Mi J, Wang JN, Meng JP (2017) A review of thermal stability and high temperature-induced ageing mechanisms of solar absorber coatings. Renew Sust Energy Rev 67:1282–1299CrossRef Zhang K, Hao L, Du M, Mi J, Wang JN, Meng JP (2017) A review of thermal stability and high temperature-induced ageing mechanisms of solar absorber coatings. Renew Sust Energy Rev 67:1282–1299CrossRef
2.
go back to reference Tang L, Wu B, Tang P, Liu M, Zhan X, Liu X, Liu Z (2019) Silicon nano-cavity coupled metallic-dielectric colloidal crystals for narrow-band absorbers. Opt Mater 91:58–61CrossRef Tang L, Wu B, Tang P, Liu M, Zhan X, Liu X, Liu Z (2019) Silicon nano-cavity coupled metallic-dielectric colloidal crystals for narrow-band absorbers. Opt Mater 91:58–61CrossRef
3.
go back to reference Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348CrossRef Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348CrossRef
4.
go back to reference Khan AD, Amin M (2017) Tunable Salisbury screen absorber using square lattice of plasmonic nanodisk. Plasmonics 12(2):257–262CrossRef Khan AD, Amin M (2017) Tunable Salisbury screen absorber using square lattice of plasmonic nanodisk. Plasmonics 12(2):257–262CrossRef
5.
go back to reference Hsieh LZ, Chau YFC, Lim CM, Lin MH, Huang HJ, Lin CT, Syafi’ie MIMN (2016) Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt Commun 370:85–90CrossRef Hsieh LZ, Chau YFC, Lim CM, Lin MH, Huang HJ, Lin CT, Syafi’ie MIMN (2016) Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt Commun 370:85–90CrossRef
6.
go back to reference McSherry S, Burger T, Lenert A (2019) Effects of narrowband transport on near-field and far-field thermophotonic conversion. J Photonics Energy 9(3):032714CrossRef McSherry S, Burger T, Lenert A (2019) Effects of narrowband transport on near-field and far-field thermophotonic conversion. J Photonics Energy 9(3):032714CrossRef
7.
go back to reference Li Q, Li Z, Xiang X, Wang T, Yang H, Wang X et al (2019) Tunable perfect narrow-band absorber based on a metal-dielectric-metal structure. Coatings 9(6):393CrossRef Li Q, Li Z, Xiang X, Wang T, Yang H, Wang X et al (2019) Tunable perfect narrow-band absorber based on a metal-dielectric-metal structure. Coatings 9(6):393CrossRef
8.
go back to reference Cheng Y, Luo H, Chen F, Gong R (2019) Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency. OSA Contin 2(7):2113–2122CrossRef Cheng Y, Luo H, Chen F, Gong R (2019) Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency. OSA Contin 2(7):2113–2122CrossRef
9.
go back to reference Ullah H, Khan AD, Ullah A, Ullah I Noman M (2016) Plasmonic perfect absorber for solar cell applications. In: 2016 international conference on emerging technologies (ICET). IEEE, pp. 1–5 Ullah H, Khan AD, Ullah A, Ullah I Noman M (2016) Plasmonic perfect absorber for solar cell applications. In: 2016 international conference on emerging technologies (ICET). IEEE, pp. 1–5
10.
go back to reference Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High-performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104CrossRef Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High-performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104CrossRef
11.
go back to reference Kshetrimayum RS (2004) A brief intro to metamaterials. IEEE Potentials 23(5):44–46CrossRef Kshetrimayum RS (2004) A brief intro to metamaterials. IEEE Potentials 23(5):44–46CrossRef
12.
go back to reference Dang PT, Le KQ, Lee J-H, Nguyen TK (2019) A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces. Micromachines 10(10):673CrossRef Dang PT, Le KQ, Lee J-H, Nguyen TK (2019) A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces. Micromachines 10(10):673CrossRef
13.
go back to reference Nguyen TK, Dang PT, Park I, Le KQ (2017) Broadband THz radiation through tapered semiconductor grating on high-index substrate. J Opt Soc Am B 34(3):583–589CrossRef Nguyen TK, Dang PT, Park I, Le KQ (2017) Broadband THz radiation through tapered semiconductor grating on high-index substrate. J Opt Soc Am B 34(3):583–589CrossRef
15.
go back to reference Katrodiya D, Jani C, Sorathiya V, Patel SK (2019) Metasurface based broadband solar absorber. Opt Mater 89:34–41CrossRef Katrodiya D, Jani C, Sorathiya V, Patel SK (2019) Metasurface based broadband solar absorber. Opt Mater 89:34–41CrossRef
16.
go back to reference Bagmanci M, Karaaslan M, Unal E, Akgol O, Bakır M, Sabah C (2019) Solar energy harvesting with ultra-broadband metamaterial absorber. Int J Mod Phys B 33:1950056CrossRef Bagmanci M, Karaaslan M, Unal E, Akgol O, Bakır M, Sabah C (2019) Solar energy harvesting with ultra-broadband metamaterial absorber. Int J Mod Phys B 33:1950056CrossRef
17.
go back to reference Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRef Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRef
18.
go back to reference Parmar J, Patel SK, Ladumor M, Sorathiya V, Katrodiya D (2019) Graphene-silicon hybrid chirped-superstructure bragg gratings for far infrared frequency. Mater Res Lett 6(6):065606 Parmar J, Patel SK, Ladumor M, Sorathiya V, Katrodiya D (2019) Graphene-silicon hybrid chirped-superstructure bragg gratings for far infrared frequency. Mater Res Lett 6(6):065606
19.
go back to reference Patel SK, Ladumor M, Sorathiya V, Guo T (2018) Graphene based tunable grating structure. Mater Res Lett 6(2):025602 Patel SK, Ladumor M, Sorathiya V, Guo T (2018) Graphene based tunable grating structure. Mater Res Lett 6(2):025602
20.
go back to reference Patel SK, Ladumor M, Parmar J, Guo T (2019) Graphene-based tunable reflector superstructure grating. Appl Phys A 125(8):574CrossRef Patel SK, Ladumor M, Parmar J, Guo T (2019) Graphene-based tunable reflector superstructure grating. Appl Phys A 125(8):574CrossRef
21.
go back to reference Chen M, Sun W, Cai J, Chang L, Xiao X (2017) Frequency-tunable terahertz absorbers based on graphene metasurface. Opt Commun 382:144–150CrossRef Chen M, Sun W, Cai J, Chang L, Xiao X (2017) Frequency-tunable terahertz absorbers based on graphene metasurface. Opt Commun 382:144–150CrossRef
22.
go back to reference Yao Y, Shankar R, Kats MA, Song Y, Kong J, Loncar M, Capasso F (2014) Electrically tunablemetasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 14(11):6526–6532CrossRef Yao Y, Shankar R, Kats MA, Song Y, Kong J, Loncar M, Capasso F (2014) Electrically tunablemetasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 14(11):6526–6532CrossRef
23.
go back to reference Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen ZX et al (2009) Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19(19):3077–3083CrossRef Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen ZX et al (2009) Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19(19):3077–3083CrossRef
24.
go back to reference Sang T, Gao J, Yin X, Qi H, Wang L, Jiao H (2019) Angle-insensitive broadband absorption enhancement of graphene using a multi-grooved metasurface. Nanoscale Res Lett 14(1):105CrossRef Sang T, Gao J, Yin X, Qi H, Wang L, Jiao H (2019) Angle-insensitive broadband absorption enhancement of graphene using a multi-grooved metasurface. Nanoscale Res Lett 14(1):105CrossRef
25.
go back to reference Liu B, Tang C, Chen J, Xie N, Tang H, Zhu X, Park GS (2018) Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials. Nanoscale Res Lett 13(1):153CrossRef Liu B, Tang C, Chen J, Xie N, Tang H, Zhu X, Park GS (2018) Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials. Nanoscale Res Lett 13(1):153CrossRef
26.
go back to reference Rufangura P, Sabah C (2017) Graphene-based wideband metamaterial absorber for solar cells application. J Nanophotonics 11(3):036008CrossRef Rufangura P, Sabah C (2017) Graphene-based wideband metamaterial absorber for solar cells application. J Nanophotonics 11(3):036008CrossRef
27.
go back to reference Lin H, Sturmberg BC, Lin KT, Yang Y, Zheng X, Chong TK et al (2019) A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat Photonics 13(4):270–276CrossRef Lin H, Sturmberg BC, Lin KT, Yang Y, Zheng X, Chong TK et al (2019) A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat Photonics 13(4):270–276CrossRef
28.
go back to reference Patel SK, Charola S, Jani C, Ladumor M, Parmar J, Guo T (2019) Graphene-based highly efficient and broadband solar absorber. Opt Mater 96:109330CrossRef Patel SK, Charola S, Jani C, Ladumor M, Parmar J, Guo T (2019) Graphene-based highly efficient and broadband solar absorber. Opt Mater 96:109330CrossRef
29.
go back to reference Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21(23):235201CrossRef Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21(23):235201CrossRef
30.
go back to reference Philipp HR (1997) Silicon dioxide(glass). In: Palik ED (ed) Handbook of optical constants of solids. Academic Press, Cambridge, pp 749–763CrossRef Philipp HR (1997) Silicon dioxide(glass). In: Palik ED (ed) Handbook of optical constants of solids. Academic Press, Cambridge, pp 749–763CrossRef
31.
go back to reference Palik ED (ed) (1998) Handbook of optical constants of solids, vol 3. Academic Press, Cambridge Palik ED (ed) (1998) Handbook of optical constants of solids, vol 3. Academic Press, Cambridge
32.
go back to reference Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Appl Phys 103(6):064302CrossRef Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Appl Phys 103(6):064302CrossRef
Metadata
Title
Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber
Authors
Rajendrasinh Jadeja
Shreyas Charola
Shobhit K. Patel
Juveriya Parmar
Mayurkumar Ladumor
Truong Khang Nguyen
Vigneswaran Dhasarathan
Publication date
09-12-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 8/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04269-y

Other articles of this Issue 8/2020

Journal of Materials Science 8/2020 Go to the issue

Premium Partners