Skip to main content
Top
Published in: Journal of Materials Science 19/2018

25-06-2018 | Ceramics

Numerical model for particle size effects on flash sintering temperature of ionic nanoparticles

Author: Rachman Chaim

Published in: Journal of Materials Science | Issue 19/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A numerical model is presented to predict the particle size effect on the flash onset temperature, using a granular network consisting of ceramic nanoparticles and their contacts as resistors. The theoretical calculations are compared to the experimental data of 3 mol% yttria-stabilized zirconia as ionic ceramic from the literature. The electric resistances at the particle contacts and the granular compact volume primarily depend on the contact to particle radius ratio. This ratio increases with the increase in the cold compaction pressure and during the heating to the flash temperature. This ratio also dictates the electric resistance via conventional or quantum mode, depending on the bulk resistivity character. Smaller particles lead to higher neck to particle radius ratio during the heating, hence to lower flash sintering temperatures. Apparently, the need for a critical current through the necks is crucial in determining the flash temperature, in agreement with Joule heating.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Allen ML, Aronniemi M, Mattila T, Alastalo A, Ojanperä K, Suhonen M, Seppä H (2008) Electrical sintering of nanoparticles structures. Nanotechnology 19:175201CrossRef Allen ML, Aronniemi M, Mattila T, Alastalo A, Ojanperä K, Suhonen M, Seppä H (2008) Electrical sintering of nanoparticles structures. Nanotechnology 19:175201CrossRef
2.
go back to reference Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850°C. J Am Ceram Soc 93:3556–3559CrossRef Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850°C. J Am Ceram Soc 93:3556–3559CrossRef
3.
go back to reference Downs JA, Sglavo VM (2011) Electric field assisted sintering of cubic Zirconia at 390 °C. J Am Ceram Soc 96:1342–1344CrossRef Downs JA, Sglavo VM (2011) Electric field assisted sintering of cubic Zirconia at 390 °C. J Am Ceram Soc 96:1342–1344CrossRef
4.
go back to reference Yu M, Grasso S, McKinnon R, Saunders T, Reece MJ (2017) Review of flash sintering: materials, mechanisms and modelling. Adv Appl Ceram 116:24–60CrossRef Yu M, Grasso S, McKinnon R, Saunders T, Reece MJ (2017) Review of flash sintering: materials, mechanisms and modelling. Adv Appl Ceram 116:24–60CrossRef
6.
go back to reference Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Rathel J, Hermann M (2014) Field-assisted sintering technology/Spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16:830–849CrossRef Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Rathel J, Hermann M (2014) Field-assisted sintering technology/Spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16:830–849CrossRef
7.
go back to reference Biesuz M, Sglavo VM (2016) Flash sintering of alumina: effect of different operating conditions on densification. J Eur Ceram Soc 36:2535–2542CrossRef Biesuz M, Sglavo VM (2016) Flash sintering of alumina: effect of different operating conditions on densification. J Eur Ceram Soc 36:2535–2542CrossRef
8.
go back to reference Liu D, Cao Y, Liu J, Gao Y, Wang Y (2018) Effects of oxygen pressure on temperature for onset of flash sintering 3YSZ. J Eur Ceram Soc 38:817–820CrossRef Liu D, Cao Y, Liu J, Gao Y, Wang Y (2018) Effects of oxygen pressure on temperature for onset of flash sintering 3YSZ. J Eur Ceram Soc 38:817–820CrossRef
9.
go back to reference Caliman LB, Bouchet R, Gouvea D, Soudant P, Steil MC (2016) Flash sintering of ionic conductors: the need of a reversible electrochemical reaction. J Eur Ceram Soc 36:1253–1260CrossRef Caliman LB, Bouchet R, Gouvea D, Soudant P, Steil MC (2016) Flash sintering of ionic conductors: the need of a reversible electrochemical reaction. J Eur Ceram Soc 36:1253–1260CrossRef
10.
go back to reference Francis JSC, Cologna M, Raj R (2012) Particle size effects in flash sintering. J Eur Ceram Soc 32:3129–3136CrossRef Francis JSC, Cologna M, Raj R (2012) Particle size effects in flash sintering. J Eur Ceram Soc 32:3129–3136CrossRef
11.
go back to reference Luo J (2018) The scientific questions and technological opportunities of flash sintering: from a case study of ZnO to other ceramics. Scr Mater 146:260–266CrossRef Luo J (2018) The scientific questions and technological opportunities of flash sintering: from a case study of ZnO to other ceramics. Scr Mater 146:260–266CrossRef
12.
go back to reference Yadav D, Raj J (2017) The onset of the flash transition in single crystals of cubic zirconia as a function of electric field and temperature. Scr Mater 234:123–127CrossRef Yadav D, Raj J (2017) The onset of the flash transition in single crystals of cubic zirconia as a function of electric field and temperature. Scr Mater 234:123–127CrossRef
13.
go back to reference Grasso S, Saunders T, Porwal H, Cedillos-Barraza O, Jayaseelan DD, Lee WE, Reece MJ (2014) Flash spark plasma sintering (FSPS) of pure ZrB2. J Am Ceram Soc 97:2405–2408CrossRef Grasso S, Saunders T, Porwal H, Cedillos-Barraza O, Jayaseelan DD, Lee WE, Reece MJ (2014) Flash spark plasma sintering (FSPS) of pure ZrB2. J Am Ceram Soc 97:2405–2408CrossRef
14.
go back to reference Vasylkiv O, Borodianska H, Sakka Y, Demirskyi D (2016) Flash spark plasma sintering of ultrafine yttria-stabilized zirconia ceramics. Scr Mater 121:32–36CrossRef Vasylkiv O, Borodianska H, Sakka Y, Demirskyi D (2016) Flash spark plasma sintering of ultrafine yttria-stabilized zirconia ceramics. Scr Mater 121:32–36CrossRef
15.
go back to reference Niu B, Zhang F, Zhang J, Ji W, Wang W, Fu Z (2016) Ultra-fast densification of boron carbide by flash spark plasma sintering. Scr Mater 116:127–130CrossRef Niu B, Zhang F, Zhang J, Ji W, Wang W, Fu Z (2016) Ultra-fast densification of boron carbide by flash spark plasma sintering. Scr Mater 116:127–130CrossRef
16.
go back to reference Raj R (2016) Analysis of the power density at the onset of flash sintering. J Am Ceram Soc 99:3226–3232CrossRef Raj R (2016) Analysis of the power density at the onset of flash sintering. J Am Ceram Soc 99:3226–3232CrossRef
17.
go back to reference Jiang T, Wang Z, Zhang J, Hao X, Rooney D, Liu Y, Sun W, Qiao J, Sun K (2015) Understanding the flash sintering of rare-earth-doped ceria for solid oxide fuel cell. J Am Ceram Soc 98:1717–1723CrossRef Jiang T, Wang Z, Zhang J, Hao X, Rooney D, Liu Y, Sun W, Qiao J, Sun K (2015) Understanding the flash sintering of rare-earth-doped ceria for solid oxide fuel cell. J Am Ceram Soc 98:1717–1723CrossRef
18.
go back to reference Shomrat N, Baltianski S, Dor E, Tur Y (2017) The influence of doping on flash sintering conditions in SrTi1-xFeO3-δ. J Eur Ceram Soc 37:179–188CrossRef Shomrat N, Baltianski S, Dor E, Tur Y (2017) The influence of doping on flash sintering conditions in SrTi1-xFeO3-δ. J Eur Ceram Soc 37:179–188CrossRef
19.
go back to reference Cologna M, Raj R (2011) Surface diffusion-controlled neck growth kinetics in early stage sintering of zirconia, with and without applied DC electrical field. J Am Ceram Soc 94:391–395CrossRef Cologna M, Raj R (2011) Surface diffusion-controlled neck growth kinetics in early stage sintering of zirconia, with and without applied DC electrical field. J Am Ceram Soc 94:391–395CrossRef
20.
go back to reference Ye Y, Li X, Hu K, Lai Y, Li Y (2013) The influence of premolding load on the electrical behavior in the initial stage of electric current activated sintering of carbonyl iron powders. Appl Phys 113:214902CrossRef Ye Y, Li X, Hu K, Lai Y, Li Y (2013) The influence of premolding load on the electrical behavior in the initial stage of electric current activated sintering of carbonyl iron powders. Appl Phys 113:214902CrossRef
21.
22.
go back to reference Mikrajuddin A, Shi FG, Kim HK, Okuyama K (1999) Size-dependent electrical constriction resistance for contacts of arbitrary size: from Sharvin to Holm limits. Mater Sci Semicond Process 2:321–327CrossRef Mikrajuddin A, Shi FG, Kim HK, Okuyama K (1999) Size-dependent electrical constriction resistance for contacts of arbitrary size: from Sharvin to Holm limits. Mater Sci Semicond Process 2:321–327CrossRef
23.
go back to reference Sharvin YV (1965) A possible method for studying Fermi surfaces. Sov Phys JETP 21:655–656 Sharvin YV (1965) A possible method for studying Fermi surfaces. Sov Phys JETP 21:655–656
24.
go back to reference Holm R (1967) Electrical contacts, theory and application. Springer-Verlag, BerlinCrossRef Holm R (1967) Electrical contacts, theory and application. Springer-Verlag, BerlinCrossRef
26.
go back to reference Kang SJL (2005) Sintering, densification, grain growth & microstructure. Elsevier, Amsterdam Kang SJL (2005) Sintering, densification, grain growth & microstructure. Elsevier, Amsterdam
27.
go back to reference Chaim R, Chevallier G, Weibel A, Estournès C (2017) Flash sintering of dielectric nanoparticles as a percolation phenomenon through a softened film. J Appl Phys 121:145103CrossRef Chaim R, Chevallier G, Weibel A, Estournès C (2017) Flash sintering of dielectric nanoparticles as a percolation phenomenon through a softened film. J Appl Phys 121:145103CrossRef
28.
go back to reference Morisaki N, Yoshida H, Tokunaga T, Sasaki K, Yamamoto T (2017) Consolidation of undoped, monoclinic zirconia polycrystals by flash sintering. J Am Ceram Soc 100:3851–3857CrossRef Morisaki N, Yoshida H, Tokunaga T, Sasaki K, Yamamoto T (2017) Consolidation of undoped, monoclinic zirconia polycrystals by flash sintering. J Am Ceram Soc 100:3851–3857CrossRef
30.
go back to reference Chaim R, Estournès C (2018) On thermal runaway and local endothermic/exothermic reactions during flash sintering of ceramic nanoparticles. J Mater Sci 53:6378–6389CrossRef Chaim R, Estournès C (2018) On thermal runaway and local endothermic/exothermic reactions during flash sintering of ceramic nanoparticles. J Mater Sci 53:6378–6389CrossRef
31.
go back to reference Luo J, Stevens R (1999) Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics. Ceram Inter 25:281–286CrossRef Luo J, Stevens R (1999) Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics. Ceram Inter 25:281–286CrossRef
32.
go back to reference Badwal SPS (1992) Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics 52:23–32CrossRef Badwal SPS (1992) Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics 52:23–32CrossRef
33.
go back to reference Ramamoorthy R, Sundararaman D, Ramasamy S (1999) Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ionics 123:271–278CrossRef Ramamoorthy R, Sundararaman D, Ramasamy S (1999) Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ionics 123:271–278CrossRef
34.
go back to reference Yeh TH, Chou CC (2008) Doping effect and vacancy formation on ionic conductivity of zirconia ceramics. J Phys Chem Solids 69:386–392CrossRef Yeh TH, Chou CC (2008) Doping effect and vacancy formation on ionic conductivity of zirconia ceramics. J Phys Chem Solids 69:386–392CrossRef
35.
go back to reference Perry NH, Mason TO (2010) Grain core and grain boundary electrical/dielectric properties of yttria-doped tetragonal zirconia polycrystal (TZP) nanoceramics. Solid State Ionics 181:276–284CrossRef Perry NH, Mason TO (2010) Grain core and grain boundary electrical/dielectric properties of yttria-doped tetragonal zirconia polycrystal (TZP) nanoceramics. Solid State Ionics 181:276–284CrossRef
36.
go back to reference M’Peko JC, Francis JSC, Raj R (2013) Impedance spectroscopy and dielectric properties of flash versus conventionally sintered yttria-doped zirconia electroceramics viewed at the microstructural level. J Am Ceram Soc 96:3760–3767CrossRef M’Peko JC, Francis JSC, Raj R (2013) Impedance spectroscopy and dielectric properties of flash versus conventionally sintered yttria-doped zirconia electroceramics viewed at the microstructural level. J Am Ceram Soc 96:3760–3767CrossRef
37.
go back to reference Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148:E121–E126CrossRef Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148:E121–E126CrossRef
38.
go back to reference Jha SK, Terauds K, Lebrun JM, Raj R (2016) Beyond flash sintering in 3 mol% yttria stabilized zirconia. J Ceram Soc Japan 124:283–288CrossRef Jha SK, Terauds K, Lebrun JM, Raj R (2016) Beyond flash sintering in 3 mol% yttria stabilized zirconia. J Ceram Soc Japan 124:283–288CrossRef
39.
go back to reference Lebrun JM, Jha SK, McCormack SJ, Kriven WM, Raj R (2016) Broadening of diffraction peak widths and temperature nonuniformity during flash experiments. J Am Ceram Soc 99:3429–3434CrossRef Lebrun JM, Jha SK, McCormack SJ, Kriven WM, Raj R (2016) Broadening of diffraction peak widths and temperature nonuniformity during flash experiments. J Am Ceram Soc 99:3429–3434CrossRef
40.
go back to reference Akash Mayo MJ (2000) Zr diffusion in tetragonal yttria stabilized zirconia. J Mater Sci 35:437–442CrossRef Akash Mayo MJ (2000) Zr diffusion in tetragonal yttria stabilized zirconia. J Mater Sci 35:437–442CrossRef
41.
go back to reference Tsoga A, Nikolopoulos P (1996) Surface and grain boundary energies in yttria-stabilized zirconia (YSZ-8 mol%). J Mater Sci 31:5409–5413CrossRef Tsoga A, Nikolopoulos P (1996) Surface and grain boundary energies in yttria-stabilized zirconia (YSZ-8 mol%). J Mater Sci 31:5409–5413CrossRef
42.
go back to reference Biesuz M, Abate WD, Sglavo VM (2017) Porcelain stoneware consolidation by flash sintering. J Am Ceram Soc 101:71–81CrossRef Biesuz M, Abate WD, Sglavo VM (2017) Porcelain stoneware consolidation by flash sintering. J Am Ceram Soc 101:71–81CrossRef
43.
go back to reference Su X, Wang B, Zhou J, Sun H (2016) Synthesis and electrical field-assisted sintering behaviour of yttria-stabilized tetragonal ZrO2 nanopowders by polyacrylamide gel method. Bull Mater Sci 38:641–646CrossRef Su X, Wang B, Zhou J, Sun H (2016) Synthesis and electrical field-assisted sintering behaviour of yttria-stabilized tetragonal ZrO2 nanopowders by polyacrylamide gel method. Bull Mater Sci 38:641–646CrossRef
44.
go back to reference German RM (1989) Particle packing characteristics, metal powder industries federation. Princeton, New Jersey German RM (1989) Particle packing characteristics, metal powder industries federation. Princeton, New Jersey
45.
go back to reference Alley RB (1968) Three-dimensional coordination number from two-dimensional measurements: a new method. J. Glaciology 32:391–396CrossRef Alley RB (1968) Three-dimensional coordination number from two-dimensional measurements: a new method. J. Glaciology 32:391–396CrossRef
46.
go back to reference Gorino TJ (2002) Electrical behavior of oxidized metal powders during and after preloading. J Mater Res 17:2691–2697CrossRef Gorino TJ (2002) Electrical behavior of oxidized metal powders during and after preloading. J Mater Res 17:2691–2697CrossRef
Metadata
Title
Numerical model for particle size effects on flash sintering temperature of ionic nanoparticles
Author
Rachman Chaim
Publication date
25-06-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2604-x

Other articles of this Issue 19/2018

Journal of Materials Science 19/2018 Go to the issue

Premium Partners