Skip to main content
Top
Published in: Applied Composite Materials 3/2016

01-06-2016

Numerical Modeling of Combined Matrix Cracking and Delamination in Composite Laminates Using Cohesive Elements

Authors: Deepak Kumar, Rene Roy, Jin-Hwe Kweon, Jin-ho Choi

Published in: Applied Composite Materials | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sub-laminate damage in the form of matrix cracking and delamination was simulated by using interface cohesive elements in the finite element (FE) software ABAQUS. Interface cohesive elements were inserted parallel to the fiber orientation in the transverse ply with equal spacing (matrix cracking) and between the interfaces (delamination). Matrix cracking initiation in the cohesive elements was based on stress traction separation laws and propagated under mixed-mode loading. We expanded the work of Shi et al. (Appl. Compos. Mater. 21, 57–70 2014) to include delamination and simulated additional [45/−45/0/90]s and [02/90n]s {n = 1,2,3} CFRP laminates and a [0/903]s GFRP laminate. Delamination damage was quantified numerically in terms of damage dissipative energy. We observed that transverse matrix cracks can propagate to the ply interface and initiate delamination. We also observed for [0/90n/0] laminates that as the number of 90° ply increases past n = 2, the crack density decreases. The predicted crack density evolution compared well with experimental results and the equivalent constraint model (ECM) theory. Empirical relationships were established between crack density and applied stress by linear curve fitting. The reduction of laminate elastic modulus due to cracking was also computed numerically and it is in accordance with reported experimental measurements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jones, R.M.: Mechanics of Composite Materials. Second Edition, Taylor and Francis Publication, Boca Rotan (2008) Jones, R.M.: Mechanics of Composite Materials. Second Edition, Taylor and Francis Publication, Boca Rotan (2008)
2.
go back to reference Berthelot, J.M., Le Corre, J.-F.: A model for transverse cracking and delamination in cross-ply laminates. Compos. Sci. Technol. 60, 1055–1066 (2000)CrossRef Berthelot, J.M., Le Corre, J.-F.: A model for transverse cracking and delamination in cross-ply laminates. Compos. Sci. Technol. 60, 1055–1066 (2000)CrossRef
3.
go back to reference Crossman, F.W., Wang, S.D.: The dependence of transverse cracking and delamination on ply thickness in Graphite/Epoxy laminates. Damage Composite Material op. ct. 118–39 (1984) Crossman, F.W., Wang, S.D.: The dependence of transverse cracking and delamination on ply thickness in Graphite/Epoxy laminates. Damage Composite Material op. ct. 118–39 (1984)
4.
go back to reference Wang, A.S.D., Kishore, N.N., Li, C.A.: Crack development in graphite-epoxy cross-ply laminates under uni-axial tension. Compos. Sci. Technol. 24, 1–31 (1985)CrossRef Wang, A.S.D., Kishore, N.N., Li, C.A.: Crack development in graphite-epoxy cross-ply laminates under uni-axial tension. Compos. Sci. Technol. 24, 1–31 (1985)CrossRef
5.
go back to reference Wang, A.S.D.: Fracture mechanics of sub-laminate cracks in composite materials. Compos. Technol. Rev. 6, 45–62 (1984)CrossRef Wang, A.S.D.: Fracture mechanics of sub-laminate cracks in composite materials. Compos. Technol. Rev. 6, 45–62 (1984)CrossRef
6.
go back to reference Highsmith, A.L., Reifsnider, K.L.: Stiffness reduction mechanism in composite laminates. Damage in Composite Materials. ASTM, STP 775, 103–117 (1982) Highsmith, A.L., Reifsnider, K.L.: Stiffness reduction mechanism in composite laminates. Damage in Composite Materials. ASTM, STP 775, 103–117 (1982)
7.
go back to reference Berbinau, P., Soutis, C., Guz, I.A.: Compressive failure of 00 unidirectional carbon-fiber-reinforced plastics (CFRP) laminates by fiber micro buckling. Compos. Sci. Technol. 59, 1451–1455 (1999)CrossRef Berbinau, P., Soutis, C., Guz, I.A.: Compressive failure of 00 unidirectional carbon-fiber-reinforced plastics (CFRP) laminates by fiber micro buckling. Compos. Sci. Technol. 59, 1451–1455 (1999)CrossRef
8.
go back to reference Anderson, T.L.: Fracture Mechanics- Fundamentals and Applications. CRC Press, New York (1995) Anderson, T.L.: Fracture Mechanics- Fundamentals and Applications. CRC Press, New York (1995)
9.
go back to reference Kashtalyan, M., Soutis, C.: The effect of delamination induced by transverse cracks and splits on stiffness properties of composite laminates. Compos. A: Appl. Sci. Manuf. 31, 107–119 (2000)CrossRef Kashtalyan, M., Soutis, C.: The effect of delamination induced by transverse cracks and splits on stiffness properties of composite laminates. Compos. A: Appl. Sci. Manuf. 31, 107–119 (2000)CrossRef
10.
go back to reference Kashtalyan, M., Soutis, C.: Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting. Compos. A: Appl. Sci. Manuf. 31, 335–351 (2000)CrossRef Kashtalyan, M., Soutis, C.: Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting. Compos. A: Appl. Sci. Manuf. 31, 335–351 (2000)CrossRef
11.
go back to reference Kashtalyan, M., Soutis, C.: Analysis of local delamination in composite laminates with angle-ply matrix cracks. Int. J. Solids Struct. 39, 1515–1537 (2002)CrossRef Kashtalyan, M., Soutis, C.: Analysis of local delamination in composite laminates with angle-ply matrix cracks. Int. J. Solids Struct. 39, 1515–1537 (2002)CrossRef
12.
go back to reference Kashtalyan, M., Soutis, C.: Mechanisms of internal damage and their effect on the behavior and properties of cross-ply composite laminates. Int. Appl. Mech. 38(6), 641–657 (2002)CrossRef Kashtalyan, M., Soutis, C.: Mechanisms of internal damage and their effect on the behavior and properties of cross-ply composite laminates. Int. Appl. Mech. 38(6), 641–657 (2002)CrossRef
13.
go back to reference Zhang, J., Soutis, C., Fan, J.: Strain energy release rate associated with local delamination in cracked composite laminates. Composites 25(9), 851–862 (1994)CrossRef Zhang, J., Soutis, C., Fan, J.: Strain energy release rate associated with local delamination in cracked composite laminates. Composites 25(9), 851–862 (1994)CrossRef
14.
go back to reference Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–464 (1973)CrossRef Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–464 (1973)CrossRef
15.
go back to reference Hashin, Z.: Failure criteria for uni-directional fiber composites. J. Appl. Mech. 47(1), 329–334 (1980)CrossRef Hashin, Z.: Failure criteria for uni-directional fiber composites. J. Appl. Mech. 47(1), 329–334 (1980)CrossRef
16.
go back to reference Nairn, J.A.: The strain energy release rate of composite micro-cracking: a variational approach. J. Compos. Mater. 23(11), 1106–1129 (1989)CrossRef Nairn, J.A.: The strain energy release rate of composite micro-cracking: a variational approach. J. Compos. Mater. 23(11), 1106–1129 (1989)CrossRef
17.
go back to reference Varna, J., Berglund, L.A.: Multiple transverse cracking and stiffness reduction in cross-ply laminates. J. Compos. Technol. Res. 13(2), 97–106 (1991)CrossRef Varna, J., Berglund, L.A.: Multiple transverse cracking and stiffness reduction in cross-ply laminates. J. Compos. Technol. Res. 13(2), 97–106 (1991)CrossRef
18.
go back to reference Varna, J., Berglund, L.A.: A model for prediction of the transverse cracking strain in cross-ply laminates. J. Reinf. Plast. Compos. 11(7), 708–728 (1992)CrossRef Varna, J., Berglund, L.A.: A model for prediction of the transverse cracking strain in cross-ply laminates. J. Reinf. Plast. Compos. 11(7), 708–728 (1992)CrossRef
19.
go back to reference Berglund, L.A., Varna, J.: Thermo-elastic properties of composite laminates with transverse cracks. J. Compos. Technol. Res. 16(1), 77–87 (1994)CrossRef Berglund, L.A., Varna, J.: Thermo-elastic properties of composite laminates with transverse cracks. J. Compos. Technol. Res. 16(1), 77–87 (1994)CrossRef
20.
go back to reference Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in [±θm/90n]s composite laminates. Part1: In-plane stiffness properties. Composites 23(5), 291–298 (1992)CrossRef Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in [±θm/90n]s composite laminates. Part1: In-plane stiffness properties. Composites 23(5), 291–298 (1992)CrossRef
21.
go back to reference Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in [±θm/90n]s composite laminates. Part 2: Development of transverse ply cracks. Composites 23(5), 299–304 (1992)CrossRef Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in [±θm/90n]s composite laminates. Part 2: Development of transverse ply cracks. Composites 23(5), 299–304 (1992)CrossRef
22.
go back to reference Smith, P.A., Boniface, L., Glass, N.F.C.: A comparison of transverse cracking phenomena in [0/90]s and [90/0]s CFRP laminates. Appl. Compos. Mater. 5, 11–23 (1998)CrossRef Smith, P.A., Boniface, L., Glass, N.F.C.: A comparison of transverse cracking phenomena in [0/90]s and [90/0]s CFRP laminates. Appl. Compos. Mater. 5, 11–23 (1998)CrossRef
23.
go back to reference Berthelot, J.-M.: Transverse cracking and delamination in cross-ply glass-fiber and carbon fiber reinforced plastics laminates: static and fatigue loading. Appl. Mech. Rev. 56(1), 111–148 (2003)CrossRef Berthelot, J.-M.: Transverse cracking and delamination in cross-ply glass-fiber and carbon fiber reinforced plastics laminates: static and fatigue loading. Appl. Mech. Rev. 56(1), 111–148 (2003)CrossRef
24.
go back to reference Kachanov, L.M.: On the creep rupture time. Izv AN SSSR Otd Tekhn Nauk 8, 26–31 (1958) Kachanov, L.M.: On the creep rupture time. Izv AN SSSR Otd Tekhn Nauk 8, 26–31 (1958)
25.
go back to reference Rabotnov, Y.N.: On the Equations of State for Creep. Progress in Appl. Mech. Prager Anniversary Volume. Macmillan, New York (1963) Rabotnov, Y.N.: On the Equations of State for Creep. Progress in Appl. Mech. Prager Anniversary Volume. Macmillan, New York (1963)
26.
go back to reference Donadon, M.V., Iannucci, L., Falzon, B.G., Hodgkinson, J.M., Almeida, S.F.M.: A progressive failure model for composite laminates subjected to low-velocity impact damage. Comput. Struct. 86, 1232–1252 (2008)CrossRef Donadon, M.V., Iannucci, L., Falzon, B.G., Hodgkinson, J.M., Almeida, S.F.M.: A progressive failure model for composite laminates subjected to low-velocity impact damage. Comput. Struct. 86, 1232–1252 (2008)CrossRef
27.
go back to reference Faggiani, A., Falzon, B.G.: Predicting low-velocity impact damage on a stiffened composite panel. Compos. A: Appl. Sci. Manuf. 41, 737–749 (2010)CrossRef Faggiani, A., Falzon, B.G.: Predicting low-velocity impact damage on a stiffened composite panel. Compos. A: Appl. Sci. Manuf. 41, 737–749 (2010)CrossRef
28.
go back to reference Iannucci, L., Ankersen, J.: An energy based damage model for thin laminated composites. Compos. Sci. Technol. 66, 934–951 (2006)CrossRef Iannucci, L., Ankersen, J.: An energy based damage model for thin laminated composites. Compos. Sci. Technol. 66, 934–951 (2006)CrossRef
29.
go back to reference Yokoyama, N.O., Donadon, M.V., Almeida, S.F.M.: A numerical study on the impact resistance of composite shells using an energy based failure model. Compos. Struct. 93, 142–152 (2010)CrossRef Yokoyama, N.O., Donadon, M.V., Almeida, S.F.M.: A numerical study on the impact resistance of composite shells using an energy based failure model. Compos. Struct. 93, 142–152 (2010)CrossRef
30.
go back to reference Barbero, E.J., Cortes, D.H.: A Mechanistic model for transverse damage initiation, evolution, and stiffness reduction in laminated composites. Compos. Part B. Eng. 41(2), 124–132 (2010)CrossRef Barbero, E.J., Cortes, D.H.: A Mechanistic model for transverse damage initiation, evolution, and stiffness reduction in laminated composites. Compos. Part B. Eng. 41(2), 124–132 (2010)CrossRef
31.
go back to reference Bouhala, L., Makradi, A., Belouettar, S., Kiefer-Kamal, H., Freres, P.: Modeling of failure in long fibers reinforced composites by X-FEM and cohesive zone model. Compos. Part B. Eng. 55, 352–361 (2013)CrossRef Bouhala, L., Makradi, A., Belouettar, S., Kiefer-Kamal, H., Freres, P.: Modeling of failure in long fibers reinforced composites by X-FEM and cohesive zone model. Compos. Part B. Eng. 55, 352–361 (2013)CrossRef
32.
go back to reference Shi, Y., Swait, T., Soutis, C.: Modeling damage evolution in composite laminates subjected to low-velocity impact. Compos. Struct. 94, 2902–2913 (2012)CrossRef Shi, Y., Swait, T., Soutis, C.: Modeling damage evolution in composite laminates subjected to low-velocity impact. Compos. Struct. 94, 2902–2913 (2012)CrossRef
33.
go back to reference Shi, Y., Pinna, C., Soutis, C.: Interface cohesive element to model matrix crack evolution in composite laminates. Appl. Compos. Mater. 21, 57–70 (2014)CrossRef Shi, Y., Pinna, C., Soutis, C.: Interface cohesive element to model matrix crack evolution in composite laminates. Appl. Compos. Mater. 21, 57–70 (2014)CrossRef
34.
go back to reference Caputo, F., De Luca, A., Lamanna, G., Lopresto, V., Riccio, A.: Numerical investigation of onset and evolution of LVI damages in Carbon–Epoxy plates. Compos. Part B. Eng. 68, 385–391 (2015)CrossRef Caputo, F., De Luca, A., Lamanna, G., Lopresto, V., Riccio, A.: Numerical investigation of onset and evolution of LVI damages in Carbon–Epoxy plates. Compos. Part B. Eng. 68, 385–391 (2015)CrossRef
35.
go back to reference Riccio, A., De Luca, A., Di Felice, G., Caputo, F.: Modeling the simulation of impact induced damage onset and evolution in composites. Compos. Part B. Eng. 66, 340–347 (2014)CrossRef Riccio, A., De Luca, A., Di Felice, G., Caputo, F.: Modeling the simulation of impact induced damage onset and evolution in composites. Compos. Part B. Eng. 66, 340–347 (2014)CrossRef
36.
go back to reference Carraro, P.A., Quaresimin, M.: A stiffness degradation model for cracked multidirectional laminates with cracks in multiple layers. Int. J. Solids Struct. 58, 34–51 (2015)CrossRef Carraro, P.A., Quaresimin, M.: A stiffness degradation model for cracked multidirectional laminates with cracks in multiple layers. Int. J. Solids Struct. 58, 34–51 (2015)CrossRef
37.
go back to reference Sills, R.B., Thouless, M.D.: Cohesive-length scales for damage and toughening mechanisms. Int. J. Solids Struct. 55, 32–43 (2015)CrossRef Sills, R.B., Thouless, M.D.: Cohesive-length scales for damage and toughening mechanisms. Int. J. Solids Struct. 55, 32–43 (2015)CrossRef
38.
go back to reference Van der Meer, F.P., Davila, C.G.: Cohesive modeling of transverse cracking in laminates under in-plane loading with a single layer of elements per ply. Int. J. Solids Struct. 50, 3308–3318 (2013)CrossRef Van der Meer, F.P., Davila, C.G.: Cohesive modeling of transverse cracking in laminates under in-plane loading with a single layer of elements per ply. Int. J. Solids Struct. 50, 3308–3318 (2013)CrossRef
39.
go back to reference Reedy Jr., E.D.: Cohesive zone finite element analysis of crack initiation from a butt joint’s interface corner. Int. J. Solids Struct. 51, 4336–4344 (2014)CrossRef Reedy Jr., E.D.: Cohesive zone finite element analysis of crack initiation from a butt joint’s interface corner. Int. J. Solids Struct. 51, 4336–4344 (2014)CrossRef
40.
go back to reference Han, Y., Hahn, H.T., Croman, R.B.: A simplified analysis of the transverse ply cracking in cross-ply laminates. Compos. Sci. Technol. 31, 165–177 (1988)CrossRef Han, Y., Hahn, H.T., Croman, R.B.: A simplified analysis of the transverse ply cracking in cross-ply laminates. Compos. Sci. Technol. 31, 165–177 (1988)CrossRef
41.
go back to reference Hahn, H.T., Han, Y.M., Kim, R.Y.: Resistance curves for ply cracking in composite laminates. Proc 33rd. Int. SAMPE. Symp., 1101–8 (1998) Hahn, H.T., Han, Y.M., Kim, R.Y.: Resistance curves for ply cracking in composite laminates. Proc 33rd. Int. SAMPE. Symp., 1101–8 (1998)
42.
go back to reference Fan, J., Zhang, J.: In-situ damage evolution and micro/macro transition for laminated composites. Compos. Sci. Technol. 47(2), 107–118 (1993)CrossRef Fan, J., Zhang, J.: In-situ damage evolution and micro/macro transition for laminated composites. Compos. Sci. Technol. 47(2), 107–118 (1993)CrossRef
43.
go back to reference Camanho, P.P., Dávila, C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials., Tech. Rep. NASA/TM-2002-211737 (2002) Camanho, P.P., Dávila, C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials., Tech. Rep. NASA/TM-2002-211737 (2002)
44.
go back to reference Camanho, P.P., Dávila, C.G., de Moura, M.F.: Numerical simulation of the mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)CrossRef Camanho, P.P., Dávila, C.G., de Moura, M.F.: Numerical simulation of the mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)CrossRef
45.
go back to reference ABAQUS.: ABAQUS Version 6.10, Dassault systems. Providence (2010) ABAQUS.: ABAQUS Version 6.10, Dassault systems. Providence (2010)
46.
go back to reference Barbero, E.J.: Finite Element Analysis of Composite Materials Using Abaqus. CRC Press (2010) Barbero, E.J.: Finite Element Analysis of Composite Materials Using Abaqus. CRC Press (2010)
47.
go back to reference Turon, A.: Simulation of Delamination in Composites Under Quasi-Static and Fatigue Loading Using Cohesive Zone Models. PhD Dissertation Universitat de Girona (2006) Turon, A.: Simulation of Delamination in Composites Under Quasi-Static and Fatigue Loading Using Cohesive Zone Models. PhD Dissertation Universitat de Girona (2006)
48.
go back to reference Ankersen, J., Davies, G.A.O.: Interface elements–advantages and limitations in CPRP delamination modeling. In: 17th International Conference on Composite Materials. Edinburgh, UK (2009) Ankersen, J., Davies, G.A.O.: Interface elements–advantages and limitations in CPRP delamination modeling. In: 17th International Conference on Composite Materials. Edinburgh, UK (2009)
49.
go back to reference Pinho, S.T., Iannucci, L., Robinson, P.: Fracture toughness of the tensile and compressive fiber failure modes in laminated composites. Compos. Sci. Technol. 66(13), 2069–2079 (2006)CrossRef Pinho, S.T., Iannucci, L., Robinson, P.: Fracture toughness of the tensile and compressive fiber failure modes in laminated composites. Compos. Sci. Technol. 66(13), 2069–2079 (2006)CrossRef
50.
go back to reference Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)CrossRef Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)CrossRef
51.
go back to reference Daudeville, L., Allix, O., Ladevèze, P.: Delamination analysis by damage mechanics: Some applications. Compos. Eng. 5(1), 17–24 (1995)CrossRef Daudeville, L., Allix, O., Ladevèze, P.: Delamination analysis by damage mechanics: Some applications. Compos. Eng. 5(1), 17–24 (1995)CrossRef
52.
go back to reference Gonçalves, J.P.M., de Moura, M.F.S.F., de Castro, P.M.S.T., Marques, A.T.: Interface element including point-to-surface constraints for three-dimensional problems with damage propagation. Eng. Comput. 17(1), 28–47 (2000)CrossRef Gonçalves, J.P.M., de Moura, M.F.S.F., de Castro, P.M.S.T., Marques, A.T.: Interface element including point-to-surface constraints for three-dimensional problems with damage propagation. Eng. Comput. 17(1), 28–47 (2000)CrossRef
53.
go back to reference Mi, Y., Crisfield, M.A.: Analytical Derivation of Load/Displacement Relationships for Mixed-Mode Delamination and Comparison with Finite Element Results. Imperial College, Department of Aeronautics, London (1996) Mi, Y., Crisfield, M.A.: Analytical Derivation of Load/Displacement Relationships for Mixed-Mode Delamination and Comparison with Finite Element Results. Imperial College, Department of Aeronautics, London (1996)
54.
go back to reference Schelleckens, J.C.J., de Borst, R.: On the numerical integration of interface elements. Int. J. Numer. Methods Eng. 36, 43–66 (1993)CrossRef Schelleckens, J.C.J., de Borst, R.: On the numerical integration of interface elements. Int. J. Numer. Methods Eng. 36, 43–66 (1993)CrossRef
55.
go back to reference Zou, Z., Reid, S.R., Li, S., Soden, P.D.: Modeling inter-laminar and intra-laminar damage in filament wound pipes under quasi-static indentation. J. Compos. Mater. 36, 477–499 (2002)CrossRef Zou, Z., Reid, S.R., Li, S., Soden, P.D.: Modeling inter-laminar and intra-laminar damage in filament wound pipes under quasi-static indentation. J. Compos. Mater. 36, 477–499 (2002)CrossRef
56.
go back to reference Hashin, Z.: Analysis of orthogonally cracked laminates under tension. Trans. ASME J. Appl. Mech. 54, 272–279 (1987)CrossRef Hashin, Z.: Analysis of orthogonally cracked laminates under tension. Trans. ASME J. Appl. Mech. 54, 272–279 (1987)CrossRef
57.
go back to reference Henaff-Gardin, C., Lafarie-Frenot, M.C., Gamby, D.: Doubly period matrix cracking in composite laminates Part 1: general in-plane loading. Compos. Struct. 36, 113–130 (1996)CrossRef Henaff-Gardin, C., Lafarie-Frenot, M.C., Gamby, D.: Doubly period matrix cracking in composite laminates Part 1: general in-plane loading. Compos. Struct. 36, 113–130 (1996)CrossRef
58.
go back to reference Turon, A., Camanho, P.P., Costa, J., Renart, J.: Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos. Struct. 92, 1857–1864 (2010)CrossRef Turon, A., Camanho, P.P., Costa, J., Renart, J.: Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos. Struct. 92, 1857–1864 (2010)CrossRef
Metadata
Title
Numerical Modeling of Combined Matrix Cracking and Delamination in Composite Laminates Using Cohesive Elements
Authors
Deepak Kumar
Rene Roy
Jin-Hwe Kweon
Jin-ho Choi
Publication date
01-06-2016
Publisher
Springer Netherlands
Published in
Applied Composite Materials / Issue 3/2016
Print ISSN: 0929-189X
Electronic ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-015-9465-0

Other articles of this Issue 3/2016

Applied Composite Materials 3/2016 Go to the issue

Premium Partners