Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2020

22-05-2020

Numerical Prediction on the Crashworthiness of Circular and Square Thin-Walled Tubes with Polymeric Auxetic Foam Core

Authors: S. Mohsenizadeh, Z. Ahmad, A. Alias

Published in: Journal of Materials Engineering and Performance | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This present research numerically investigates the energy absorption capability of auxetic foam-filled tubes when loaded statically. Accordingly, numerical simulations were performed to quantify the influence of tubes’ parameters such as wall thickness, diameter and width on the energy absorption responses and deformation modes of auxetic foam-filled circular and square tubes using validated FE models. The results reveal that the progressive collapse and deformation mode of auxetic foam-filled circular tube are pronouncedly affected by varying the tube width, so that the number of lobes created decreases as the tube width increases. Moreover, it was found that the absorbed energy by auxetic foam-filled square tube shows more dependence on the tube wall thickness variations than on the tube width. Nonetheless, increasing the width of filled tube makes the structure heavier without considerably affecting the absorbed energy, which is undesirable in design of energy absorbing structures. The primary outcome of this research is a design guideline for the use of auxetic foam as a core for an energy absorber device where impact loading is expected.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Abramowicz and N. Jones, Dynamic Axial Crushing of Square Tubes, Int. J. Impact Eng., 1984, 2(2), p 179–208CrossRef W. Abramowicz and N. Jones, Dynamic Axial Crushing of Square Tubes, Int. J. Impact Eng., 1984, 2(2), p 179–208CrossRef
2.
go back to reference M. Langseth, O. Hopperstad, and A. Hanssen, Crash Behaviour of Thin-Walled Aluminium Members, Thin-Walled Struct., 1998, 32(1–3), p 127–150CrossRef M. Langseth, O. Hopperstad, and A. Hanssen, Crash Behaviour of Thin-Walled Aluminium Members, Thin-Walled Struct., 1998, 32(1–3), p 127–150CrossRef
3.
go back to reference S.P. Santosa, T. Wierzbicki, A.G. Hanssen, and M. Langseth, Experimental and Numerical Studies of Foam-Filled Sections, Int. J. Impact Eng., 2000, 24(5), p 509–534CrossRef S.P. Santosa, T. Wierzbicki, A.G. Hanssen, and M. Langseth, Experimental and Numerical Studies of Foam-Filled Sections, Int. J. Impact Eng., 2000, 24(5), p 509–534CrossRef
4.
go back to reference Q. Wang, Z. Fan, H. Song, and L. Gui, Experimental and Numerical Analyses of the Axial Crushing Behaviour of Hat Sections Partially Filled with Aluminium Foam, Int. J. Crashworthiness, 2005, 10(5), p 535–543CrossRef Q. Wang, Z. Fan, H. Song, and L. Gui, Experimental and Numerical Analyses of the Axial Crushing Behaviour of Hat Sections Partially Filled with Aluminium Foam, Int. J. Crashworthiness, 2005, 10(5), p 535–543CrossRef
5.
go back to reference S. Mohsenizadeh, R. Alipour, Z. Ahmad, and A. Alias, Influence of Auxetic Foam in Quasi-static AXIAL Crushing, Int. J. Mater. Res., 2016, 107(10), p 916–924CrossRef S. Mohsenizadeh, R. Alipour, Z. Ahmad, and A. Alias, Influence of Auxetic Foam in Quasi-static AXIAL Crushing, Int. J. Mater. Res., 2016, 107(10), p 916–924CrossRef
6.
go back to reference S. Mohsenizadeh, R. Alipour, A.F. Nejad, M.S. Rad, and Z. Ahmad, Experimental Investigation on Energy Absorption of Auxetic Foam-Filled Thin-Walled Square Tubes Under Quasi-static Loading, Procedia Manuf., 2015, 2, p 331–336CrossRef S. Mohsenizadeh, R. Alipour, A.F. Nejad, M.S. Rad, and Z. Ahmad, Experimental Investigation on Energy Absorption of Auxetic Foam-Filled Thin-Walled Square Tubes Under Quasi-static Loading, Procedia Manuf., 2015, 2, p 331–336CrossRef
7.
go back to reference J. Bai, G. Meng, H. Wu, and W. Zuo, Bending Collapse of Dual Rectangle Thin-Walled Tubes for Conceptual Design, Thin-Walled Struct., 2019, 135, p 185–195CrossRef J. Bai, G. Meng, H. Wu, and W. Zuo, Bending Collapse of Dual Rectangle Thin-Walled Tubes for Conceptual Design, Thin-Walled Struct., 2019, 135, p 185–195CrossRef
8.
go back to reference S. Reid, Plastic Deformation Mechanisms in Axially Compressed Metal Tubes Used as Impact Energy Absorbers, Int. J. Mech. Sci., 1993, 35(12), p 1035–1052CrossRef S. Reid, Plastic Deformation Mechanisms in Axially Compressed Metal Tubes Used as Impact Energy Absorbers, Int. J. Mech. Sci., 1993, 35(12), p 1035–1052CrossRef
9.
go back to reference L. Aktay, A.K. Toksoy, and M. Güden, Quasi-static Axial Crushing of Extruded Polystyrene Foam-Filled Thin-Walled Aluminum Tubes: Experimental and Numerical Analysis, Mater. Des., 2006, 27(7), p 556–565CrossRef L. Aktay, A.K. Toksoy, and M. Güden, Quasi-static Axial Crushing of Extruded Polystyrene Foam-Filled Thin-Walled Aluminum Tubes: Experimental and Numerical Analysis, Mater. Des., 2006, 27(7), p 556–565CrossRef
10.
go back to reference R.D. Hussein, D. Ruan, G. Lu, S. Guillow, and J.W. Yoon, Crushing Response of Square Aluminium Tubes Filled with Polyurethane Foam and Aluminium Honeycomb, Thin-Walled Struct., 2017, 110, p 140–154CrossRef R.D. Hussein, D. Ruan, G. Lu, S. Guillow, and J.W. Yoon, Crushing Response of Square Aluminium Tubes Filled with Polyurethane Foam and Aluminium Honeycomb, Thin-Walled Struct., 2017, 110, p 140–154CrossRef
11.
go back to reference R.D. Hussein, D. Ruan, G. Lu, and I. Sbarski, Axial Crushing Behaviour of Honeycomb-Filled Square Carbon Fibre Reinforced Plastic (CFRP) Tubes, Compos. Struct., 2016, 140, p 166–179CrossRef R.D. Hussein, D. Ruan, G. Lu, and I. Sbarski, Axial Crushing Behaviour of Honeycomb-Filled Square Carbon Fibre Reinforced Plastic (CFRP) Tubes, Compos. Struct., 2016, 140, p 166–179CrossRef
12.
go back to reference H. Yin, G. Wen, S. Hou, and K. Chen, Crushing Analysis and Multiobjective Crashworthiness Optimization of Honeycomb-Filled Single and Bitubular Polygonal Tubes, Mater. Des., 2011, 32(8–9), p 4449–4460CrossRef H. Yin, G. Wen, S. Hou, and K. Chen, Crushing Analysis and Multiobjective Crashworthiness Optimization of Honeycomb-Filled Single and Bitubular Polygonal Tubes, Mater. Des., 2011, 32(8–9), p 4449–4460CrossRef
13.
go back to reference N. Gan, Y. Feng, H. Yin, G. Wen, D. Wang, and X. Huang, Quasi-static Axial Crushing Experiment Study of Foam-Filled CFRP and Aluminum Alloy Thin-Walled Structures, Compos. Struct., 2016, 157, p 303–319CrossRef N. Gan, Y. Feng, H. Yin, G. Wen, D. Wang, and X. Huang, Quasi-static Axial Crushing Experiment Study of Foam-Filled CFRP and Aluminum Alloy Thin-Walled Structures, Compos. Struct., 2016, 157, p 303–319CrossRef
14.
go back to reference J. Paz, J. Díaz, L. Romera, and M. Costas, Crushing Analysis and Multi-objective Crashworthiness Optimization of GFRP Honeycomb-Filled Energy Absorption Devices, Finite Elem. Anal. Des., 2014, 91, p 30–39CrossRef J. Paz, J. Díaz, L. Romera, and M. Costas, Crushing Analysis and Multi-objective Crashworthiness Optimization of GFRP Honeycomb-Filled Energy Absorption Devices, Finite Elem. Anal. Des., 2014, 91, p 30–39CrossRef
15.
go back to reference G. Balaji and K. Annamalai, Crushing Response of Square Aluminium Column Filled with Carbon Fibre Tubes and Aluminium Honeycomb, Thin-Walled Struct., 2018, 132, p 667–681CrossRef G. Balaji and K. Annamalai, Crushing Response of Square Aluminium Column Filled with Carbon Fibre Tubes and Aluminium Honeycomb, Thin-Walled Struct., 2018, 132, p 667–681CrossRef
16.
go back to reference Z. Fan, G. Lu, and K. Liu, Quasi-static Axial Compression of Thin-Walled Tubes with Different Cross-Sectional Shapes, Eng. Struct., 2013, 55, p 80–89CrossRef Z. Fan, G. Lu, and K. Liu, Quasi-static Axial Compression of Thin-Walled Tubes with Different Cross-Sectional Shapes, Eng. Struct., 2013, 55, p 80–89CrossRef
17.
go back to reference A.A. Nia and M. Parsapour, Comparative Analysis of Energy Absorption Capacity of SIMPLE and Multi-cell Thin-Walled Tubes with Triangular, Square, Hexagonal and Octagonal Sections, Thin-Walled Struct., 2014, 74, p 155–165CrossRef A.A. Nia and M. Parsapour, Comparative Analysis of Energy Absorption Capacity of SIMPLE and Multi-cell Thin-Walled Tubes with Triangular, Square, Hexagonal and Octagonal Sections, Thin-Walled Struct., 2014, 74, p 155–165CrossRef
18.
go back to reference W. Liu, Z. Lin, N. Wang, and X. Deng, Dynamic Performances of Thin-Walled Tubes with Star-Shaped Cross Section Under Axial Impact, Thin-Walled Struct., 2016, 100, p 25–37CrossRef W. Liu, Z. Lin, N. Wang, and X. Deng, Dynamic Performances of Thin-Walled Tubes with Star-Shaped Cross Section Under Axial Impact, Thin-Walled Struct., 2016, 100, p 25–37CrossRef
19.
go back to reference Z. Fan, G. Lu, T. Yu, and K. Liu, Axial Crushing of Triangular Tubes, Int. J. Appl. Mech., 2013, 5(01), p 1350008CrossRef Z. Fan, G. Lu, T. Yu, and K. Liu, Axial Crushing of Triangular Tubes, Int. J. Appl. Mech., 2013, 5(01), p 1350008CrossRef
20.
go back to reference Q. Gao, L. Wang, Y. Wang, and C. Wang, Crushing Analysis and Multiobjective Crashworthiness Optimization of Foam-Filled Ellipse Tubes Under Oblique Impact Loading, Thin-Walled Struct., 2016, 100, p 105–112CrossRef Q. Gao, L. Wang, Y. Wang, and C. Wang, Crushing Analysis and Multiobjective Crashworthiness Optimization of Foam-Filled Ellipse Tubes Under Oblique Impact Loading, Thin-Walled Struct., 2016, 100, p 105–112CrossRef
21.
go back to reference G. Sun, S. Li, Q. Liu, G. Li, and Q. Li, Experimental Study on Crashworthiness of Empty/Aluminum Foam/Honeycomb-Filled CFRP Tubes, Compos. Struct., 2016, 152, p 969–993CrossRef G. Sun, S. Li, Q. Liu, G. Li, and Q. Li, Experimental Study on Crashworthiness of Empty/Aluminum Foam/Honeycomb-Filled CFRP Tubes, Compos. Struct., 2016, 152, p 969–993CrossRef
22.
go back to reference C. Ge, Q. Gao, L. Wang, and Z. Hong, Theoretical Prediction and Numerical Analysis for Axial Crushing Behaviour of Elliptical Aluminium Foam-Filled Tube. Thin-Walled Struct., 2019, 149, p 106523CrossRef C. Ge, Q. Gao, L. Wang, and Z. Hong, Theoretical Prediction and Numerical Analysis for Axial Crushing Behaviour of Elliptical Aluminium Foam-Filled Tube. Thin-Walled Struct., 2019, 149, p 106523CrossRef
23.
go back to reference S. Shahbeyk, A. Vafai, and N. Petrinic, Axial Crushing of Metal Foam-Filled Square Columns: Foam Density Distribution and Impactor Inclination Effects, Thin-Walled Struct., 2005, 43(12), p 1818–1830CrossRef S. Shahbeyk, A. Vafai, and N. Petrinic, Axial Crushing of Metal Foam-Filled Square Columns: Foam Density Distribution and Impactor Inclination Effects, Thin-Walled Struct., 2005, 43(12), p 1818–1830CrossRef
24.
go back to reference T. Reddy and S. Al-Hassani, Axial Crushing of Wood-Filled Square Metal Tubes, Int. J. Mech. Sci., 1993, 35(3-4), p 231–246CrossRef T. Reddy and S. Al-Hassani, Axial Crushing of Wood-Filled Square Metal Tubes, Int. J. Mech. Sci., 1993, 35(3-4), p 231–246CrossRef
25.
go back to reference C. Gameiro and J. Cirne, Dynamic Axial Crushing of Short to Long Circular Aluminium Tubes with Agglomerate Cork Filler, Int. J. Mech. Sci., 2007, 49(9), p 1029–1037CrossRef C. Gameiro and J. Cirne, Dynamic Axial Crushing of Short to Long Circular Aluminium Tubes with Agglomerate Cork Filler, Int. J. Mech. Sci., 2007, 49(9), p 1029–1037CrossRef
26.
go back to reference A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Static and Dynamic Crushing of Circular Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng., 2000, 24(5), p 475–507CrossRef A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Static and Dynamic Crushing of Circular Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng., 2000, 24(5), p 475–507CrossRef
27.
go back to reference D. Tankara, R. Moradi, Y.Y. Tay, and H.M. Lankarani, Energy absorption characteristics of a thin-walled tube filled with carbon nano polyurethane foam and application in car bumper. In: ASME 2014 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2014, p V012T15A029-V012T15A029 D. Tankara, R. Moradi, Y.Y. Tay, and H.M. Lankarani, Energy absorption characteristics of a thin-walled tube filled with carbon nano polyurethane foam and application in car bumper. In: ASME 2014 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2014, p V012T15A029-V012T15A029
28.
go back to reference A.K. Toksoy and M. Güden, The Strengthening Effect of Polystyrene Foam Filling in Aluminum Thin-Walled Cylindrical Tubes, Thin-Walled Struct., 2005, 43(2), p 333–350CrossRef A.K. Toksoy and M. Güden, The Strengthening Effect of Polystyrene Foam Filling in Aluminum Thin-Walled Cylindrical Tubes, Thin-Walled Struct., 2005, 43(2), p 333–350CrossRef
29.
go back to reference T. Reddy and R. Wall, Axial Compression of Foam-Filled Thin-Walled Circular Tubes, Int. J. Impact Eng., 1988, 7(2), p 151–166CrossRef T. Reddy and R. Wall, Axial Compression of Foam-Filled Thin-Walled Circular Tubes, Int. J. Impact Eng., 1988, 7(2), p 151–166CrossRef
30.
go back to reference T. Børvik, O.S. Hopperstad, A. Reyes, M. Langseth, G. Solomos, and T. Dyngeland, Empty and Foam-Filled Circular Aluminium Tubes Subjected to Axial and Oblique Quasistatic Loading, Int. J. Crashworthiness, 2003, 8(5), p 481–494CrossRef T. Børvik, O.S. Hopperstad, A. Reyes, M. Langseth, G. Solomos, and T. Dyngeland, Empty and Foam-Filled Circular Aluminium Tubes Subjected to Axial and Oblique Quasistatic Loading, Int. J. Crashworthiness, 2003, 8(5), p 481–494CrossRef
31.
go back to reference L. Yan, N. Chouw, and K. Jayaraman, Effect of Triggering and Polyurethane Foam-Filler on Axial Crushing of Natural Flax/Epoxy Composite Tubes, Mater. Des., 2014, 56, p 528–541CrossRef L. Yan, N. Chouw, and K. Jayaraman, Effect of Triggering and Polyurethane Foam-Filler on Axial Crushing of Natural Flax/Epoxy Composite Tubes, Mater. Des., 2014, 56, p 528–541CrossRef
32.
go back to reference M. Seitzberger, F.G. Rammerstorfer, R. Gradinger, H. Degischer, M. Blaimschein, and C. Walch, Experimental Studies on the Quasi-static Axial Crushing of Steel Columns Filled with Aluminium Foam, Int. J. Solids Struct., 2000, 37(30), p 4125–4147CrossRef M. Seitzberger, F.G. Rammerstorfer, R. Gradinger, H. Degischer, M. Blaimschein, and C. Walch, Experimental Studies on the Quasi-static Axial Crushing of Steel Columns Filled with Aluminium Foam, Int. J. Solids Struct., 2000, 37(30), p 4125–4147CrossRef
33.
go back to reference G. Lu and T. Yu, Energy Absorption of Structures and Materials, Elsevier, Amsterdam, 2003CrossRef G. Lu and T. Yu, Energy Absorption of Structures and Materials, Elsevier, Amsterdam, 2003CrossRef
34.
go back to reference R. Lakes, Foam Structures with a Negative Poisson’s Ratio, Science, 1987, 235, p 1038–1041CrossRef R. Lakes, Foam Structures with a Negative Poisson’s Ratio, Science, 1987, 235, p 1038–1041CrossRef
35.
go back to reference F. Najarian, R. Alipour, M.S. Rad, A.F. Nejad, and A. Razavykia, Multi-objective Optimization of Converting Process of Auxetic Foam Using Three Different Statistical Methods, Measurement, 2018, 119, p 108–116CrossRef F. Najarian, R. Alipour, M.S. Rad, A.F. Nejad, and A. Razavykia, Multi-objective Optimization of Converting Process of Auxetic Foam Using Three Different Statistical Methods, Measurement, 2018, 119, p 108–116CrossRef
36.
go back to reference Y. Prawoto, Seeing Auxetic Materials from the Mechanics Point of View: A Structural Review on the Negative Poisson’s Ratio, Comput. Mater. Sci., 2012, 58, p 140–153CrossRef Y. Prawoto, Seeing Auxetic Materials from the Mechanics Point of View: A Structural Review on the Negative Poisson’s Ratio, Comput. Mater. Sci., 2012, 58, p 140–153CrossRef
37.
go back to reference M. Bianchi, F.L. Scarpa, and C.W. Smith, Stiffness and Energy Dissipation in Polyurethane Auxetic Foams, J. Mater. Sci., 2008, 43(17), p 5851–5860CrossRef M. Bianchi, F.L. Scarpa, and C.W. Smith, Stiffness and Energy Dissipation in Polyurethane Auxetic Foams, J. Mater. Sci., 2008, 43(17), p 5851–5860CrossRef
38.
go back to reference J. Choi and R. Lakes, Non-linear Properties of Polymer Cellular Materials with a Negative Poisson’s Ratio, J. Mater. Sci., 1992, 27(17), p 4678–4684CrossRef J. Choi and R. Lakes, Non-linear Properties of Polymer Cellular Materials with a Negative Poisson’s Ratio, J. Mater. Sci., 1992, 27(17), p 4678–4684CrossRef
39.
go back to reference R. Lakes, Design Considerations for Materials with Negative Poisson’s Ratios, J. Mech. Des., 1993, 115(4), p 696–700CrossRef R. Lakes, Design Considerations for Materials with Negative Poisson’s Ratios, J. Mech. Des., 1993, 115(4), p 696–700CrossRef
40.
go back to reference S. Hou, T. Liu, Z. Zhang, X. Han, and Q. Li, How Does Negative Poisson’s Ratio of Foam Filler Affect Crashworthiness?, Mater. Des., 2015, 82, p 247–259CrossRef S. Hou, T. Liu, Z. Zhang, X. Han, and Q. Li, How Does Negative Poisson’s Ratio of Foam Filler Affect Crashworthiness?, Mater. Des., 2015, 82, p 247–259CrossRef
41.
go back to reference S. Mohsenizadeh, R. Alipour, M.S. Rad, A.F. Nejad, and Z. Ahmad, Crashworthiness Assessment of Auxetic Foam-Filled Tube Under Quasi-static Axial Loading, Mater. Des., 2015, 88, p 258–268CrossRef S. Mohsenizadeh, R. Alipour, M.S. Rad, A.F. Nejad, and Z. Ahmad, Crashworthiness Assessment of Auxetic Foam-Filled Tube Under Quasi-static Axial Loading, Mater. Des., 2015, 88, p 258–268CrossRef
42.
go back to reference S. Mohsenizadeh and Z. Ahmad, Auxeticity Effect on Crushing Characteristics of Auxetic Foam-Filled Square Tubes Under Axial Loading, Thin-Walled Struct., 2019, 145, p 106379CrossRef S. Mohsenizadeh and Z. Ahmad, Auxeticity Effect on Crushing Characteristics of Auxetic Foam-Filled Square Tubes Under Axial Loading, Thin-Walled Struct., 2019, 145, p 106379CrossRef
43.
go back to reference A.A.S.f. Testing, Materials, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2009 A.A.S.f. Testing, Materials, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2009
44.
go back to reference S. Mohsenizadeh, Z. Ahmad, R. Alipour, R.A. Majid, and Y. Prawoto, Quasi Tri-axial Method for the Fabrication of Optimized Polyurethane Auxetic Foams, Phys. Status Solidi (b), 2019, 256(10), p 1800587CrossRef S. Mohsenizadeh, Z. Ahmad, R. Alipour, R.A. Majid, and Y. Prawoto, Quasi Tri-axial Method for the Fabrication of Optimized Polyurethane Auxetic Foams, Phys. Status Solidi (b), 2019, 256(10), p 1800587CrossRef
45.
go back to reference D. ASTM, 3574—Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams, 2001 D. ASTM, 3574—Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams, 2001
46.
go back to reference J. Hallquist, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation, Livermore, 2006 J. Hallquist, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation, Livermore, 2006
47.
go back to reference H.E. Boyer, Atlas of Stress-Strain Curves, Metals Park, ASM International, 1987, p 630 H.E. Boyer, Atlas of Stress-Strain Curves, Metals Park, ASM International, 1987, p 630
48.
go back to reference Z. Zhang, S. Liu, and Z. Tang, Comparisons of Honeycomb Sandwich and Foam-Filled Cylindrical Columns Under Axial Crushing Loads, Thin-Walled Struct., 2011, 49(9), p 1071–1079CrossRef Z. Zhang, S. Liu, and Z. Tang, Comparisons of Honeycomb Sandwich and Foam-Filled Cylindrical Columns Under Axial Crushing Loads, Thin-Walled Struct., 2011, 49(9), p 1071–1079CrossRef
49.
go back to reference Q.H. Shah and A. Topa, Modeling Large Deformation and Failure of Expanded Polystyrene Crushable Foam Using LS-DYNA, Model. Simul. Eng., 2014, 2014, p 1CrossRef Q.H. Shah and A. Topa, Modeling Large Deformation and Failure of Expanded Polystyrene Crushable Foam Using LS-DYNA, Model. Simul. Eng., 2014, 2014, p 1CrossRef
50.
go back to reference D. Zangani, M. Robinson, and A. Gibson, Progressive Failure of Composite Hollow Sections with Foam-Filled Corrugated Sandwich Walls, Appl. Compos. Mater., 2007, 14(5–6), p 325–342CrossRef D. Zangani, M. Robinson, and A. Gibson, Progressive Failure of Composite Hollow Sections with Foam-Filled Corrugated Sandwich Walls, Appl. Compos. Mater., 2007, 14(5–6), p 325–342CrossRef
51.
go back to reference J.O. Hallquist, LS-DYNA® Keyword User’s Manual Volume II Material Models, Livermore, California, USA, 2013 J.O. Hallquist, LS-DYNA® Keyword User’s Manual Volume II Material Models, Livermore, California, USA, 2013
52.
go back to reference Z. Ahmad and D. Thambiratnam, Crushing Response of Foam-Filled Conical Tubes Under Quasi-static Axial Loading, Mater. Des., 2009, 30(7), p 2393–2403CrossRef Z. Ahmad and D. Thambiratnam, Crushing Response of Foam-Filled Conical Tubes Under Quasi-static Axial Loading, Mater. Des., 2009, 30(7), p 2393–2403CrossRef
53.
go back to reference V. Tarigopula, M. Langseth, O.S. Hopperstad, and A.H. Clausen, Axial Crushing of Thin-Walled High-Strength Steel Sections, Int. J. Impact Eng., 2006, 32(5), p 847–882CrossRef V. Tarigopula, M. Langseth, O.S. Hopperstad, and A.H. Clausen, Axial Crushing of Thin-Walled High-Strength Steel Sections, Int. J. Impact Eng., 2006, 32(5), p 847–882CrossRef
54.
go back to reference J. Reid and N. Hiser, Friction Modelling Between Solid Elements, Int. J. Crashworthiness, 2004, 9(1), p 65–72CrossRef J. Reid and N. Hiser, Friction Modelling Between Solid Elements, Int. J. Crashworthiness, 2004, 9(1), p 65–72CrossRef
55.
go back to reference J.O. Hallquist, LS-DYNA Keyword User’s Manual, Vol 970, Livermore Software Technology Corporation, Livermore, 2007, p 299–800 J.O. Hallquist, LS-DYNA Keyword User’s Manual, Vol 970, Livermore Software Technology Corporation, Livermore, 2007, p 299–800
56.
go back to reference M. Barsotti, Comparison of FEM and SPH for Modeling a Crushable Foam Aircraft Arrestor Bed. Aerosp. J., 2012, 2, p 16–37 M. Barsotti, Comparison of FEM and SPH for Modeling a Crushable Foam Aircraft Arrestor Bed. Aerosp. J., 2012, 2, p 16–37
57.
go back to reference S. Guillow, G. Lu, and R. Grzebieta, Quasi-static Axial Compression of Thin-Walled Circular Aluminium Tubes, Int. J. Mech. Sci., 2001, 43(9), p 2103–2123CrossRef S. Guillow, G. Lu, and R. Grzebieta, Quasi-static Axial Compression of Thin-Walled Circular Aluminium Tubes, Int. J. Mech. Sci., 2001, 43(9), p 2103–2123CrossRef
Metadata
Title
Numerical Prediction on the Crashworthiness of Circular and Square Thin-Walled Tubes with Polymeric Auxetic Foam Core
Authors
S. Mohsenizadeh
Z. Ahmad
A. Alias
Publication date
22-05-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04852-4

Other articles of this Issue 5/2020

Journal of Materials Engineering and Performance 5/2020 Go to the issue

Premium Partners