Skip to main content
Top
Published in: Journal of Iron and Steel Research International 9/2018

01-09-2018 | Original Paper

Numerical simulation for pulsed laser–gas tungsten arc hybrid welding of magnesium alloy

Authors: Zhong-lin Hou, Li-ming Liu, Xin-ze Lv, Jun Qiao, Hong-yang Wang

Published in: Journal of Iron and Steel Research International | Issue 9/2018

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on the extended application of COMSOL multiphysics, a novel dual heat source model for pulsed laser–gas tungsten arc (GTA) hybrid welding was established. This model successfully solved the problem of simulation inaccuracy caused by energy superposition effect between laser and arc due to their different physical characteristics. Numerical simulation for pulsed laser–GTA hybrid welding of magnesium alloy process was conducted, and the simulation indicated good agreements with the measured thermal cycle curve and the shape of weld beads. Effects of pulse laser parameters (laser-excited current, pulse duration, and pulse frequency) on the temperature field and weld pool morphology were investigated. The experimental and simulation results suggest that when the laser pulse energy keeps constant, welding efficiency of the hybrid heat source is increased by increasing laser current or decreasing pulse duration due to the increased ratio of the weld bead depth to width. With large laser currents, severe spatters tend to occur. For optimized welding process, the laser current should be controlled in the range of 150–175 A, the pulse duration should be longer than 1 ms, and the pulse frequency should be equal to or slightly greater than 20 Hz.
Literature
[1]
go back to reference G. Song, J. Wang, J.W. Yu, L.M. Liu, Trans. China Weld. Inst. 37 (2016) No. 5, 69–72. G. Song, J. Wang, J.W. Yu, L.M. Liu, Trans. China Weld. Inst. 37 (2016) No. 5, 69–72.
[2]
go back to reference L.M. Liu, M.S. Chi, J.F. Wang, Mater. Mech. Eng. A 42 (2006) 82–86. L.M. Liu, M.S. Chi, J.F. Wang, Mater. Mech. Eng. A 42 (2006) 82–86.
[3]
go back to reference J. Shen, S. Li, D.J. Zhai, L.B. Wen, K. Liu, Y.C. Dai, Mater. Manuf. Process. 28 (2013) 1240–1247.CrossRef J. Shen, S. Li, D.J. Zhai, L.B. Wen, K. Liu, Y.C. Dai, Mater. Manuf. Process. 28 (2013) 1240–1247.CrossRef
[4]
go back to reference L.M. Liu, G. Song, G.L. Liang, J.F. Wang, Mater. Sci. Eng. A 390 (2005) 76–80.CrossRef L.M. Liu, G. Song, G.L. Liang, J.F. Wang, Mater. Sci. Eng. A 390 (2005) 76–80.CrossRef
[5]
go back to reference X. Xie, J. Shen, F.B. Gong, D. Wu, T. Zhang, X. Luo, Y. Li, Adv. Manuf. Technol. 82 (2016) 75–83.CrossRef X. Xie, J. Shen, F.B. Gong, D. Wu, T. Zhang, X. Luo, Y. Li, Adv. Manuf. Technol. 82 (2016) 75–83.CrossRef
[6]
go back to reference C. Shan, G. Song, L.M. Liu, Trans. China Weld. Inst. 29 (2008) No. 6, 57–60. C. Shan, G. Song, L.M. Liu, Trans. China Weld. Inst. 29 (2008) No. 6, 57–60.
[9]
go back to reference M. Gao, S.W. Mei, Z.M. Wang, X.Y. Li, X.Y. Zeng, J. Mater. Process. Technol. 212 (2012) 1338–1346.CrossRef M. Gao, S.W. Mei, Z.M. Wang, X.Y. Li, X.Y. Zeng, J. Mater. Process. Technol. 212 (2012) 1338–1346.CrossRef
[10]
go back to reference G. Casalino, S.L. Campanelli, A.D. Ludovico, Int. J. Adv. Manuf. Technol. 68 (2013) 209–216.CrossRef G. Casalino, S.L. Campanelli, A.D. Ludovico, Int. J. Adv. Manuf. Technol. 68 (2013) 209–216.CrossRef
[11]
[12]
[13]
[15]
go back to reference X.H. Zhan, Y.B. Li, W.M. Ou, F.Y. Yu, J. Chen, Y.H. Wei. Opt. Laser Technol. 85 (2016) 75–84.CrossRef X.H. Zhan, Y.B. Li, W.M. Ou, F.Y. Yu, J. Chen, Y.H. Wei. Opt. Laser Technol. 85 (2016) 75–84.CrossRef
[16]
go back to reference L.C. Mo, B.N. Qian, X.M. Guo, S.F. Yu, Trans. China Weld. Inst. 22 (2001) No. 3, 93–96. L.C. Mo, B.N. Qian, X.M. Guo, S.F. Yu, Trans. China Weld. Inst. 22 (2001) No. 3, 93–96.
[17]
go back to reference Y.B. Chen, L.Q. Li, J.F. Fang, X.S. Feng, L. Wu, China Weld. 12 (2003) No. 1, 62–66. Y.B. Chen, L.Q. Li, J.F. Fang, X.S. Feng, L. Wu, China Weld. 12 (2003) No. 1, 62–66.
[18]
go back to reference C. Carmignani, R. Mares, G. Tosell, Comput. Method Appl. Mech. Eng. 179 (1999) 197–217.CrossRef C. Carmignani, R. Mares, G. Tosell, Comput. Method Appl. Mech. Eng. 179 (1999) 197–217.CrossRef
[19]
go back to reference B. Tan, H.L. Zhang, D.G. Chen, G. Qi, J.C. Feng, C.F. Chen, Ordnance Mater. Sci. Eng. 33 (2010) No. 2, 55–58. B. Tan, H.L. Zhang, D.G. Chen, G. Qi, J.C. Feng, C.F. Chen, Ordnance Mater. Sci. Eng. 33 (2010) No. 2, 55–58.
[20]
[21]
go back to reference S. Wu, H.Y. Zhao, Y. Wang, X.H. Zhang, J. Trans. China Weld. Inst. 25 (2004) No. 1, 92–95. S. Wu, H.Y. Zhao, Y. Wang, X.H. Zhang, J. Trans. China Weld. Inst. 25 (2004) No. 1, 92–95.
Metadata
Title
Numerical simulation for pulsed laser–gas tungsten arc hybrid welding of magnesium alloy
Authors
Zhong-lin Hou
Li-ming Liu
Xin-ze Lv
Jun Qiao
Hong-yang Wang
Publication date
01-09-2018
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 9/2018
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-018-0122-3

Other articles of this Issue 9/2018

Journal of Iron and Steel Research International 9/2018 Go to the issue

Premium Partners