Skip to main content
Top
Published in: Rock Mechanics and Rock Engineering 3/2015

01-05-2015 | Original Paper

Numerical Simulation of Crack Growth and Coalescence in Rock-Like Materials Containing Multiple Pre-existing Flaws

Authors: X. P. Zhou, J. Bi, Q. H. Qian

Published in: Rock Mechanics and Rock Engineering | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel meshless numerical method, called general particle dynamics (GPD), is proposed to simulate samples of rock-like brittle heterogeneous material containing four preexisting flaws under uniaxial compressive loads. Numerical simulations are conducted to investigate the initiation, growth, and coalescence of cracks using a GPD code. An elasto-brittle damage model based on an extension of the Hoek–Brown strength criterion is applied to reflect crack initiation, growth, and coalescence and the macrofailure of the rock-like material. The preexisting flaws are simulated by empty particles. The particle is killed when its stresses satisfy the Hoek–Brown strength criterion, and the growth path of cracks is captured through the sequence of such damaged particles. A statistical approach is applied to model the heterogeneity of the rock-like material. It is found from the numerical results that samples containing four preexisting flaws may produce five types of cracks at or near the tips of preexisting flaws including wing, coplanar or quasi-coplanar secondary, oblique secondary, out-of-plane tensile, and out-of-plane shear cracks. Four coalescence modes are observed from the numerical results: tensile (T), compression (C), shear (S), and mixed tension/shear (TS). A higher load is required to induce crack coalescence in the shear mode (S) than the tensile (T) or mixed (TS) mode. It is concluded from the numerical results that crack coalescence occurs following the weakest coalescence path among all possible paths between any two flaws. The numerical results are in good agreement with reported experimental observations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Atluri NS, Zhu TA (1998) New meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127CrossRef Atluri NS, Zhu TA (1998) New meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127CrossRef
go back to reference Belytschko T, Lu YY (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256CrossRef Belytschko T, Lu YY (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256CrossRef
go back to reference Benz W, Asphaug E (1995) Simulations of brittle solids using smoothed particle hydrodynamics. Comput Phys Commun 87:253–265CrossRef Benz W, Asphaug E (1995) Simulations of brittle solids using smoothed particle hydrodynamics. Comput Phys Commun 87:253–265CrossRef
go back to reference Bieniawski ZT (1967) Mechanism of brittle fracture of rock, Part I F theory of the fracture process. J Rock Mech Min Sci 4:395–406CrossRef Bieniawski ZT (1967) Mechanism of brittle fracture of rock, Part I F theory of the fracture process. J Rock Mech Min Sci 4:395–406CrossRef
go back to reference Bobet A (2000) The initiation of secondary cracks in compression. Eng Fract Mech 66:187–219CrossRef Bobet A (2000) The initiation of secondary cracks in compression. Eng Fract Mech 66:187–219CrossRef
go back to reference Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888CrossRef Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888CrossRef
go back to reference Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46:231–252CrossRef Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46:231–252CrossRef
go back to reference Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475CrossRef Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475CrossRef
go back to reference Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65CrossRef Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65CrossRef
go back to reference Dey TN, Wang CY (1981) Some mechanisms of microcrack growth and interaction in compressive rock failure. Int J Rock Mech Min Sci 18:199–209CrossRef Dey TN, Wang CY (1981) Some mechanisms of microcrack growth and interaction in compressive rock failure. Int J Rock Mech Min Sci 18:199–209CrossRef
go back to reference Gu J, Zhao ZY (2009) Considerations of the discontinuous deformation analysis on wave propagation. Int J Numer Anal Methods Geomech 33(12):1449–1465CrossRef Gu J, Zhao ZY (2009) Considerations of the discontinuous deformation analysis on wave propagation. Int J Numer Anal Methods Geomech 33(12):1449–1465CrossRef
go back to reference Hallquist J O (1998) LS-DYNA theoretical manual. Livermore Software Technology Corporation, 2876 Waverley Way, Livermore, CA pp 94550–1740 Hallquist J O (1998) LS-DYNA theoretical manual. Livermore Software Technology Corporation, 2876 Waverley Way, Livermore, CA pp 94550–1740
go back to reference Hoek E (1990) Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 27:227–229CrossRef Hoek E (1990) Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 27:227–229CrossRef
go back to reference Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. ASCE J Geotech Geoenviron Eng 106(GT9):1013–1036 Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. ASCE J Geotech Geoenviron Eng 106(GT9):1013–1036
go back to reference Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186CrossRef Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186CrossRef
go back to reference Lee HW, Jeon SW (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48:979–999CrossRef Lee HW, Jeon SW (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48:979–999CrossRef
go back to reference Li SC, Li SC, Cheng YM (2005) Enriched meshless manifold method for two-dimensional crack modeling. Theor Appl Fract Mech 44(3):234–248CrossRef Li SC, Li SC, Cheng YM (2005) Enriched meshless manifold method for two-dimensional crack modeling. Theor Appl Fract Mech 44(3):234–248CrossRef
go back to reference Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109:67–75CrossRef Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109:67–75CrossRef
go back to reference Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 28(12):1013–1024CrossRef Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 28(12):1013–1024CrossRef
go back to reference Ma GW, An XM, Zhang HH, Li LX (2009) Modeling complex crack problems with numerical manifold method. Int J Fract 156(1):21–35CrossRef Ma GW, An XM, Zhang HH, Li LX (2009) Modeling complex crack problems with numerical manifold method. Int J Fract 156(1):21–35CrossRef
go back to reference Monaghan JJ (1988) An introduction to SPH. Comput Phys Commun 48(1):89–96CrossRef Monaghan JJ (1988) An introduction to SPH. Comput Phys Commun 48(1):89–96CrossRef
go back to reference Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389CrossRef Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389CrossRef
go back to reference Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149(1):135–143 Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149(1):135–143
go back to reference Neumann JV, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21:232–237CrossRef Neumann JV, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21:232–237CrossRef
go back to reference Ning YJ, Yang J, An XM, Ma GW (2010) Modelling rock fracturing and blast induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework. Comput Geotech 38(1):40–49CrossRef Ning YJ, Yang J, An XM, Ma GW (2010) Modelling rock fracturing and blast induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework. Comput Geotech 38(1):40–49CrossRef
go back to reference Ning YJ, An XM, Ma GW (2011) Footwall slope stability analysis with the numerical manifold method. Int J Rock Mech Min Sci 48:964–975CrossRef Ning YJ, An XM, Ma GW (2011) Footwall slope stability analysis with the numerical manifold method. Int J Rock Mech Min Sci 48:964–975CrossRef
go back to reference Olson JE, Pollard DD (1991) The initiation and growth of en-echelon veins. J Struct Geol 13(5):595–608CrossRef Olson JE, Pollard DD (1991) The initiation and growth of en-echelon veins. J Struct Geol 13(5):595–608CrossRef
go back to reference Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci 46(5):819–829CrossRef Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci 46(5):819–829CrossRef
go back to reference Peng S, Johson AM (1972) Crack growth and faulting in cylindrical specimens of Chelmsford granite. Int J Rock Mech Min Sci 9:37–86CrossRef Peng S, Johson AM (1972) Crack growth and faulting in cylindrical specimens of Chelmsford granite. Int J Rock Mech Min Sci 9:37–86CrossRef
go back to reference Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6):743–760CrossRef Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6):743–760CrossRef
go back to reference Reyes O (1991) Experimental study, analytic modeling of compressive fracture in brittle materials. Ph.D. thesis, Mass., Institute of Technology, Cambridge Reyes O (1991) Experimental study, analytic modeling of compressive fracture in brittle materials. Ph.D. thesis, Mass., Institute of Technology, Cambridge
go back to reference Reyes O, Einstein HH (1991) Fracture mechanism of fractured rock fracture coalescence model. Proceeding of the Seventh International Conference on Rock Mechanics, 1:333–340 Reyes O, Einstein HH (1991) Fracture mechanism of fractured rock fracture coalescence model. Proceeding of the Seventh International Conference on Rock Mechanics, 1:333–340
go back to reference Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci 39:229–241CrossRef Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci 39:229–241CrossRef
go back to reference Scavia C (1999) The displacement discontinuity method for the analysis of rock structures: a fracture mechanic. In: Aliabadi MH (ed) Fracture of rock. WIT/Computational Mechanics, Boston, pp 39–82 Scavia C (1999) The displacement discontinuity method for the analysis of rock structures: a fracture mechanic. In: Aliabadi MH (ed) Fracture of rock. WIT/Computational Mechanics, Boston, pp 39–82
go back to reference Scavia C, Castelli M (1996) In: Barla G (ed) Analysis of the propagation of natural discontinuities in rock bridges, EUROCK’96. Balkema, Rotterdam, pp 445–451 Scavia C, Castelli M (1996) In: Barla G (ed) Analysis of the propagation of natural discontinuities in rock bridges, EUROCK’96. Balkema, Rotterdam, pp 445–451
go back to reference Shaw A, Reid SR (2009) Heuristic acceleration correction algorithm for use in SPH computations in impact mechanics. Comput Methods Appl Mech Eng 198(49e52):3962–3974CrossRef Shaw A, Reid SR (2009) Heuristic acceleration correction algorithm for use in SPH computations in impact mechanics. Comput Methods Appl Mech Eng 198(49e52):3962–3974CrossRef
go back to reference Shaw A, Roy D, Reid SR (2011) Optimised form of acceleration correction algorithm within SPH-based simulations of impact mechanics. Int J Solids Struct 48(25e26):3484–3498CrossRef Shaw A, Roy D, Reid SR (2011) Optimised form of acceleration correction algorithm within SPH-based simulations of impact mechanics. Int J Solids Struct 48(25e26):3484–3498CrossRef
go back to reference Shen B, Stephansson O, Einstein HH, Ghahreman B (1995) Coalescence of fractures under shear stress experiments. J Geophys Res 100(6):5975–5990CrossRef Shen B, Stephansson O, Einstein HH, Ghahreman B (1995) Coalescence of fractures under shear stress experiments. J Geophys Res 100(6):5975–5990CrossRef
go back to reference Shi GH (1991) Manifold method of material analysis. Transactions of the 9th Army Conference on Applied Mathematics and Computing. Minneapolis, USA, 57–76 Shi GH (1991) Manifold method of material analysis. Transactions of the 9th Army Conference on Applied Mathematics and Computing. Minneapolis, USA, 57–76
go back to reference Shi GH, Goodman RE (1989) Generalization of two-dimensional discontinuous deformation analysis for forward modeling. Int J Numer Anal Methods Geomech 13:359–380CrossRef Shi GH, Goodman RE (1989) Generalization of two-dimensional discontinuous deformation analysis for forward modeling. Int J Numer Anal Methods Geomech 13:359–380CrossRef
go back to reference Tang CA, Lin P, Wong RHC, Chau KT (2001) Analysis of crack coalescence in rock-like materials containing three flaws-part II: numerical approach. Int J Rock Mech Min Sci 38:925–939CrossRef Tang CA, Lin P, Wong RHC, Chau KT (2001) Analysis of crack coalescence in rock-like materials containing three flaws-part II: numerical approach. Int J Rock Mech Min Sci 38:925–939CrossRef
go back to reference Tsay RJ, Chiou YJ, Chuang WL (1999) Crack growth prediction by manifold method. J Eng Mech 125:884–890CrossRef Tsay RJ, Chiou YJ, Chuang WL (1999) Crack growth prediction by manifold method. J Eng Mech 125:884–890CrossRef
go back to reference Vasarhelyi B, Bobet A (2000) Modeling of crack initiation, propagation and coalescence in uniaxial compression. Rock Mech Rock Eng 33(2):119–139CrossRef Vasarhelyi B, Bobet A (2000) Modeling of crack initiation, propagation and coalescence in uniaxial compression. Rock Mech Rock Eng 33(2):119–139CrossRef
go back to reference Vesga LF, Vallejo LE, Lobo-Guerrero S (2008) DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Int J Numer Anal Methods Geomech 32:1405–1415CrossRef Vesga LF, Vallejo LE, Lobo-Guerrero S (2008) DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Int J Numer Anal Methods Geomech 32:1405–1415CrossRef
go back to reference Weibull W(1939) A statistical theory of the strength of materials. Ing Vet Ak Handl 151:5–44 Weibull W(1939) A statistical theory of the strength of materials. Ing Vet Ak Handl 151:5–44
go back to reference Wong RHC, Chau KT (1998) Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci 35(2):147–164CrossRef Wong RHC, Chau KT (1998) Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci 35(2):147–164CrossRef
go back to reference Wong LNY, Einstein HH (2009a) Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng 42(3):475–511CrossRef Wong LNY, Einstein HH (2009a) Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng 42(3):475–511CrossRef
go back to reference Wong LNY, Einstein HH (2009b) Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min Sci 46(2):239–249CrossRef Wong LNY, Einstein HH (2009b) Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min Sci 46(2):239–249CrossRef
go back to reference Wong LNY, Wu ZJ (2014) Application of the numerical manifold method to model progressive failure in rock slopes. Eng Fract Mech 119:1–20CrossRef Wong LNY, Wu ZJ (2014) Application of the numerical manifold method to model progressive failure in rock slopes. Eng Fract Mech 119:1–20CrossRef
go back to reference Wong RHC, Chau KT, Lin P, Tang CA (2001) Analysis of crack coalescence in rock-like materials containing three flaws F Part I: experimental approach. Int J Rock Mech Min Sci 38:909–924CrossRef Wong RHC, Chau KT, Lin P, Tang CA (2001) Analysis of crack coalescence in rock-like materials containing three flaws F Part I: experimental approach. Int J Rock Mech Min Sci 38:909–924CrossRef
go back to reference Wu ZJ, Wong LNY (2012) Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech 39:38–53CrossRef Wu ZJ, Wong LNY (2012) Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech 39:38–53CrossRef
go back to reference Wu ZJ, Wong LNY (2013) Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method. Eng Geol 162:1–13CrossRef Wu ZJ, Wong LNY (2013) Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method. Eng Geol 162:1–13CrossRef
go back to reference Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181:375–389 Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181:375–389
go back to reference Yang SQ, Yang DS, Jing HW, Li YH, Wang SY (2012) An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures. Rock Mech Rock Eng 45(4):563–582CrossRef Yang SQ, Yang DS, Jing HW, Li YH, Wang SY (2012) An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures. Rock Mech Rock Eng 45(4):563–582CrossRef
go back to reference Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44:871–889CrossRef Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44:871–889CrossRef
go back to reference Zhang XP, Wong LNY (2012) Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech Rock Eng 45:711–737 Zhang XP, Wong LNY (2012) Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech Rock Eng 45:711–737
go back to reference Zhang HH, Li LX, An XM, Ma GW (2010a) Numerical analysis of 2-D crack propagation problems using the numerical manifold method. Eng Anal Bound Elem 34(1):41–50CrossRef Zhang HH, Li LX, An XM, Ma GW (2010a) Numerical analysis of 2-D crack propagation problems using the numerical manifold method. Eng Anal Bound Elem 34(1):41–50CrossRef
go back to reference Zhang GX, Zhao Y, Peng XC (2010b) Simulation of topping failure of rock slope by numerical manifold method. Int J Comput Method 7:167–189CrossRef Zhang GX, Zhao Y, Peng XC (2010b) Simulation of topping failure of rock slope by numerical manifold method. Int J Comput Method 7:167–189CrossRef
go back to reference Zhou XP, Cheng H, Feng YF (2013) An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression, Rock Mech Rock Eng (in Press) Zhou XP, Cheng H, Feng YF (2013) An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression, Rock Mech Rock Eng (in Press)
Metadata
Title
Numerical Simulation of Crack Growth and Coalescence in Rock-Like Materials Containing Multiple Pre-existing Flaws
Authors
X. P. Zhou
J. Bi
Q. H. Qian
Publication date
01-05-2015
Publisher
Springer Vienna
Published in
Rock Mechanics and Rock Engineering / Issue 3/2015
Print ISSN: 0723-2632
Electronic ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-014-0627-4

Other articles of this Issue 3/2015

Rock Mechanics and Rock Engineering 3/2015 Go to the issue